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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROUNAE 

22,3 (1981) 

SEMIGROUP REPRESENTATIONS OF MEDIAL GROUPOIDS 
Jaroskiv JE2EK. Tomai KEPKA 

Abstract: For every medial groupoid G with GG » 0, the­
re exist a commutative monoid S(+,0) and i t s two commuting 
automorphisms f and g such that GfiS and xy « f (x) + g(y) 
for a l l x,y« G. 

Key words: Semigroup, representation, medial groupoid. 

Classification: 06.405 

In the past, a considerable attention was paid to the 

problem of representations of medial groupoids by means of 

commutative semigroups and their commuting endomorphisms (see 

e.g. t1l ,t23,t33,t6J,t73,t83,t93 and £101). In the present 

paper, we are going to show that a l l medial groupoids without 

irreducible elements and a l l commutative medial groupoids ha­

ve semigroup representations. 

1* Preliminaries. Throughout this paper, l e t 1 be a free 

monoid over a two-element set f oc , fi } . Every element e of 1 

can be written uniquely as e * a«.«.ax& for some n-2- 0 and 

i p . M . i ^ e 4o6, /3} . We put d(e) « n and f^ « it e£;d(f) « mi 

for a l l m>0. Further, 1(e) * card * t i j ^ « ocj , r(a) « 

« card t i ja^ « fii and X± ^ « <e 6E | ( l (e ) , r (e ) ) » ( i , j ) } . 
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Let X be a non-empty set and SWg the free algebra over 

X in the variety of universal algebras of the type { +f0f <£.,£} 

satisfying the identities (x + y) + * « x + (y • s)f x + y * 

* y + x f x + 0 * x , ot(x + y) • o6x • asy, /3(x • y) * fix • 
+ /iy» oCO s 0, /30 = 0. Elements from SWg are called semi-

terms over X. Every semi term can be expressed uniquely (up 

to the order of summands) in the form s * e ^ •. .•• enx_, 

where n>0 f e.e£ and x^^X. We put d(s) • max d(ei)f I*(s) • 

88 *te|,...fen!f I(s) « «fe«E;ef e I*(s) for some te Bf. 

Define a binary operation (denoted multiplicatively) on 

SW^ by rs ss ocr • /3 s. We obtain a groupoid SW. The subgrou-

poid Wx generated by X is an absolutely free groupoid over X 

and its elements are called terms. 

Let reW be a term and eel(r). Then there exists a uni­

que pair u,v such that u is a semi term, v is a term and r » 

-» u + ev. We put v * rr.e.l* 

2. Linear representations of medial groupoids. Let X 

be a non-empty set. Denote by F^ the free algebra over X in 

the variety ^ of universal algebras of the type -t+fOfocf fti 

satisfying the identities (x + y) + « « x + (y + z) fx + y » 

a y + x,x + 0 « x f oC(x + y) • ocx • ocyf /3(x • y) * fix • 

+ /3yf oCO * 0, /3 0 a 0f /3oox » <*-/? x. Every element of Fy 
1 ' /t, n* n±

 A 

can be written in the form u * .2L oG l fi x., where r, n.f 

m^ are non-negative integers and x^e X; this expression is 

unique up to the order of summands. We put d(u) = max (n* + 

+ m^). 

Define a multiplication on Fi by w s ocu + /*v. The 

set F-J together with this operation is a groupoid which will 
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be denoted by F„. Moreover, we can identify the set F„ with 

a subset of SWX. It is easy to see that the groupoid Fx is 

a medial cancellation groupoid, and so it is entropic (re­

call that a groupoid is said to be medial if it satisfies 

the identity xy.uv = xu.yv and it is aaid to be entropic if 

it is a homomorphic image of a medial cancellation groupoid). 

Denote by Gx the subgroupoid of Fx generated by X. According 

to 14, Theorem 2.13, Gx is a free entropic groupoid over X. 

Let G be a groupoid. By a linear representation of G we 

mean an algebra S(+,0,f,g) e Jl (i.e., S(+,0) is a commutati­

ve monoid and f,g are commuting O-preserving endomorphisms of 

S( + )) together with an element eeS auch that 6 is a subset 

of S and xy = f(x) + g(y) + e for all x,yeG. The representa­

tion is called exact if S = G and it is called convex if e = 

= 0. 

Using the fact that the underlying semigroups of free Jl -

algebras are cancellative, it is easy to show that groupoids 

with linear representations are entropic. Conversely, every 

medial groupoid containing an element a such that the corres­

ponding translationa are permutationa haa an exact linear re­

presentation (see L91). Further, every regular medial divisi­

on groupoid has an exact linear repreaentation (see£6.1) and 

every medial cancellation groupoid hae a convex linear repre-

3entation. 

3. Representation of medial groupoida without irredu­

cible elements. The purpose of this section ie to 

prove the following 
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Theorem T. Let G be a medial groupoid such that GG = G, 

Then G has a convex linear representation S(+,0,ffg) such 

that f, g are automorphisms of S(+). 

The proof of this result will be divided into several 

lemmas. 

Let A(o) be a medial groupoid such that A « Ao A. By 

L5, Proposition 4.33, A(o) is entropic. In the following, we 

shall use the groupoids FA and G^ defined in the preceding 

section. Denote by h the homomorphism of G* onto A(o) such 

that h(x) - x for every xeA. Further, for every xeA, fix 

elements poC(x), P/j(x) in A such that x » p^ (x)o p^ (x). 

For every xeA and every e 6 Ef we define an element Pe(x) of 

A by induction on d(e) as follows: Pj (x) » x; PeoC(x)
 s 

s poC^pe^x^» pe/3*x* * PfltP^*))* Finally, for every xeA and 

every non-negative integer n9 denote by C(n,x) the element 

eft *
1(eV(e)Pe<*> of V 

Lemma 2. Let xeA and n£0. Then C(n,x)eOA and 

h(C(n,x)) = x. 

Proof. We shall proceed by induction on n. Let n£l. 

Then C(n,x) » C(n-1 ,poC(x)).C(n-i 9p/3(x))9 and so h(C(n,x)) * 

4 ni mi x 
For every element u 9^f^ °° /3 x^ of H^ (see L43) 

and every integer n^d(u), let D(n,u) * 

+ »4 --»4 
&4 * /» CGa-n^^). 

* n i m i Lemma 3 . Let u »^JL oC x fl x^eH^. Then: 

( i ) D(n,u)6 GA for every n>.d(u). 
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/> __ n4+l(e) m4+r(e) 
Cii) D(n,u) = 2E. 2L <*> x /3 x Pe(*i>* More-

over, n^ • 1(e) + mi + r ( e ) « n for a l l l ^ i ^ s and 

n—n.t —Bb * 

Proof. Por every O ^ k ^ n we have c(n,k,D(n,u)) * 

" . 2 1 I2L (k j / . O »-2L card- tee-^ . ^ « . -. -
**1 ^*n-*iir<m£ * n i 1 ( e ) * * * T^rtl k « 

= n± + 1(e) j « f^ C k - J i ) x c(n,k,u) « (£) , since u e K . 
i 

(see £43). We have proved that D(n,u)eHA . % £4, Lemmas 2.10, 

2.113, D(n,u)£GA and the r e s t i s c lear . 

Define a binary re la t ion R on P. as follows: (u,v) e R 

i f f there are weP^, x ,y , zeA and c ,d>0 such that u « w + 

+ o6c tld x, v « w + o6 c+T /3d y + oc c / 3 d + 1 z and x » y o 2 # 

Further, define a binary re la t ion S on P. by (u,v)e S i f f the­

re are mZ 0 and u 0 , . . . , u j a € P. such that u s u , v s u^ and 

( u . j , ,u.*)e RwR for a l l 1<£i^su Evidently, S i s a congruen­

ce of the algebra P^ s PA(+,0,ot f/3 ) . 

Lemma 4* Let ( u , v ) € S . Then ueH^ i f f • € R \ . 

Proof. See £4, Lemma 2.93. 

Lemma 5. Let u,v£HA and (u ,v )eR. Then h(D(n,u)) * 

-» h(D(n,v)) for every n > d ( v ) . 

Proof. Let n > d ( v ) . We have u « w + occ fl^ x and • * w + 

+ oCc+1 /3 d y + o o c | 3 d + t z for some wePA , c , d > 0 and x»y»Z€A 

with x « yo z. There i s w#€ P^ such that D(n,u) « w' + 

+ oCc(3d C(n-c-d,x) and D(n,v) * w' + oG0"1"1 £ d C(n-c-d-* #y) + 

• oc c t3 d + 1 C(n-c-d-1 , z ) . We can express w' in the form 

0 A ni lib 
w ' - S j - oC fl x^; by Lemma 3 , D(n,u)€H^ and ^ + % * n 
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for all i = 1,...,s. Hence, for every Ofrk^n, 

(«) - c(n,k,w'> • £ (nTc:l(e>" r(e)) - card <-»-i" 

s kj + card f » e ^ ; l ( e ) » k - c} =* card-U;^ = kf • 

+ (n^-d), so that card-fi^ = kj = (J) - Cn^fc
d). Now, 

let P designate the set of all a . f . . .ane .fin such that a.j =••• 

.•.= ac »o6 and ac+j =...= ac+<j * ft .We have 

card (\ n.k^P)
 s C£) - (nk!c

d) for every ° ~ k ~ n # There 

exists a bijective mapping t^ of S^ j*.,^ P onto {i^n^ = kj. 

Using this^ let us define a mapping t of ̂  into A as fol­

lows: t(e) » xt / v for each e e E^ ^ N P j t(e) s 

* p^ _ (x) for every e * a1...a_£P. It is now easy 
ac+d+T*##an 1 ^ 

to check that D(n,u) = ^ 06 1 ( e ) j 3 r ( e ) t ( e ) . 

There exists a unique term rel» with I(r) » E u ,,,uE 

and rCe-j * t(e) for every ee.^. Denote by g the homomorph-

ism of W^ onto G^ such that g(x) « x for all xeA. We have 

g(r) -= D(nfu) by [4, Lemma 2.2J. Further, denote by f the e-

lement a|..#ac+^ of -Sc+(j with a1 «»..« ac = cc and a^j*-... 

. ..=* ac^.d
 s ft • Clearly, g(r^fj) * C(n-c-d,x). Moreover, 

there are elements u., • ..,udfVj f... fvcs WA such that r = 

* (((Cud(... (u2(u^ .r^j ))))v1)v2>.«#)vc. Consequently, 

D(n,u) = g(r) » ((((u^C...(u2(u1'.C(n-c-d,x)))))v1')vp...)vc 

where u^ * gCu^) and v^ =- g(v^) are elements from G.. Put 

q * ((((u^(...(u2(u((CCn-c-d-1fy)CCn-c-d-1,z))))))vt
#)..*)vc. 

Then D(n,u) * oc c t3dC(n-c-dfx) +^4 o6c4,1/3d"k u£ • 

^ c-1 ^ * * i c+1 d-k * 4- c-t -> ' 
* i?vf °& fl v1 a n d s o w *4?1 °* /̂  uk ** ?>f ^ r v i • 
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Further, q = oCC /3d(C(n-c-d-1 ,y) .C(n-c-d-1 , z ) ) + 

• j l ^ oCC+t/3d""k K + ^ o cC"1 P v i s <* C ^(C(n-c-d -1 ,y) . 

.C (n-c-d -T,z) ) + w' = o G c + 1 £ d C ( n - c - d - 1 , y ) • 

+ o 6 C / 3 d + t C ( n - c - d - t , z ) + w' * D(n ,v) . Therefore h(D(n,u)) = 

= ( ( ( (h (u^)o( # . # o(h(u t ' )oh(C(n-c -a ,x ) ) ) ) )oh(v 1
# ) )oh(v2) )o 

o . . . ) o h ( v p and h(D(n,v)) = 

» (((h(u^)o ( . . .o(h(u.j#)oh(C(n-c-d-1 ,y)C(n-c-d~t , z ) ) ) ) )o 

o h ( v p o . . . ) o h ( v 0 ) . But h(C(n-c-d ,x) ) * x , h(C(n-c-d-1 ,y) )= 

= y and h(C(n-c-d-1 , z ) ) = z by Lemma 2. F ina l ly , x = y o z and 

we see that h(D(n,u)) = h ( D ( n , v ) ) . 

Lemma 6. Let x,y€ A be such that (x,y)e S. Bien x = y. 

Proof. There are elements u0, •. •i
u
m
€ --\ such that x = 

= uQ, y = u^ and (
ui.pui^€ HuR~ . By Lemma 4, u^e EL . Let n 

be such that n2d(u..) for all i. By 3.5, h(D(n,uQ)) =...= 

= h(D(n,um)). Thus x = h(D(n,uQ)) = h(D(n,um)) = y. 

Lemma 7. Let u,ve F^ be such that either (ocufoc v) e S 

or (/3u,(3v)eS. Then (u,v)€ S. 

Proof. It is easy to see that if (p,q)t«RuR~ and p -

= oC r for some r then q = oCs for some s and (r,s)e Ri/R" j 

similarly for l3 • 

Lemma 8. The groupoid A(o ) has a convex linear repre­

sentation such that f, g are infective. 

Proof. It follows from the definition of S and from 

Lemma 6 that an algebra isomorphic to FA ( + ,0,oc, /3 )/S is a 

convex linear representation of A(o ). Let S(+fO,f,g) be such 

an algebra. B|y Lemma 7, both f and g are infective and pre­

serve the element 0. 
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Now, Theorem 1 is an easy consequence of Lemma 8. 

4* Representations of medial groupoids with zero and 

without irreducible elements 

Proposition 9. Let G be a medial groupoid such that 

GQ = G. Suppose that G contains a zero element o (i.e., 

xo = o = ox). Then G has a convex linear representation, 

S(+,Offfg) such that f, g are automorphisms of S(+) and x • 

• o = o for all x e S. 

The proof of this result will be divided into six lem­

mas. Let A(o) be a medial groupoid with AoA = A and let o 

be a zero element of A(o). We keep the notation of the pre­

ceding section; in the present case, we can assume that 

p (o) = o for every eeE. 
/* n i m i 

Lemma TO. Let u s ^ ^ <& fl x i e H A b e s u c n t n a t 

x i = o for some 1 ^ i ^ s . Then h(D(nfu)) = o for every n^d (u). 
/* n. m. 

Proof. D(nfu)
 s i ^ <*> fl C(n-ni-mitxi) = 

l™ c± a. 
~ Z/t'A °^ $ yi for aome ci>di^ ° and y i 6 A such that ci + 

• di = n and o appears among the elements yi# Further, there 

is a t€W. such that I(t) = £ u ..•uE f o is contained in t 

and h(t) = D(nfu). Denote by g the homomorphism of W^ onto 

GA such that g(x) = x for all xcA. We have h(D(nfu)) = 

= hg(t) = o. 
A n. m» 

Let I be the set of a l l u ^f-vf °^ fl x±e *\ such 

that xi = o for some i and define a binary relation Q on F. 

as follows: (utv)cQ iff either (utv)e S or there exist ele­

ments w tz*I with ( u , w ) € S and (vfz)e S. 
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Lemma I t . I i s an ideal of -M+) and Q i s a congruence 

of FA(+,09ocf £ ) . 

Proof. Obvious. 

Lemma 12. Let xeA, x+o f ueF^ and ixfu)e S. Then u^I. 

Proof. There are m£0 and elements U ^ . M ^ F . such 

that x - uQf u * u^ and (ui.»f fui)6 HuR , Moreover, there is 

a positive integer n such that n > d ( u - ) for all i* Since x e 

€ HA> we have u^e H^ and h(D(n,U£_j)) » hCDCn,^)) by Lemma 

5. However, h(D(nfu ))
 s xf and hence h(D(nfu)) • x. Ey Lem­

ma 10, u^I. 

Lemma t3. Let x9y€ A be such that (x9y)e Q. Then x * y. 

Proof. Suppose x^-y. Then at least one of these elements 

is different from o; by Lemma 12 and the definition of Qfwa 

get (x,y)€ S. Now, x » y by Lemma 7f a contradiction. 

Lemma 14. Let u,v£F^ be such that either (oCu,oCv)eQ 

or (|3uf/3v)€Q. Then (ufv)eQ. 

Proof. Easy. 

Lemma 15. The groupoid A(o) has a convex linear repre­

sentation S(+909ffg) such that f, g are infective, x + o * o 

for all x*S and f(o) * o = g(o). 

Proof. An algebra isomorphic to F. (+,0, oc, /3 )/Q has the 

required properties. 

Now, Proposition 9 is an easy consequence of Lemma 15. 

5. Linear representations of commutative medial groupoids 

Theorem 16. Let G be a commutative medial groupoid. Then 

0 has a convex linear representation S(+909f,g) such that 
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f = g and f is an automorphism of S(+). 

The proof of the result will be divided into four lem­

mas. 

Let A(o) be a commutative medial groupoid. We denote by 

h the unique homomorphism of CG. onto A(o) such that h(x) « x 

for each x€A (see [4, section 33). 

Define a binary relation R on CF. as follows; (u,v)e R 

iff there are weCF^, x,y,zeA and c<r0 such that u -* w + 

+ oCCx, v * w + ooc+ y + o6C"**T z and x = yoz. Further, de­

fine a binary relation S on CF. by (u,v)<3 S iff there are m2:0 

and u^.-.jU^e CF^ such that u « u, tr « v and (u. «,u.) e R u 

u R~K 

Lemma 17. (i) S is a congruence of CFA(+,0 ,<*,). 

(ii) If u,veCFA and (oC\xfocv)e S then (u,v)e S. 

(iii) If (u,v)e S then ueCGA iff vsOGA. 

(iv) If x,y,ze A and x « yo z then (x,yz)e S. 

Proof. Easy (see C4, Lemma 3 .4 .1). 

Lemma 18. Let (u,v)6R and u.veOS.. Then h(u) = h(v). 

Proof. We have u =- w + cCc x and v » w + oc y +occ+,z, 

weCFA, c2:0, x,y,zeA, x -* yoz. Denote by g the homomorphism 

of WA onto GA with g(x) - x for every xe A. Then g(t) * u for 

some teWA« By £4, Lemma 3.23, there is an e « aj»«»acel(t) 

such that *rei~ x. It is easy to see that t * Ct^el t^citc,... 

...,a. ,t«3 for some t.,...,tceWA (seeC5, Proposition 1.7.1). 

Put Uj * g(tf),...,uc * g(tc). Then ut,...,uce CGA and u * 

= g(t) * (((xuc)uc_t)...)uf. Consequently, u =- oC x + o£ uc + 

+ o 6 C - t u + . . . + D6tt t t V * c6 C + , y + o6C4, |2 + oO%e + c C . 0 " ^ ^ * 
C—t 

+ . . . + oOu.j s ( C ( y z . u c ) u c - | ) . . . ) u . . . From t h i s , h(u) s h ( v ) . 
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Lemma 19. Let x,ye A and (x,y)eS. Then x « y. 

Proof. Use Lemma 17 (ii) and Lemma 18. 

Lemma 20. Die groupoid A(o) has a convex linear repre­

sentation S(+,0,f,f) such that f is infective. 

Proof. Use Lemma 17 and Lemma 19. 

Now, Theorem 16 is an easy consequence of Lemma 20. 

6. Remarks 

Proposition 21. Let f and g be commuting endomorphisms 

of a commutative semigroup S(+) and ee S. Put xy « f(x) • 

+ g(y) + e for all x,ye S and suppose that the medial grou­

poid S is divisible. Then it is regular. 

Proof. Let Lft(b) » a + b for all a,beS. Denote by T 

the set of all aeS such that L is a projective transforma­

tion of S. Since the groupoid S is divisible, eeT and f(a), 

g(a)c T for each aeS. On the other hand, T is a subsemigroup 

and, moreover, an abelian group. The rest is clear. 

Example 22. Let G be a non-regular medial division grou­

poid (see £73). Then G has a convex linear representation* Ac­

cording to Proposition 21, G has no exact linear representa­

tion. 

Example 23. Let X *€x,y} be a two-element set» Denote 

by L the twelve-element subset of G« formed ty the elements 

x, xx, xx.x, x.xx, xx.xx, (xxKxx.x), y, xy, xy.x, (xy.xHxx), 

(xy.xMx.xx), ((xy.x)(xx))((xx)Cxx.x)). It is easy to see that 

J * Gy\ L is an ideal of Gx. Put r » (JxJ)u id and A * QJ/VJ 

it is clear that r is a congruence. We obtain thus an entropic 
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groupoid A. On the other hand, it is easy to check that A has 

no convex linear representation. 

Remark 24. The following problem seems to be open; Has 

every entropic groupoid a linear representation? 
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