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DISCONNECTED REGULAR s-MANIFOLDS
Stefan WEGRZYNOWSKI

Abstract: The author presents some typical constructi-
ons of disconnected regular s-manifolds i.e. of certain dis-
tributive groupoids on smooth manifolds which generalize the
notion of a symmetric space in two directions: The symmetries
are not necessarily involutive and the space may have more
than one component.

Key words: Generalized symmetric spaces, regular s-mani-
folds, glstrﬁutive groupoids.

Classification: 53C35

Introduction. Following O. Kowalski [1],[2], a regular
s-manifold is a manifold M with a differentiable multiplica-
tion M:Mx<M-—> M written as (x,y) = x.y such that the maps
8,.:M—> M, xeM, given by 8.(y) = x.y satisfy the following
axioms:

(1) s, (x) = x,

(ii) each s, is a diffeomorphism,

(iii) syo0 8, = 8,08y, where z = s (y),

(iv) for each xeM, the tangent map (s ), :T, (M) —> T (M)
has no fixed vectors except the null vector.

The diffeomorphism 8,» Xxe& M are called symmetries of M:
An automorphism of (M,«) is a diffeomorphism ¢ :M —» M

such that ¢ (x.y) = ¢ (x) « $(v) for everv x.ve M. Obviously,
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" all symmetries s, of (M, ) are automorphisms due to axioms
(ii) and (iii).

In the definition of a regular s-manifold one does not
suppose that the underlying manifold M is connected. Yet the
book [1] is devoted, in fact, to the theory of connected re-
gular s-manifolds.

The disconnected regular s-manifolds apparently require
a special theory, which may be non-trivial (see the examples
1)-4) in L1], p. 66). Here we develop some more basic facts
and constructions concerning disconnected regular s-manifolds.

At the same time, we generalize the examples mentioned above.

§ 1. Let (M_, 18J}), cc€ A, be a set of connected regu-
lar s-manifolds. Let M =¢\¢/A M, be .the disjoint sum of the
underlying manifolds.

Definition 1. A regular s-manifold (M, {ex}) will be
said to be composed of the (M, {ax"" 3) if for every o« € A,
ol

xd’e l(oc we have

ol
e sy | M =8 .
o oC

It is obvious that every disconnected regular s-manifold
is composed of its connected components in the above sense.
Here the regular s-structures on the connected components are
determined by (1),

Proposition 1. If (M, {8, %) is a regular s-manifold which

is composed of the connected regular s-manifolds (“ec' {s;‘ ¢ 3,
[

ov€ A, then the index set A has a natural structure of a 0-di-

mensional regular s-manifold.
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Proof. For any two <, @ € A consider the maps ®x lm !
<p

where x_  runs over M, -

Because each s :tM —> M is a diffeomorphism, it maps each con-

x
o<
nected component onto a connected component. Because the map

(. X J—> 8 (xﬂ) is emooth for a given x, s M, , we see

X

that the connected component s, ("B) = M, does not depend
oG

on the choice of X € M.

Thus, we have a uniquely determined index ¥ ®=oc. 3 . It is

clear that £ -o¢ = o« and, for each ccc A, the map L: 3 —

—>qc.(s is one-to-one on A.

Finally, consider the regularity condition

8_ o8

X%, " sa:‘ac(x,_,,)° S, O My -

We obtain
e (o) = (x=B)e (=)
which is the regularity condition for A,

Hence A with the multiplication (x,B)—> .3 is a

O-dimensional regular s-manifold.
Q.‘.D.

Definition 2. The reguler s-manifold (A, - ) will be called
the index groupoid of (M,{s_}).
Proposition 2. Let (M,{s,}) be composed of (M, ,{sl }),

. o
o € A, in such a way that the index groupoid (A, - ) is tran-

sitive (i.e., the tramsformation group G generated by all maps
L, %€ A, is transitive on A).
Then all components (l“,{a;"wi ), < € A are isomorphic to
the same (connected) regular s-manifold (M, {l:}).

Proof. It is sufficient to prove the following:
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it y.x =3 far 3 indices «,3, 3 € A, then (lx,{nx 3)
is isomorphic to (Mp, -h”p}). But for sy element x_. € N,,
oy 7‘. is a diffeomorphism of M, onto M g

Further, from the regularity of (M, {s,3) we get

s os
;3, x‘il‘ -‘T(x‘_) xrll',‘ ,

/i)
But this ia Just the isomorphism between (M _, {'x 3) and

(¢ | B {s p} ). The structure of "transitively colpoaed“ regu-

where s 1“«.) =x, e N,

lar s-manifolds is not easy to describe. Yet, we shall show
the construction of a special class, where we do not suppose
the transitivity of the inl ex groupoid but only the isomorph-
ism of the components.

Proposition 3. Let (A, +) be a O-dimensicnal regular s-
manifold and (lo,{agi) a "model” regular s-menifold. Then the
direct product (A,.)sc (M, {a:}) is a regular s-manifold with
the index groupoid (4, . ).

Proaf is obvious. We only recall that the composed mani-
fold (AxM,, {a_}) is defined by the formula
(2) -(‘,“)(p,v) = (aef}, l:(v)), u,ve My,

% pe

Now, cx-plea 2, 3 from [1] are special cases of Proposi-
tiom 3.

If theé groupoid A is trivial in the sense that -3 =3
for smy oy, 3 € A, then we see easily that

nu'.)(fs,v) = (B,8,(v)) for any u,ve M,

and this is Example 2.
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Bxemple 3 is obtained for a groupoid A consisting of 3
elemats (1,2,3) with a transitive multiplicatiom.

We shall now generalise example 1 from [1].
Let us consider again a O-dimensional regular s-manifold (A, )
and the group G generated by all the left translatioms Lw:
(5 - cc-/l, 3¢ 4. G is a group of automorphisms of the grou-.
poid (A, s ). Let us consider a relation & on (A, - ) defined
as follows: o« & 3 if and only if o¢c belongs to th; orbit
of A with respect to the group G, i.e. if and only if o=
= g((3) for some geG.

In particular, our relation is an equivalence relatiom,
and the following is satisfied:

a) N Eyemd L LY

) L E Ry Y .

\Proggaition 4. Let (M, {8,%) be composed of (M ,{3;13 ),
oce A, with the index groupoid (A, . ). For every <, €A
the relatiom oc X (3 implies the isomorphism between (M ,{ s;cij)
and (Mj .fafn.f )e

Proof is the same as for Proposition 2.

Proposition 5. Let (A, ) be a O-dimensional regular s-
manifold with the corresponding equivalence relatiom & . Let
(M o {s':.cs L cA be a family of connected regular s-manifolde
such that, for every two indices o & 3, the regular s-mani-
foldas (M, a: 3) (lﬂ ' 1 ng $ ) are isomorphic to the same

oC
regular s-manifold (Mg q,{ a"‘;‘]; ), where [oc] means the equi-
valence class of o¢ in A.
Put M = {(«,u)lxe A, ue Myt and, for each (oc,u)€M
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define the transformations s8¢, ) on M by the formula

(ote 3 ,a[;av) if 2B u,veMy
(3) s (A,v) ={
(ocyu) ’ ‘°C'/3 , V) if o 3? B ueM ,, vs ltm.

Then (l,{sgg) is a regular s-manifold composed of the Compg.
nents (M_ '{':oc“ and with the index groupoid (A, - ).

Proof. The formulas (3) are correct because Loc-31 =[]
for every «,f3€ A.
We have to prove

(o ,0)((B,v) « (g,m) = ((cc,u)e( B,9))e((ct,u)eCr,w))
in the follofri.ng 4 cases: ’

1) pEy = u,v,we M 5

) pey, 06\$?‘ ueMpq; vwe M,

N pEYy, =T w,welMy, ve g,

) pFy, %y ueMy g, velyy), welp ;-

For the sake of brevity, we make the following denotati-
ons:

L= («,u)e ((B,v)- (y,v)

R= ((cc,u) e (3,v)) 2 ((cc,u)e(p,m)

(ot ,uev):e= (cc,aﬁav) if c€ A, u,vel 4

Ad 1) L= (cc,u)e(B-,vew) = (<-(B-7), us(v.w))
R= (- f3,uv)e(cced  uew) = ((cce B)e(ete y),(0av).
-(u.w))
According to the regularity of M., and A, we have L = R.
Ad2) L= (x,u)e(Be7,vew) = (xc-(fs7),vew)
because o- ¥ 3- ¥
R= (o¢-f,v)-(ctoq,w) = ((£-B)e(cx-3), VW)
because o ¥ f3 .°¢¥‘r,oc-/32°o-3f'.
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Hence L = R,
Ad 3) L= (o, ,u)e(fogr,w) = (oc-(@-'a-),u-')
because f3 # ¥, E By
R= (e f3,v)elocsy,uew) = ((o€oB3)a(oce 3),u-w)
because of ¥ 3, ot-f3 $¥ o g -
Hence L = R,
Ad 4) L= (cc,w)e(B-7,w) = (c: (3~ 7),w)
R= (e f3,v)e(B-gyw) = ((xef3)e(t-p),w)
because oc. 3 B9 .
Hence L = R,
This comple tes the proof of the regularity.

Finally, ’(,g,u)(“") = (oc,uev) holds for each oc € A,
and hence the o¢ -component of (M, {s,3) is isomorphic to
(n_, {“a;°¢3 ).

Special case. If the groupoid (A, - ) is trivial in the
sense that o3 =3 for each o, (3 s A, we get o = (3 if and
only if o = in A.

Hence

of
s,y =8,v for u,vel

s v=EvV for ue M, vslﬁ and oC #$ 3

and this is the gemeralization of example 1.

§ 2, In the second part of this article we shall charac-
terise the regular s-manifolds of 2 components and also genera-
lise example 4 from [1]. (A classification of these s-manifolds
remains an open proble=m.)

Let (M, -hx}) be an arbitrary regular s-manifold. Let
G(M) denote the free group generated by all elements x¢ M (the
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mltiplication will be denoted by the symbol o ). Let

H(M, iaxi) be the set of all elements of G(M) of the form

xto (a,_y)'lo xoy, and let N(M, {sx}) be the subgroup of G(M)
~ -1

generated by the set ?%16-5 ocHog ',

Clearly, N(M, {8 }) is a normal subgroup of G.

(4)  Let p:G(M)—> Aut(M, {s,3)

be the group homomorphism determined by the values p(x) = L
x &M, Then N(M, -{ux‘i) belongs to the kernel of p, and p indu-

ces a homomorphism
(5)  w:GOO/N(M, £8,3) —> Aut(M, {8,3).

The imge of the map p is a subgroup G(M, { 8, })C Aut(NM, { .3
generated by all symmetries 8,y X€ M. Also, the restriction of
p to Mc G(M) is a smooth map.

Defimition 3. Let (M, is,%) be a regular s-manifold, and
H an arbitrary Lie group. A honoiorphia- @ :4(M) — H is said
to be regular if the narmal subgroup N(M,{ 8,3)c G(M) belongs
to the kernel of ¢ , and the restriction ¢/y is smooth.

Now we get the following

Theorem. Let (M, -i-;}), (M, {‘;D be connected regular
s-manifolds. All regular s-manifolds (M, vy, { 8.}) composed
of {M,, '{l;’g) and (lz,{lgi) are in one-to-one correspondence
with the pairs (@ ,¥) of a regular group homomorphism A

@:0(M,) —> Aut(M,, { -;})

6)
¥ :G0L) —> Aut (4, £8}3)

such that it holds
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sl ey () = y(g@G))
(7) xec My, ye My
2. g@o D)7 = gy (y)x))
Proof
A. Let (M, {8.3) be a regular s-manifold which is composed
of (M,, {a;‘&) and (M, { l:}). Because s_c Aut(M, {8,3) for

each G M, then ""16 Aut (M, {.:1“ for i = 1,2 (and each’

g cM). Hence we get group homomorphisms

5 :00M, 1 8,3)—> Aut(ni,faiia), 1=1,2

by the rule: ar;(g) = Blli for any ge G(M, £ 8,}). Further,
we have canonical group injections

ey :G(M;) —> G(M) such that

o LNOM, { -iij Yl (M, £8,3) for i = 1,2.
Combining this with the regular group homomorphisa p:G(M)—>
—> G(M, {a‘}), we obtain regular homomorphisms

(8) hyj = :n'jopooi:G(li)—-’ Lut(lj,{oi}), i, =1,2
J

Here h“, h12 ate the canonical homomorphisms Pys Py of the
form (4) and h;2, hp; are the wanted homomorphisms (6).
Finally, we obtain Formulas (7) from the relatioms

(8g0 -’)h‘ = ‘l.x(’)o lx)ll'
( s.) = (s s )
%y ° % Ilz -y(x)” y "2
if we put ?‘ h‘zg Y'hz'o
B. let be given connected regular s-manifolds (l,, {.;}),

(e, {033) and regular group homomorphisms ¢, ¥ of the fora
(6), Put M = M,v M, and define transformations s,, seM, of M
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as follows:

1
For xeM, put s =8, 8 = ¢(x)
1 x x? "x
(9) "1 l“2
2

For yc M, put syl' = y(y), ayil = 8y
1 2

It is sufficient to prove the regularity of {azi.

1 1 2 2
a) (.x°.xl)" =3x°‘x ’ (‘y°al)|l2='y° ayl’

and the regularity follows from the regularity of the compo-
nents.

b) (sg0 ax,)hz = @(x) o@(x’) = g(xex’) = q(ax(x')v x)=

= g8 (x")) o p(x) = ’o0 .
P (8g(x)) o @ (x) ‘ax(x) ‘xllz

Similarly,

(s_os8_,) = (s ,y08.) follows from the regularit
% |n, G ° %y 'u' v

of VO -
| I ! 1
c) (Sxo uy)|.l =8,0 y(y) = y[g(x)(y)]uu: = ’ax(y)"»’x‘l‘

and (eyo .x)‘lz = (’o’(x)" a’)!l2 according to (7).

= © 2 = 2 = ©
a) (sye zly,)!“2 @ (x) ®y = Sp(x)y ° @ (x) n'!(y) "‘llz
(8,0 8.) =8, (x)°°
y \ Il‘ y ’ll‘

because ¢(x), y(y) are automorphisms of (M, -(sgf), (M,
{n;}) respectively.

Example. Let (M,{s.}) = (N, {';“" (p, {033) be a di-
rect product of s-manifolds, a'l:l—; N, a'zsl—->P the pro-
Jections. We define a regular s-manifold (MvN, {3,%) as fol-

lows:
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1
x

g :G(NxP) —> Aut(N, { a;}) is defined by «(x,y) = s
¥ :G(N) — Aut(Fx P,{s;x Bsi) is defimed by y (x) = s;x
» idp, where (a;xidp) (x',y) = (a;(x').y) on N= P,

We check the identities (7).

-1

a) L= s;, o ¢lx,y)e (s;,) = s;,o a;o (a;)-‘ = s!

a;, (x)

R= gLy (x)(x,y)] = ¢le), x,y) = BLLI“’

. . -1 = aof 1 1,~1
b) L= 8(x,y) ° ¥(x)o 8(x,y) = %x°°%x © (8y) ‘"< idp

’ - 1 . - 1 3
Rzy[e(x,y)(x)] = W(ex(x )) = 's:(x')"‘ldr .
let us write the explicit formula for the composed s-manifold
(MvN, {‘5‘} )s
- 1
’(X,y)’N =8, for xel, yeP

1
b4

a'-
*iM

This generalizes example 4 from [1].

=8 xidp for xeN,

8
x ]pr
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