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COMMENTATIONES MATHEMATICAE UNIVEPSITATIS CAROLINAE
22,3 (1981)

ON STRICT PREPONDERANT MAXIMA
1. TISER

Abstract: It is proved that the set of points of strict
preponderant maxima of a real-valued function of n variables
is of measure zero. The proof uses the fact that each set of
positive measure contains a compact, all points of which are

poigta of upper symmetric density greater ¢r equal than one
half.

Key words: Preponderant maximum, Density Theorem.
Classification: 26B35

It was shown in [3]),[4],[1) that the set of points at
which real-valued function defined on a Euclidean n-space ta-
kes on a strict density maximum, is of measure zero. We shall
give a characterization of the set of points of strict prepon-
derant maxima of a function (defined below).

The ideas of the proof of Proposition and Theorem are
the same as in [1]. Lemma 2 improves a similar assertion in
{11, where the property of a compact K contained in a set of
positive measure is only D'(x,K)Z%- (D™ denotes ordinary up-
per metric density).

We assume that a Euclidean n-space R, is fixed through-

out this paper.

Definition. Let Ac R,» x€ R . Outer upper symmetric
density of the set A at the point x is
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—— iB(x,r)n Al

D_(x,A) = lim
s k>0, |B(x,r)|

If A is measurable, we leave out the word "outer", Si-
milarly, we define lower density using lim,
Definition., Let f be a real-valued function on a Euc-
Tidean n-space Rn‘ Ir chh has the property
DI(x, (50 Z £ < §

we say that f attains a strict preponderant maximum at x.
We shall also need the following notation:

My (£) =4xeR ;D (x, {t;f(1)2f(x)}) <xf , O<ec £ 1.
Especially, M% (f) is the set of points of strict preponde-
rant maxima of a function f,

Lemma 1. For arbitrary g > O there is 3 > 0 that

| B(x, 3r)n B(O,r)]

iB(x,pA )l

z3-¢

for any r>0 and x€ B(O,r)c R, .
We leave out the proof of this lemma because of its sim~

ple geometrical interpretation,

Lemma 2. If Ac R, is a measurable set and {Al>a>0,
then there is a compact KcC A such that

(1) . iklza

(ii) D;(x,K)Z% for every xé& K.

Proof. There is no loss of generality in assuming that

A is a compact subset of a unit cube QC Rn Let Ek be a fini-

te %-net of the cube &, denotes a family of balls
1
D = gut B, jxe B

and (Jy) - a sequence of real numbers such that o"k'a. o,
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1>d) >d,>...>0.
We shall form an increasing sequence of compact sets

. iSnal
K:l = U {SnA;SeD , diam szl —3—iA— 1-0"}. m=1,2,...

If x is any point of density of A, then x belongs to all but
finitely many K . Therefore, using Density Theorem, |K |7l A},
We can find an m, so that IKm1\:> a. We relabel Kml = K, and

let B, denote the finite family of all S& 2 satisfying

diam S %‘1 and l§£¢'> 1-d5. That is to say K, = S‘\é, SnA.

Now put for m = m + l,e00

1SNk, 1
Km UVi{snkK,;Se¢D , —17dlam S>l —-——E-]-'—.>1-d'23.

Isl
Similarly, |Kml/"\ K, Hence there iz an my>m; such that
» ‘S{\Km i
le | >a and at the same time ——-—-> 1-d, for s e B
2 s\ 1

because 331 is a finite family. Relabel Km K and let 332
be the finite family of all S € O satisfying %‘17 diam sz%
IS~k
d ..__._K.l._ >1-d".
Ist

Inductively, we proceed in the above fashion to obtain
a sequence (KJ-) of compact sets and a sequence of finite fa-
milies (B;) of the balls of 2 such that

(1) Kjca, K 12K

(2) lKjl_>,

IK.nS|

(3) for Se3 ——3———71-—0",.)..
ksl k

(4) diam Séik— for SeJBk (m, = 1)
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o
If we put K =5Q1 K, it is clear that KcA and |K|Za.

Let xe K. For every k there is Sy € .'P.»k such that x& S, and

\K:ns |
--Li > 1- o for k£j. Therefore

Isl
lK(\Skl
Is, !

Z 1- 0, for every k.

Hence there is a sequence of balls (Sk) c D such that xe S
for every k and diam Sy —> O. Let us choose g > 0. We can
f£ind k, that kZ ko implies
Kn
oSt o
!S]J

Let us choose another £,>0. By lLemma 1, there exists # > O

€ .

such that if we denote by ’é,k the ball with the center at x
and diam AS‘k = 3+ diam S,, then
3\
‘—S—“‘%j—k—z 3- €
Now
lKn§k\> lKng/ank‘>l§'ank| L I T L
AT (R - A - A AR 1T

=3-¢;-¢p” for k2K,

Since €,> O is arbitrary small, we have D;(x,K) = % - e,(Bn.
But also £ > O is arbitrary and this completes the proof.
Lemma 3. If f is a measurable function, then M_.(f) is
a measurable set.
Proof. It suffices to show that if r is fixed, then
the function % .(x) = |B(x,r) n{t;£(2)2 £(x)}| is measurabdle.
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Let E = {x; xr(x)<9\'}’ for A > 0. Let us introduce an au-
xiliary function ¢ (x) given by

d(x) = sup{ceR; l{t;f(t)ZcinB(x,r)IzA%.
Clearly, E =4 x;f(x) > $(x)§. We will show & (x) is an upper
semicontinuous function, thereby establishing the lemma.

Let x  be fixed, ¢ > ¢ (x,). By definition of ¢ (x) we

have
i{t;f(t)z c¥nB(x ,r) =2 -4, a>0.
By choosing o> O small enough, we obtain

IB(x,r)\ B(x,,r)l<d for xeB(x,,d"),

hence |$t;f(t)z c¥nB(x,r) <A +d -d =4 i.e.
¢ (x)€e for xeB(x,,0").

Proposition. If £:R —> R is measurable, then “li (£)i =
= 0.

Proof., Suppose not. There is a positive number a>0 such
that illi (f)]> a. Since f is measurable, by Lusin’s Theorem
and Lemma 2, there is a compact KcC Mi (f) satisfying (i), (ii)
of Lemma 2 and on which f is continuous. Then there is an x, €
€K that f(t)Z f(x ) for every te€ K. This implies Kcit; £(t)2
> f(xo)} hence

D (x ,1t;£(t)2 £(x )} )-z%

contradicting the fact that x & M% (£).

Lemma 4. For each f:%——) R, ceR, r>0 the function
B(x) = IB(x,r)nft;£(t)zc3l

is upper semicontinuous.
Proof. Let x, € %, € > O. Then we can choose d > O such

that |B(x,r)\ B(x_,r)l < & for x€B(x,,d"). Now
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8(x) = |B(x,r) n{t;r(t) 2 e}l B IB(x  ,»)n{tjr(t)zcdl +
+ 1B(x,r)\B(x,,r))nit;e(t)2ecllc B (x) + €.

Corollary. The function x —> Dy(x,{t;£(t)Z c}) is mea-
surable for each f:%-—-) R and c€R.

Proof. We can write

- . t:£(t)Z c¥n B(x,r))

Dy (x,{t;r(t)Z c}) = lim sup 1 —-'-J—rm——j-rj—‘—)—x,r
n-national

Theorem. If f is arbitrary, then II%(f)l = 0.,
Proof. Let us define the function

u(x) = inf{ ¢ e Q ;D (x,{t;£(t)2 c})< %}

where (), denotes rational numbers. Considering the corollazjy
we get the measurability of u. Further, it is easy to find
out that f£(x)<u(x) almost everywhere, because each set
{x;f(x)> q>u(x)? where q € & , has measure zero.

Ir xeli (f), then we see from the definition of u that
u(x)££(x), i.e. u(x) = £(x) almost everywhere in Ii(f). Let
us denote by M the set of all points of l% (£) which are pointes
of outer density of Il%(f) and f(x) = u(x). Clearly, IMnA| =
= \li(f)f\AI for each measurable set A, If x €M, then
Dy (x,it;£(t)Z £(x)3)< % and also :

D (x,{teM;E(t) Z £(x)})< 3.
- Because u(x) = £(x) for xc M, we have
‘ D;(x,4t € Mu(t) z ux)})<3.

This is equivalent to the fact D;(x,{te Ii (£);u(t)> ulx)3 )<%—.
Considering that x is a point of outer density of ll% (£), it
is easy to prove that D;(x,(t;u(t)z u(x)j)< %, i.e. xelli(u).

- 566 -



Therefore Mc ll% (u), which is of measure zero by Proposition
and we have |H.§ ()1 = 0.

J. Foran [2] showed that for an arbitrary function f of
n variables IM -n(f)‘ = 0 holds. He formulated a problem
(P 1019) there? if the number 2™ can be improved. We can see
now that 2" eas improved to % for every n. A further impro-

ving is not possible because even the set
$x;0; (x,4t;£(1) 2 f(x)})g-.%-}

equals R for f(xl,...,xn) = Xy,

This problem was also solved in a different way by L. Za-
Jjidek [51].

As we said in the introduction, the characterization of
the set of points of preponderant maxima is to be of measure
zero. It follows from Theorem and from the simple fact that a
characteristic function of a set E of measure zero attains its

preponderant maxima exactly at the points of E.
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