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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
22,3 (1981)

SEMIGROUP REPRESENTATIONS OF MEDIAL GROUPOIDS
Jaroslav JEZEK. Tomés KEPKA

Abstract: PFor every medial groupoid G with GG = G, the-
re exist a commutative monpid S(+,0) and its two commuting
automorphisms f and g such that G€S and xy = £(x) + g(y)
for all x,yeQq.

Key words: Semigroup, representation, medial groupoid.
Classification: 0BA05

In the past, a considerable attention was paid to the
problem of representations of medial groupoids by means of
commtative semigroups and their commuting endomorphisms (see
e.g. L11,12),031,161,L7),08],[9] and [10]1). In the present
paper, we are going to show that all medial groupoids without
irreducible elements and all commutative medial groupoids ha-

ve semigroup representations.

1. Preliminaries. Throughout this paper, let E be a free

monoid over a two-element set {c« ,3} . Every element e of B
can be written uniquely as e = 8yeeety for some nZ 0 and
8),00008 €400, 31 . We put d(e) = n and K, = {f eE;d(f) = m}
for all m20. Further, 1(e) = card {ija; =}, r(e) =

= card {ija; = 3} and ::l,j = {e 6E;(1(e),r(e)) = (i,j)3.
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Let X be a non-empty set and SWy the free algebra over
X in the variety of universal algebras of the type {+,0, «,f3}
satisfying the identities (x +y) +z =x+ (y +2z), x +y =
=y+x,x+0=x, t(x+y) =ctx+xy, Bilx+y)=fx+
+ Ay, «0 =0, 30 = 0, Elements from SWy are called semi-
terms over X. Every semiterm can be expressed uniquely (up
to the order of summands) in the form 8 = e;X; +...+ ¢ X,
where n20, e;c E and x; € X. We put d(s) = max d(e;), I*(s) =
={e4,..cre t, I(s) = {ecE;efe I*(s) for some fe Ef

Define a binary operation (denoted multiplicatively) on
sw;( by rs =o.r + 38, We obtain a groupoid SW. The subgrou-
poid L ge&aerated by X is an absolutely free groupoid over X
and its elements are called terms.

Let re W be a term and ee I(r). Then there exists a uni~
que pair u,v such that u is a semiterm, v is a term and r =

= u+ev, We put v = Trel®

2. Linear representations of medial groupoids. Let X

be a non-empty set. Denote by Fi the free algebra over X in

the variety J' of universal algebras of the type {+,0,oc, 3%

satisfying the identities (x + y) +z=x+ (y+2z),x+y =

=y+x,x+0=x, tix+y)=x+xy, Blx+y)=x+

+ 60 =0 0=0 wx =« x. Every element of F,
By, y 3 y B Ioﬁni‘n:y X
oG

can be written in the form u =4.§, x;, where r, n;

1’
m; are non-negative integers and x;6 X; this expression is
unique up to the order of summands. We put d(u) = max (ni +
+ ni)-

Define a multiplication on F;[ by uv = ocu + 3v, The
set Fi together with this operation is a groupoid which will
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be denoted by FX' Moreover, we can identify the set Fx with
a subset of SWX. It is easy to see that the groupoid Fx is

a medial cancellation groupoid, and so it is entropic (re-
call that a groupoid is said to be medial if it satisfies

the identity xy.uv = xu.yv and it is said to be entropic if
it is a homomorphic image of a medial cancellation groupoid).
Denote by GX the subgroupoid of FX generated by X. According
to [ 4, Theorem 2.1], Gy is a free emtropic groupoid over X,

Let G be a groupoid. By a linear representation of G we
mean an algebra S(+,0,f,g) e R (i.e., S(+,0) is a commutati-
ve monoid and f,g are commuting O-preserving endomorphisms of
S(+)) together with an element e S such that G is a subset
of S and xy = f(x) + g(y) + e for all x,yeG. fhe representa-
tion is called exact if S = G and it is called convex if e =
= 0.

Using the fact that the underlying semigroupsof free R -
algebras are cancellative, it is easy to show that groupoids
with linear representations are entropic. Conversely, every
medial groupoid containing an element a such that the corres-
ponding translations are permutations has an exact linear re-
presentation (see [91). Further, every regular medial divisi-
on groupoid has an exact linear representation (seel61) and
every medial cancellation groupoid has a convex linear repre-

sentation.

3. Representations of medial groupoids without irredu-

cible elements. The purpose of this section is to

prove the following
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Theorem 1. Let G be a medial groupoid such that GG = G,
Then G has a convex linear representation S(+,0,f,g) such
that £, g are automorphisms of S(+).

The proof of this result will be divided into several
lemmas.

Let A(o) be a medial groupoid such that A = Ao A, By
[5, Proposition 4.3], A(c) is entropic. In the following, we
shall use the groupoids PA and (}A defined in the preceding
section. Denote by h the homomorphism of G‘ onto A(o) such
that h(x) = x for every xe A. Further, for every xe A, fix
elements p (x), P (x) in A such that x = pg (x)e pj (x).
For every x€ A and every ec E, we define an element pe(x) of
A by induction on d(e) as follows: p,(x) = x; pecc(x) =
= Py (P (X)) peﬂ(x) = pﬁ(pe(x)). Finally, for every x€ A and
every non-negative integer n, denote by C(n,x) the element
eﬁnwl(e)ﬁr(e)pe(x) of F,.

Lemma 2, Let x€ A and nzO. Then C(n,x)e G, and
h(C(n,x)) = x.

Proof. We shall proceed by induction on n. let n=1.
Then C(n,x) = C(n-l,poc(x)).c(n-"l,pﬂ(x)), and so h(C(n,x)) =

= Py(x) o pp(x) = x. & o a
For every element u =i=24 o " x5 of H, (see L4]) '

and every integer nZd(u), let D(n,u) =
“i n; mg
P Y Rl C(n-ny-my ,x;).

Lemma 3. htu=;§4oc f#

(i) D(n,u)e G, for every nZd(u).

x;€ HA‘ Then:
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« ni+1(e) ﬂmiﬂ'(e)

Mo

(ii) D(n,u) ) =,
1 ec¢ :W%_m‘.'
over, ny + 1(e) + m; + r(e) = n for all 1£i<s and
ee .
En"ni'mi
Proof. For every O<kx<n we have c(n,k,D(n,u)) =
'i§1 e?E

ﬂ~W4 "M“‘l

pe(xi) « More-

h

0 »
(k-ni-l(e)) ’1',,21 card-ieélin_ni_mi; kK =

n-n.-m,
=ny + 1(e)$ =;=%4 ¢ k';i ) = eln,k,u) = (2), since ue H,

(see [4]). We have proved that D(n,u)e H,. By [ 4, Lemmas 2.10,
2.111, D(n,u)e G, and the rest is clear.

Define a binary relatior R on PA as follows: (u,v)eR
iff there are werA, X,y,z2€A and ¢,d=0 such that u = w +
+ ﬂd X, v =w-+ ccc”ﬁd ¥+ “eﬂdﬁ z and x = yoz,
Further, define a binary relation S on F, by (u,v)e S iff the-

re are m2 0 and u
1

0?***1Un€ P‘ such that u = u, v=u, and

(u3_,,u3)e RUR for all 1<£i<m, Evidently, S is a congruen-

ce of the algebra F, = F,(+,0,¢,3).

lemma 4. Let (u,v)e S, Then ueH, iff veH,.
Proof. See [4, Lemma 2,91].

Lemma 5. Iet u,veH, and (u,v)€&R. Then h(D(n,u)) =
= h(D(n,v)) for every nzd(v).

Proof. Let nza(v). We have u = w + ccc(sd xand V= w +
+ M pdy e <© p*" 2 for some weF,, ¢,dZ0 and x,¥,z€A
with x = yo 2. There is w'e P, such that D(n,u) = w +
1 04 o(n-c-a-1,y) +

+ o::cfad” C(n-c-d-1,2). We can express w' in the form

+ «°3% c(n-c-4,x) and D(n,v) = w’ +

T L T {
w =i‘z-406 3 ~ x;; by Lemma 3, D(n,u)eH, and ng +% *n
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for al1 i = 1,...,8, Hence, for every Oz k%4n,

(}) = eln,k,w’) +

i:n.=
. card {i;n;

n-c-d-1(e)=-r(e), _
E%.c,d,( k-c-1(e) ) =

=kt + card fec K _._451(e) = k - ¢t = card {ijng = k{ +

(n—c-d), 8o that card {ijn; = k¥ = (2 (n—c -4y, Now,

let P designate the set of all &y...8 E En such that a, =...

cee= 8, So¢ and a,,, =...= 8,4 = . We have
n, _ n-c-d z
card (Ek,n-k\ P) = () -« ) for every 0£Xk4n. There

exists a bijective mapping t, of Ek,n—k\ P onto {ijn; = xf.
Using this, let us define a mapping t of E, into A as fol-
lows: t(e) = xtk(e) for each eeEk’n_k\P; t(e) =

=p (x) for every e = &,...8 € P, It is now easy
ac+d+,...an 1 an

to check that D(n,u) =, g‘"—Ewocl(e),’sr‘e)t(e).

There exists a unique term re LN with I(r) = Eou ces VE
and Tiey = t(e) for every eeEn. Denote by g the homomorph-
ism of W, onto G.A. such that g(x) = x for all xe€ A. We have
g(r) = D(n,u) by {4, Lemma 2,2]. Further, denote by f the e-
lement a,...8,,4 of B, , with &) =...=a, = and a,, =...
eee= 84,9 = . Clearly, glr;e;) = C(n-c~d,x). Moreover,
there are elements UyseeeylgyVyseee,v .6 W, such that r =
= ((((\xd(.‘..(uz(u'.r[ﬁ))))vl)vz)...)vc. Consequently,
D(n,u) = g(r) = ((((ué(...(uz'(u".c(n-c-d x)))))v')vé)...)v'
where u g(ui) and v = g(v ) are elements from G,. Put

q= ((((ud(...(uz(u,(c(n-c-d- y)C(n—c-d- ,z))))))v,)...)v

Then D(n,u) = ¢ [5 C(n-c-d ,X) + E oc © d’k “k +
' L4 4 - ] —T .
3'El AVvy and so w' = =, A up +%§'m Bvy.
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Further, q = occ[Sd(C(n-c-d-l ,¥).C{n-c-d-1,2)) +

+1 ,d-k - & - P [
*32 TR uy * 32 %t Bvy = o AY(c(n-c-a-1,y).
.C(n-c=d=1,z)) + w’ = ooc”/zdc(n-c-d-! ) +

+ eccﬁd”C(n-c-d—l,z) + w’ = D(n,v). Therefore h(D(n,u)) =

= ((((hlug)e(...o(hluylon(Cln-c=-a,x)))))eh(v{))oh(v]))o

© +es)oh(v]) and h(D(n,v)) = .
= (((h(ugle(...o(h(uy)eh(C(n-c-d-1,y) Cln-c-d=1,2)))))o

o h‘(v,')o .++)oh(v]). But h(C(n-c-d,x)) = X, h(C(n-c-d~1,y))=
=y and h(C(n-c-d-1,2z)) = z by Lemma 2. Finally, x = yoz and
we see that h(D(n,u)) = h(D(n,v)).

Lemma 6. Let x,ye A be such that (x,y)e S, Then x = y.
Proof. There are elements Ugyees Up€ 1‘A such that x =
=uy, ¥y = uy and (u;_,,u;de RuR™', By lemma 4, u;€H,. Let n
be such that nzd(u;) for all i. By 3.5, h(D(n,u ) =...=
= h(D(n,u;)). Thus x = h(D(n,uy)) = h(D(n,uy)) = y.

lemma 7. Let u,ve F, be such that either (ccu,xv)es
or (3u,3v)e S. Then (u,v)e S.

Proof. It is easy to see that if (p,q)é RuR™! and p =
= o, r for some r then q = &8 for some 8 and (r,s)e RuR“;

similarly for 3 .

lemma 8. The groupoid A(o ) has a convex linear repre-
sentation such that f, g are injective.

Proof. It follows from the definition of S and from
Lemma 6 that an algebra isomorphic to FA(+'°'°°'{3 )/S is a
convex linear representation of A(o ). Let S(+,0,f,g) be such
an algebra. By Lemma 7, both £ and g are injective and pre-

serve the element O.
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Now, Theorem 1 is an easy consequence of Lemma 8.

4. Representations of medial groupoids with zero and
without irreducible elements

Proposition 9. ILet G be a medial groupoid such that

GG = G. Suppose that G contains a zero element o (i.e.,

X0 = 0 = ox). Then G has a convex linear representation
S(+,0,f,g) such that f, g are automorphisms of S(+) and x +
+ 0 =0 for all x€8S,

The proof of this result will be divided into six lem-
mas, Let A(o) be a medial groupoid with Ao A = A and let o
be a zero element of A(o). We keep the notation of the pre-
ceding section; in the present case, we can assume that

pe(o) = o for every eeE.

Lemma 10. Let u =;= o¢ “f3 © x;eH, be such that
x; = o for some 1£i<s. Then h(D(n,u)) = o for every n=d(u).

2 n; m
Proof. D(n,u) =;Z e “3 ° C(n-nj-m;,x;) =

2" e, d
=5, % 1[3 i yj for some ¢;,d;Z O and ys6 A such that ¢; +
+ di = n and o appears among the elements Yy Further, there
is a te W, such that I(t) = Ev...UE,, o is contained in t
and h(t) = D(n,u). Denote by g the homomorphism of W, onto
GA such that g(x) = x for all x& A. We have h(D(n,u)) =
= hg(t) = o.
A n, my

Let I be the set of allu =;Z /¢ "3 * x;&F, such
that x; = o for some i and define a binary relatiom Q on I‘A
as follows: (u,v)e Q iff either (u,v)e S or there exist ele-

ments w,z &I with (u,w)e S and (v,z)€ S.
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Lemma 1t., I is an ideal of !'A(") and Q is a congruence
of FA(+,0,oc, p)e.

Proof, Obvious.

Lemma 12. Iet xeA, x40, ucF, and (x,u)e S. Then u¢I.

Proof. There are m20 and elements Ugseee,Up€ 1" such
that x = u,, u =u and (“i-l’“i)e RUR". Moreover, there is
a positive integer n such that n= d(ui) for all i. Since x €
€ Hy, we have u;e H, and h(D(n,u;_,)) = h(D(n,u;)) by Lemma
5. However, h(D(n,u )) = x, and hence h(D(n,u)) = x. By Lem-
ma 10, ug¢lI.

Lemma 13. Let x,ys A be such that (x,y)e Q. Then x = y,

Proof. Suppose x+y. Then at least one of these elements
is different from o; by Lemma 12 and the definition of Q,we
get (x,y)e S. Now, x = y by Lemma 7, a contradiction.

Lemma 14. Let u,veF, be such that either («u,cv)eQ
or (Bu,Bv)eQ. Then (u,v)eQ.

Proof. Easy.

Lemma 15, The groupoid A(o) has a convex linear repre-
sentation S(+,0,f,g) such that £, g are injective, x + 0 = o

for all xe S and f£(o) = o = g(o).
Proof. An algebra isomorphic to !‘A(+,0,oc,p)/Q has the

required properties.
Now, Proposition 9 is an easy consequence of Lemma 15.

5. Linear representations of commutative medial groupoids

Theorem 16. Let G be a commutative medial groupoid. Then

G has a convex linear representation S(+,0,f,g) such that
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f = g and £ is an automorphism of S(+).

The proof of the result will be divided into four lem-
mas.,

Let A(o) be a commutative medial groupoid. We denote by
h the unique homomorphism of €G, onto A(o) such that h(x) = x
for each x€A (see [4, section 31).

Define a binary relation R on CF, as follows: (u,v)e R
iff there are weCFA, X,y,2€ A and ¢ =0 such that u = w +
+ cccx, v=w+ y + oc ©*1 z and x = yo z. Further, de-
fine a binary relation S on CF, by (u,v)e S iff there are mx>0

and ug,...,up€ CF, such that u, = u, w, = v and (ui_l,ui)s Ruv

(3
v R“.

Lemma 17. (i) S is a congruence of CFA(+,O,o<,).

(ii) If u,veCF, and (o¢u,xv)e S then (u,v)e S.

(iii) If (u,v)e S then ueCG, iff ve (G,.

(iv) If x,y,z2¢ A and x = yo z then (x,yz)e S.

Proof. Easy (see [4, Lemm 3.41).

lemma 18. Iet (u,v)e R and u,ve (G,. Then h(u) = h(v).

Proof. We have u =w + < x and v = w + oc®*! y +occ+‘z,
we CFA
of W, onto G, with g(x) = x for every xe A. Then g(t) = u for

s 620, x,y,2€ A, x = yoz. Denote by g the homomorphism

some teW,, By L[4, Lemm 3.2], there is an e = a;+..8,€ I(t)
such that t .= x. It is easy to see that t = Etr_e),ac,tc,...
«eey8y,t,] for some treeart e W, (see [5, Propositiom 1.71).
Put u, = g(t'),...,uc = g(t,). Then'uy,cee,u,€ CG, and u =

= g(t) = (((xu)ug_,)...)u,. Conoequently, u = oc‘x + ou, +

_ e+l c+1 e, 4+ o C-1
+ °6(:-!‘1(:_14-...-'* %Wy, V= X7y + oL B+ o0 U u, 1+

+ooot oy, = (((yzoudu,_y)...)u,. From this, h(u) = hiv).
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Lemma 19. ILet x,yec A and (x,y)e S, Then x = y.
Proof. Use Lemma 17(ii) and Lemma 18.

Lemma 20. The groupoid A(o) has a convex linear repre-
sentation S(+,0,f,f) such that f is injective.
Proof. Use Lemma 17 and Lemma 19.

Now, Theorem 16 is an easy consequence of Lemma 20.

6. Remarks

Proposition 21. Let f and g be commuting endomorphisms
of a commutative semigroup S(+) and ee S. Put xy = f(x) +
+ g(y) + e for all x,ye S and suppose that the medial grou-
poid S is divisible. Then it is regular.

Proof. Let L (b) = a + b for all a,beS. Denote by T
the set of all ae S such that La is a projective transforma-
tion of S. Since the groupoid S is divisible, ec T and f(a),
g(a)e T for each ae S. On the other hand, T is a subsemigroup

and, moreover, an abelian group. The rest is clear.

Example 22. Let G be a non-regular medial divisiom grou-
poid (see [7]). Then G has a convex linear representation. Ac-
cording to Proposition 21, G has no exact linear representa-

tion.

Example 23. Let X ={x,y} be a two-element set. Denote
by L the twelve-element subset of Gx formed ty the elements
X, XX, XX.X, X.XX, XX.xx, (xx)(xx.x), y, xy, xy.x, (xy.x)(xx),
(xy.x)(x.xx), ((xy.x)(xx))((xx)(xx.x)). It is easy to see that
J = Gy\Lis an ideal of Gy. Put r = (JxJ)u id and A = Gy/r;

it is clear that r is a congruence. We obtain thus an entropic
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groupoid A. On the other hand, it is easy to check that A has

no convex linear representation.

Remark 24. The following problem seems to be open: Has

every emtropic groupoid a linear representation?
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