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COMMENTATIONES MATHEMAT1CAE UNIVERSITATIS CAROLINAE 

22,3 (1981) 

O N APPROXIMATE DINI DERIVATES AND ONE-SIDED 
APPROXIMATE DERIVATIVES OF ARBITRARY FUNCTIONS 

L. ZAJICEK 

Abstract: By the Jarnik-Blumberg method we prove two 
theorems on approximate Dini derivetea which has the follow­
ing consequences: a) For an arbitrary function at all points 
except a 6*-porous set the existence of an one-sided finite 
approximate derivative implies the existence of the approxima­
te derivative, b) For an arbitrary function the set of all 
points at which one one-sided approximate derivative is finite 
and the other is infinite is countable. By the same method we 
prove that the finite one-sided approximate derivative is in 
the Baire class one. 

Key words: Approximate Dini derivates, one-sided appro­
ximate derivatives, -o-porous sets, Baire class one, Jarnik-
Blumberg method. 

Classification; 26A27 

I* Introduction. In the present article we prove some 

new results on approximate Dini derivates and one-sided appro­

ximate derivatives of arbitrary functions by the Jarnik-Blum­

berg method. The main idea of the present article was used in 

[15] and thus the present article is in a sense a continuation 

of Cl5l. The Jarnik-Blumberg method and the notion of ^-porous 

sets are discussed there and we shall not repeat these remarks 

and definitions here. We obtain results in three distinct di­

rections: 

a) The approximate analogue of the Denjoy-Young-Saks the­

orem for arbitrary functions (C6J,cf. 12]) establishes certain 
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relations, valid almost everywhere, which connect the appro­

ximate Dini derivates of arbitrary functions. Namely, for an 

arbitrary function f almost everywhere at least one from the 

following relations holds: 

(i) There exists f' (x)e R. ap 
(ii) f^(x) - f;p(x) - +0D ; f*p(x) = f;p(x) - - 00 . 

( i n ) f;p(x) - +oo, f;p(X) = -co, f*p(x) = f;p(x)«E. 

(-*> *ap(x) * -°° * 5ap ( x ) = -00 ' ̂ P
( x ) = -£p(*)6R« 

Note that in the case of a measurable function f the relations 

(iii)f(iv) are almost everywhere impossible (cf. C103, p. 295). 

On the other hand, there exists a Lipschitz function f (see Ex­

ample 3 from 5. section) for which the set of all points x at 

which at least one from the relations (i),(ii),(iii),(iv) holds 

is a first category set. Thus we can pose the following problem: 

Problem P. What is the strongest relation concerning the 

approximate Dini derivates of arbitrary functions which holds 

except a first category set? 

The analogical problem for Dini derivates was completely solved 

in t!53> where we used the Jamfk-Blumberg method and the Dol-

Senko's theorem 133 on the boundary behaviour of arbitrary func­

tions. In the present article we obtain a partial solution of 

Problem P using the Jarnik-Blumberg method and the approximate 

analogue of the Dolfcenko's theorem proved in 1.133. Namely, we 

prove that the set S of all points x at which f^x^f!-^*) 
ap ap 

or f(x)+,£"(x) and at least one from the numbers 

max Of+p(x)lf If^p(x)i), max (If^U)!, |fj[p(x)| ) is finite, 

is a first category set. From the approximate analogue of the 

Denjoy-Young-Saks theorem follows that S is also a set of 
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measure zero. Actually we prove a little more precise result 

(Theorem 1) which asserts that S is a ©'-porous set. Note 

that from this result immediately follows that for an arbit­

rary function f at all points except a €>-porous set the ex­

istence of an one-sided finite approximative derivative imp­

lies the existence of the approximative derivative. I was not 

able to solve Problem P completely. Note that H.H. Pu, J.D. 

Chen and H.W. Pu [9] proved that for any continuous f the re­

lations f ( x ) * f~p(x) an! f (x) =- JTap^ n o l d a t a 1 1 P° i n t s 

x except a first category set. Examples 2, 3 of the 5. section 

of the present article show that this result gives the soluti­

on of Problem P for continuous functions. 

b) It is well known (see e.g. C103, p. 261) that for an 

arbitrary function f the set of all x for which f (x)<e:jr~(x) 

or Jf (x)> f~(x) is countable. The approximate analogue of this 

theorem does not hold (it is sufficient to consider the charac­

teristic function of an uncountable null set). On the other 

hand, from Theorem 1 of 114] immediately follows that the set 

of all points at which f.r.(x)-< f~ (x) orloyi(x)>f" (x), and 
ap -™*ap ap ap 

all the approximate Dini derivates are finite, is countable. 

Using the Jarnik-Blumberg method we strengthen this result, na­

mely we prove that it is sufficient to assume that fow(x), 
ap 

f .Ax) or f" (x), f~ (x) are finite (Theorem 2). As an interes-*-~ap «p —"sp 

ting consequence we immediately obtain that for an arbitrary 

function the set of all points at which an one-sided approxi­

mate derivative is finite and the other is infinite is count­

able. 

c) Snyder [11] first used the Jarnik-Blumberg method to 

prove a theorem concerning approximate derivatives. He proved 
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a theorem concerning the boundary behaviour of functions of 

two variables and has shown that it yields a new proof of 

the fact [12] that the finite approximate derivative is of 

Baire class one. Preissf8] proved that the assumption of 

finiteness of approximate derivative can be dropped and Mi-

elk £7] has shown that also this theorem can be proved by 

the Snyder's theorem. We show that the Snyder's theorem also 

yields that the finite one-sided approximate derivative is 

of Baire class one. The assumption of the finiteness is sub­

stantial. 

2. Preliminaries. We denote by R the set of all real 

numbers and put R = R\t\,~co9coi . The symbol (bu (reap, t^p^ 

stands for the outer Lebesgue measure in R (resp. in R ). 

The open circle of the centre xc R2 and the radius r is de­

noted by B(x,r). For McR we put -M =-fx; -x<5Ml. The Dini 

derivates of a function f are denoted by f (x) ,f (x),f"(x), 

f~(x). The one-sided approximate derivatives are denoted by 

f' +(x) and
 :->oD-(

x)* f̂re approximate Dini derivates are deno­

ted by f*p(x), Jf*p(x), ̂ ap(x)' ̂ ap(x)- I f M c R i s a n a r b i t r a~ 

ry set, then d (M,x) denotes the upper right outer density of 

M at x, the numbers d+(M,x), d"(M,x), d_(M,x) are defined si­

milarly. The open half-plane i(x,y);x>yj will be denoted by 

H. An open angle AcH with the vertex at a point (t,t) is ter­

med an angle at (t,t). If A is an angle at (0,0) then we de­

note by A^ the image of A under the translation taking (0,0) 

into (t,t). If M c r and A is an angle at (t,t), then we de­

fine the upper outer density of M at (t,t) with respect to A 

as 
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dA(BI,(t,t)) = lim sup /u~(MnB((t,t),h)r,A) 

((o2(B((tft),h)nA))*"
1. 

The upper lower density is defined similarly. If f is an ar­

bitrary real function in H and A is an angle at (t,t) then we 

define the approximate limes superior of f at (t,t) with res­

pect to A ap-lim supAf(z) as the upper bound of the numbers 

peR such that dA(f (pfoo) f (tft));**0. Similarly is defined 

ap-lim inf, f(z). If ap-lim supM f(z) = ap-lim, infM f(z) *-*tt,t),&eA x-^(ttt)y xeA x-^tt,t),xeA 
then we denote the common value by ap-lim f(z). It is easy 

x-~»tt,fc), zeA 
to prove that ap-lim f ( z ) = a i f f there exists a measurab-

x->(,t,t)7 zeA 
le set licR^ such that dA(M,(t ft)) « 1 and lim f (z) « a. 

A x->Ct>t>j z&A 

Now we shall formulate three theorems concerning the 

boundary behaviour of functions of two variables which we 

shall use in the 4. section. 

Theorem A. Let f be an arbitrary function in H. Then 

the set of a l l t e R for which there exist angles A-,, Ap at 

(tft) such that ap-lim sup f (z) 4^ ap-lim sup f (z) is 

z-9>Ct,t), zeA* Zr*t,t),x,€> Az 

&-porous. 

Proof. The theorem is an easy consequence of Theorem 

12 from C131. 

Theorem B. Let f be an arbitrary function in H. Then 

the set of a l l t € R for which there exist angles A ,̂ A2 at 

( t f t ) such that ap-lim sup, f(z)-c ap-lim infrt f (z ) i s 
^-^Ct,i)$zeA1 z-rit,t), xeA% 

countable. 
Proof. Use Theorem 13 from [131 or look in f l l . 

Theorem C. Let f be an arbitrary function in H and A 

an angle at (0,0) . If for each t e R there exists f in i te or 
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infinite ap-lim f(z):« g(t), then the function g is of Bai-
z-rCt,t), xeA. 

re c l a s s one. 
Proof. The theorem i s an easy consequence of Theorem 1 

from t i l l . 

3* Lemmas 

Lemma 1. Let v . > 0 , t e R and l e t Ki.NcR be such that 

d^(M,t) * 1 and d " ( N , t ) > 0 . Define the angle A at ( t , t ) as 

A • - i ( x , y ) ; y ^ t ^ x , ( t - y ) > v ( x - t ) ? . Then d A ( M x N , ( t , t ) ) ^ 0 . 

Proof. Put cc = arctg v and T * -f (x,y)ts A; r s i n cC > 

> t - y i for r;>0. Further put S r * An B ( ( t , t ) , r ) . Then Tp i s 

an open tr iang le and T r c S r # Let CoMxN be a measurable s e t 

such that ^ ( C n W ) » ^ 2 ( ( M x N ) n W ) *or an arbitrary measurab­

l e s e t W. Since d""(N,t)>0 there e x i s t b >C and a sequence 

p V 0 such that 

(1) ( l / p n ) ^ ( ( t - p n , t ) n N ) > b for a l l n. 

Put rR - p / s i n o o . Since d+(M,t) « 1 we have for s u f f i c i e n t ­

ly large n 

(2) (1/h) ^ ( ( t , t + h ) r . M ) > l / 2 whenever 0<h-<rp:ft cotgc£ • 

s Pn/r* 

For these n we have by the Fubini theorem 

(3) ^ 2 ( C n T p ) • / fut x ; ( x , y ) e C o T r I dy 

and by (2) * ' 

(4) ^ x } ( x , y ) s C n T J > ( l / 2 ) ( t - y ) v ' " : i whenever 
n 

y e ( t - p n , t ) n N . 

From (1) fo l lows ta*((t-pn,t-b P n / 2 ) n N ) > b P n / 2 . For 

y e ( t - p n , t - b p n / 2 )AN we have by (4) 

^({x;(x,y)eCnTr i)>b Pn/4v. Therefore by (3) we 

obtain ("2(Cr»Tr )>(b pp/2)(b Pn/4v) » K r* and 
n 
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^ 2 * C o S r )/ ("^r ̂ ^ Tt/ <^2^T = Lf where K» L do not de~ n n n 
pend on n. Consequently dA(MxN,(t,t)) * dA(C,(t,t)) £ L > 0 . 

Lemma 2. Let v>0, tc=R and let M,NcR be measurable 

sets such that d+(M,t) = 1, d_(N,t) -= 1. Put A
 s •£ (x,y) ;y< t< 

<x,(t-y)>v(x-t)i. Then d^CMxN, (t,t)) = 1. 

Proof. Let €,> 0. Then for sufficiently small r >0 we. 

have (u(Mn(t,t+r))> (1-e )r and <a(Nn (t-r,t)).> (1- e) r. 

Put Cr » (t,t+r) x (t-r,t) and Sr =- AoB((t,t) ,r). By the Fu-

bini theorem we have for sufficiently small r ^pttMxN) n 

OC_)>(l-e) 2 r2. Therefore we have lim ^0((MxN)o 0)/ 

/ ^2^Cr^ = 1# °Dviou3ly s r
c C

r
 an<a (^^r^ ^^ Sr^ does not 

depend on r. Consequently d^CMxN,(t,t)) = 1. 

Lemma 3. Let v>0, te R and let M c R be a measurable 

set such that d+(M,t) * 1. Put A = { (x,y) ;x>y > t,(x-t)^>v(y-t)f . 

Then d^tMxW, (t,t)) = 1. 

Proof. The proof is quite similar to the proof of Lemma 2. 

In the rest of the present section f is an arbitrary real 

function on R and g(x,y) = (f(x) - f(y))(x-y) . 

Lemma 4. Let f* (t), J** U ) be finite and f* (t)<T, T e R. 

Then there exists an angle A at (t,t) such that 

ap-lim sup4 g(z)< T. 

Proof. Choose real numbers b, B such that b<f (t) 4s. 

£f_ (t)<B<T. By the definition of the approximate derivates ap 

there exists a measurable set M c R such that d^(M,t) =- 1 and 

(5) b<g(x,t)<B for X6M. 

Let v>l. Put Av » { (x,y);x>y>t,(x-t)> v(y-t)l. By Lemma 3 

we have dAv(MxU, (t,t)) = 1# For (x,y)€A
v obviously (y-t)/(x-y)< 
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< l / ( v - l ) . Therefore for (x,y) s (MxM)nA we have by (5) 

( f (x ) - f ( t ) )+( f ( t ) - f (y ) ) (x-t) B+(t-y) b 
g(x,y) * ^ * 

x-y x-y 

* B • (b-B)(t-y)/(x-y)^B + (Ibl *• |Bl)/fir-l). 

Consequently there exists v > l such that ap-lim supA g(z)< T. 
x^-itjt), %*f\ 

Lemma 5. Let f*p(t)>-co and f~ (t)>aeR. Then there 

exists an angle A at (t9t) such that ap-lim sup& g(z)>a. 

Proof. Choose real numbers q9 b such that f (t)j>q and 

f~ (t)>b>a. Since f ( t ) > q there exists a measurable set 

McR such that d^(M,t) == 1 and g(x9t)>q whenever x&M. Since 

f" (t)>b there exists a set NcH such that d""(N9t)^0 and 

g(y»t)>b whenever yeN. For v >0 put A^ s i (x9y)|y-<t<: x9 

(t-y)>v(x-t)$. By Lemma 1 dAv(MxN9(t9t))> 0 and for (x.yjg^ 

obviously (x-t)/(x-y)-<l/v. Therefore for (x9y)e A^r^MxN) we 

have 

(f(x)-f(t)H(f(t)-f(y)) q(x-t)+b(t-y) 

g(x,y) * > • 
x-y x-y 

* b + (q-b)(x-t)/(x-y)>b - (iqi • I bt )/v. 

Consequently there exists v > 0 such that ap-lim sup. g(z) > a. 

Lemma 6. Let f t n ( t ) > - oo and jT~ ( t ) > f * ( t ) . Then the-

re exists an angle A at ( t , t ) such that ap-lim inf. g{z) z> 

> * : P
( t ) -

Proof. Let b, q be such real numbers that f" (t)> b >• 
mmmmMmmmmm —ajp 

>t* (t) and fft (t)>q. % the definition of approximate deri-

vates there exist measurable sets M.NcR such that d^(M9t) = 1, 

d^(N,t) * 1, g(x9t)>q for xeM and g(y9t)>b for y€N. Let 

the symbol Ay have the same meaning as in Lemma 5. 3y Lemma 2 

we hare d. (MxN,(t9t)) » 1. For (x,y)e (MxN)oAv we obtain 
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by the same way as in the proof of Lemma 5 g(x9y)> b -

- ( lq | + lb ( ) /v . Consequently there exists v > 0 such that 

ap-lim inf g(z) > f* ( t ) . 
z->(t,t), zeAy, ®P 

4» Theorems 

Theorem 1» Let f be an arbitrary function on R. !I:hen . 

there exists a G-porous set P such that for any t e R - P 

a) 4P(t) -x;p(t),f*p(t) -f-p(t) or 
(ii) max(|f*p(t)l, lf*p(t>l) = max ( l £ (t)l , 

If^p(t)l) = + oo. 

Proof. For an arbitrary function f on E denote by S(f) 
' + _+ 

the set of all points t at which -a><X„-.(0- *-„(*)-= *.„<*>• 
ap ap ap 

By Lemma 5 for any teS(f) there exists an angle A at (t,t) 
such that ap-lim sup, g(z) ^ f ^ U ) . Therefore by Lemma 4 

z-*ttdh tW ap 

there exists an angle A* at (t,t) such that ap-lim xsup A g(z)> 
x*tt,t)ftiA 

> ap-linr sup ̂ g(z). Thus by Theorem A the set S(f) is 6*-po-
Z~r Ct,t)? t B A* 

rous for any function f. Let P be the set of all points at 

which no from the relations (i),(ii) holds. Then it is easy 

to prove that 

PcS(f(x))uS(-f(x))u(-S(f(-x)))u(-S(-f(-x))). 

Therefore P is 6"-porous. 

Corollary. For an arbitrary function f the set of all 

points at which an one-sided approximate derivative of f ex­

ists and is finite but the approximate derivative does not ex­

ist is €-porous. 

Theorem 2. Let f be an arbitrary function on R. Then 

there exists a countable set C such that for any x e R - C at 

least one from the following relations holds: 
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(i) £P<*>**i<*> **<* 4 P
( x ) » f ; P

( x ) 

(ii) j£~ (x) * -00 and ?*(*> = + oo 

(iii) "f̂ p(-c) = + o o and 1* (x) = - co * 

Proof. For an arbitrary function f on R denote by Q(f) 
the set of all points at which -co <: 1* (t)£t* (t)<t~(l)• 

Let teQ(f). Then by Lemma 6 there exists an angle A at (t,t) 

such that ap-lim inf. g(z)>f^(t). By Lemma 4 there exists 
%~Kfc,t)> xeA aP 

an angle A* at (t,t) such that ap-lim sup ̂ g(z) < 
£~>tt,t), x<fA¥ 

•< ap-lim inf. g(z). Therefore by Theorem B the set Q(f) is 
X^Ct,t)y zeA 

countable for any function f. Let C be the set of all points 

at which no from the relations (i),(ii),(iii) holds. Then 

CcQ(f(x))uQ(-f(x))u(-Q(f(-x)))u(-Q(-fl-x))) 

and therefore C is countable. 

Corollary. For an arbitrary function f on R the set of 

all points at which the one-sided approximate derivatives of f 

exist, are not equal and one from them is finite, is countable. 

Theorem 3. Let f be a function on R for which at each te 

e R t'(t)e R. Then the function a(t):= t'(t) is in tn0 

Baire class one. 

Proof. By Theorem C it is sufficient to prove that for 

any t€ R a(t) » ap-lim g(z) , where At = { (x,y),*t-<y< x, (x-t)> 
x~**Ct}t), ze /.£ v 

,>2(y-t)|. Let teR. By the definition of t'+(t) there exists 

a measurable set M such that d.(M,t) = 1 and lim g(x,t) =- a(t). 

By Lemma 3 dA (MxM,(tft)) = 1 and therefore it is sufficient At 
to prove 

(6) lim *(z) ^ « a(t). 
z-+it,i;\xeAtf%iM*M) 

Let e >• 0. Then there exists «/> 0 such that a(t)-
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- £«<gUft)<:a(t) + £ whenever fx-tl-rfô ' and xeM. The­

refore for (xfy)e (MxM)n AtrvB((t-t)fcO we have 

(f(x)-f(t))+(f(t)-f(y)) <a(t)+ e)U-t)-Kt-y)U(t)-e) 
g(X,y) = ± _ , 

x-y x-y 

- a(t) + e((x-t) + (y-t))/((x-y) ia(t) + 3& , and analogically 

we obtain g(xfy)2Ta(t) - 3 & . Thus (6) is proved and the 

proof is complete. 

Note. Example 1 of the following section shows that the 

assumption of the finiteness of a(t) is substantial. 

5. Examples 

Example 1. Let f be the well known Dirichlet function. 

Then obviously * ^ ( x ) = 0 for irrational x and f^p+(x) = - oo 

for rational x. Therefore f^p+ io not in the Baire class one. 

Example 2. Let f be the well known Weierstrass function 

(see e.g. £5], p. 141). Then at all points except a first ca­

tegory set f +U) = f~U) * + co and f*U) = f"(x) = - oo 

([5], p. 142). Since for any continuous function g at all 

points of a residual set g (x) -= g~U) = Sat)(
x) = "^ao(x) an(* 

g (x) s g~U) = J>ap(x) = jiap(x) (see C9Jand C4l) we obtain 

that f*pU) =- f~pU) *+oo and f*p(x) = f~p(x)
 = " °° at a11 

points except a first category set* 

Example 3. Let the real numbers alb be given. Let g -= 

= f-£ and h =- f2, where f^f f2 are the functions from the Ex­

amples 1, 2 from [15 J. The functions g, h are continuous. Us­

ing the same theorem as in the Example 2 we obtain that 

*ap ( x ) * «ap(x) * b» «aD(x) = -£p(x) * a> K p ( x ) * *ap(x) * 
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• co , h£p(x) =- h~<*> s a a t a l X P° i n t a «««P* a f i r a t 
£apv*' ".Sap 

category set. 
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