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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROUNAE 

22,3 (1981) 

NOTES ON GENERALIZED PRIME AND COPRIME MODULES II. 
Josef JIRASKO 

Abstract: The dualization of the notions generalized 
prime and semiprime module which are introduced in 171 and 
£16] is given. Generalized coprime and semicoprime modules 
as well as rings in which every module is generalized copri­
me (semicoprime) are characterized. 

Key words: Coprime modules, semicoprime modules, their 
generalizations. 

Classification: 16A12 

In what follows R stands for an associative ring with u-

nit element and R-mod denotes the category of all unitary 

left R-modules. 

A preradical r for R-mod is a subfunctor of the identity 

functor i.e. r assigns to every module M its submodule r(M) 

such that every homomorphism f:M—>N induces a homomorphism 

from r(M) into r(N) by restriction. 

The identity functor will be denoted by id. 

A module M is r-torsion if r(M) = M and r-torsionfree 

if r(M) * 0. The class of all r-torsion (r-torsionfree) modu­

les will be denoted by T ( ?r). 

A preradical r is said to be 

- idempotent if r(M) e TT for every module M, 
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- a radical if M/r(M) * S* for every module M, 

- hereditary if for every module M and every monomorphism 

f:A—» r(M), A e ?T$ 

- superhereditary if it is hereditary and :T is closed un­

der direct products, 

- c©hereditary if for every module M and every epimorphism 

f:M/r(M) —-> A, ke $T$ 

- pseudocohereditary if for every injective module M and e-

very epimorphism f :M/r(M)—*A, A c #* . 

The radical closure r of a preradical r is defined by 

#(M) = H L, where L runs through all submodules L of M with 

M/L e $T and the hereditary closure h(r) of a preradical r 

is defined by h(r)(M) * MnrCE(M)), M£ R-mod. B(M) will be 

denoted an injective hull of a module M. 

The superhereditary (cohereditary) preradical correspon­

ding to a two-sided ideal I is defined by s(M) =- imeH; Im » 

« 01 (s(M) = IM), Me R-mod. 

A submodule N of a module M is characteristic in M if 

there is a preradical r such that N s r(M). 

For a non-empty class of modules d p. denotes the i-

dempotent preradical defined by p^ (M) » Z Im f, feHomR(A,M), 

A e a . 

A module M is cofaithful if h(p^M^) = id. 

A submodule N of a module M is 

- essential in M if K£ M, KnN « 0 implies K « 0, 

- small inMif K9M, K + N = M implies K = M, 

- d-complement in M if there is a submodule V of M such that 

N is minimal in the set of all submodules K of M with K + 

+ V * M. 
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A module M is cocyclic if there is a simple module S 

such that S is essential in M, 

- hollow if every proper submodule N of M is small in M. 

A ring R is 

- left strongUy perfect if it is isomorphic to a (finite) 

direct sum of full matrix rings over left perfect local 

rings. 

Finally Soc(J) will be denoted the Socle (Jacobson ra­

dical). 

The following proposition is dual to the Proposition 0.1 of 

£161. We present it here without the proof. 

Proposition 0.1. Let M«-R-mod. Then the following are 

equivalent: 

(i) P{u} is pseudoc©hereditary (Pfjj is pseudocoheredi-

tary) 

(ii) if 0 —>K c . _ > P—*M—*»0 is a projective presen­

tation of M then P = K + h(p{l|j) (P)(P * K + h(p^)(P)), 

(iii) there is a projective presentation 0 — > K «-—*» P-̂ -

— > M — > 0 of M such that P « K + h(pim)(P))(P=K+h(p^(P) . 

Corollary 0.2. Let R be a left hereditary ring and M € 

e R-mod. Then the following are equivalent: 

(i) pjjjg, is pseudocohereditary (P^yj is pseudocoheredi-

tary), 

(ii) there is an h(p^)-torsion (h(p^)- torsi on) pro­

jective presentation of M, 

(iii) there is a projective presentation 0— * K c~~* P—*• 

_ > M - * 0 of M such that n t p ^ ) • h(pip))(hCfitf) « h(p^w)). 
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Corollary 0 , 3 . Let MeR-mod with a project ive cover 

C(M) - — > M. Then the fol lowing are equivalent: 

( i ) P/jf$ * 8 P8eU(5°cohereditary (p^iii i s pseudocohereditary) 

( i i ) h ( p ^ ) ( C ( M ) ) * C(M) ( h ( p ^ ) ( C ( M ) ) =- C(M)), 

( i i i ) h ( P a | J ) - M p c c ( M ) J ) ( h ( p ^ ) » h ( p t t ( M ) l ) ) . 

§ 1 . Coprime and semicoprime module s 

1 . 1 . A module M i s ca l l ed 

- coprime i f P-fg/NjW s M f o r every proper submodule N of M, 

- pseudocoprime i f n(p^ M ^>(M) = M for every proper submodu­

l e N of M, 

- r-coprime i f Piaf/jji W = M for every proper submodule N of 

M, 

- r-pseudocoprime i f h(Pjsn/||i ) (M) = M for every proper submo­

dule N of M, 

- semicoprime i f N • PjfM/N} W s M *<& e v e ^ y proper submodu­

l e N of M, 

- pseudo-semicoprime i f N + ^PSU/RX ^^ = M f o r e v e r y proper 

submodule N of M, 

- r-semicoprime i f N • Psj|An (M) = M for every proper submo-

dule N of M, 

- r-pseudo-semicoprime i f N t h(P{l l /K$)^) s ^ ^ o r e v e r v pro­

per submodule N of M. 

For modules M, N and t h e i r submodules A£M and B-S-N l e t 

us define s(AfM,BfN) by s(AfMfB,N) • Ht^U), f € HomR(N,M)f 

f (B) * 0 . 

Proposit ion 1 .2 . Let Mc R-iaod. Then 
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( i ) M i s copriae i f and only i f PvM> • P.{M/jj2 *or eve­

ry proper submodule N of M i f and only i f s(A9M9B9M)4=M for 

a l l proper submodule s A9Bg=M9 

( i i ) M i s pseudocoprime i f and only i f kCpiuz-1 s 

= h(psu/K'i) f°r every proper submodule N of M i f and only i f 

s(A9E(M),B9M)4-M for a l l AcE(M), M$A and B^M, 

( i i i ) M i s r-coprime i f and only i f p l j i = Psu/$z *or 

every proper submodule N of M i f and only i f s(09M/A9B,M)4--M 

for a l l proper submodules A,B£M9 

( iv ) M i s r-pseudocoprime i f and only i f s(09E(M)/A,BtM)4. 

+ M for a l l A£E(M), M^A and BfM, 

(v) M i s semicoprime i f and only i f s(A9M,B,M)4-M for 

a l l submodules A,B£M with A * B#M i f and only i f s(A9M,A9M)4=. 

4* M for every proper submodule A of M, 

(vi ) M i s pseudo-semicoprime i f and only i f s(A,E(M),Ar. 

nM,M) + M for every ASE(M), M<£A i f and only i f s(A,E(M) ,B9M)+ 

+ U for a l l A C E ( M ) , B«£M with B • A$M, 

( v i i ) M i s r-semicoprime i f and only i f s(0,M/A9B9M)#-M 

for a l l submodules A,BSM with A + B#=M, 

( v i i i ) M i s r-pseudo-semicoprime i f and only i f s (0,E (M)/ 

/A,B9M)*M for a l l ASE(M)f BSM with A + B^M. 

Proof, ( i ) was proved in L7J. 

( v i i i ) . I f M i s r-pseudo-semicoprime, A£E(M)9 B£M, M^ 

4 A + B and s(09E(M)/A9B,M) = M then p^/jj j (E(M)/A) * 0 and 

herice M * B • h ( p ^ ^ - . )(M)£ B • An MSB • A9 a contradict ion . 

Conversely suppose N^M and N «• h(p7JJ^j )(M)#M. Put A « 

* P\MVN1 (B(M)) and B » N. Then M*A + B and hence s(0 fE(M)/A f 

B9M)#M. Thus P^/fci (E(M)/A) # 0 f a contradic t ion . 
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The reet can be proved aimilarly aa in (viii). 

Remark 1.3. In Propoaition 1.2 N and B can be replaced 

by N and B with M/N and M/B cocyclic and E(M) by Q, where M r~ 

£ Q, Q infective. 

Propoaition 1.4. Let MeR-mod. 

If M ie infective then 

(i) H is coprime if and only if M is pseudocoprime, 

(ii) M ie r-coprime if ard only if M is r-pseudocoprime, 

(iii) M is semicoprime if and only if M is pseudosemico-

prime, 

(iv) M is r-semicoprime if and only if M is r-pseudo-ee-

micoprime. 

If M is hollow then 

(v) M is coprime if and only if M is semicoprime, 

(vi) M is r-coprime if and only if M is r-semicoprime, 

(vii) M is pseudocoprime if and only if M is pseudo-se-

micoprime, 

(viii) M is r-pseudocoprime if and only if M is r-pseu-

do-d emic oprime 

Proof. Obvious. 

Proposition 1.3. Every completely reducible module i3 

9emicoprime. 

Proof. Obvious• 

Remark 1.6. The classes of all coprime, pseudocoprime, 

r-coprime, r-pseudocoprime, semicoprime, pseudo-semicoprime, 

r-semicoprime and r-pseudo-semicoprime modules are closed un­

der factormodulea. 
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Proposition 1.7. Let NSMSQ, where Q is infective. 

Then 

(i) N is pseudocoprime if and only if N^s(A,QfBfM) 

whenever N^A and Ni£B, 

(ii) N is pseudo-semicoprime if and only if N.£a(A,Qf 

B,M) whenever N^A + B; 

if M is injective then 

(iii) N is coprime implies N^s(A,MfB,M) whenever N^A 

and N$B, 

(iv) N is semicoprime implies N^s(A,M,B,M) whenever 

N$A + B; 

if N is a characteristic submodule of M then 

(v) if N<£s(A,M,B,M) whenever N£A and N^B then N is 

coprime, 

(vi) if N<$ s(A,M,B,M) whenever N^A + B then N is semi­

coprime. 

Proof, (iii) was proved in C 7J• 

(ii). If AS Q, B£M, N^ A + B and N is pseudo-semicopri­

me then 8(A,Q,Br.N,N) + N. Hence there is a homomorphism f :N —> 

— > Q, f(Bn N) = 0 such that Im f^A. Now f can be extended 

to a homomorphism g:M—*-Q with g(B) = 0. Thu3 g(N)^A and con-

eequently N$s(AfQfBfM). 

Conversely if A£Q f B£N and N-£A + B then N<£s (AfQ,BfM) 

by assumption and hence there is a homomorphism f:M—> Qf f(B)» 

=- 0 such that f(N)^A. Now it suffices to restrict f to N. We 

have s(AfQfB,N) + N. 

The rest can be proved similarly. 

Proposition 1.8. Every d-complement of a pseudocoprime 
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module is pseudocoprime. 

Proof. Let N be a d-compleraent of a pseudocoprime modu­

le M and V^ M such that N is minimal in the set of all submo-

dules D of M with the property D + V = M. Suppose A<=E(M), B<£ 

C M , N$A, N^B and N£s(AfE(M)fB,M). Then BnN$N and hence 

(BnN) + V^M. Further s(AfE(M), ((BA N) + V)fM)o s(A,E(M), 

(BnN),M)2s(AfE(M)fBfM)n s(A,E(M),N,M)^N. Thus s(AfE(M)f 

((BnN) + V)fM)2N + V = M. Hence MSA since (Bn N) + V^M and 

M is pseudocoprime, a contradiction. Therefore N is pseudoco­

prime by Proposition 1.7. 

Proposition 1.9* Let I be a two-aided ideal in R, s be 

the superhereditary and r the cohereditary preradical corres­

ponding to I. Thc-n 

(i) M is pseudocoprime implies r(M) = 0 if r(M)4=Mf 

(ii) M is paeudo-semicoprime implies s(M) + r(M) = M. 

Moreover, if I is idempotent then 

(iii) M is r-pseudocoprime implies r(M) = 0 if r(M)~^M, 

(iv) M is r-peeudo-eemicoprime impliee 3(M) + r(M) == M. 

Proof, (iv). As it is easy to see Ps^/T(u)\ (M)Ss(M). 

Hence h ( £ £ J ^ ^ ^ s(M) since I is idempotent. Now if 

r(M)+M then M * r(M) + h ( p ^ ^ ^ )(M)£ r(M) + s(M). 

The remaining assertions can be proved similarly. 

Corollary 1.10. Let M be a pseudocoprime module such 

that Soc(R/(0:M))-t*0. Then M is completely reducible. 

Proof* It follows from Proposition 1.9 (i). 

Proposition 1»11» Let Me R-mod« Then 

(i) if M is pseudocoprime and J(M)#M then M is comple­

tely reducible, 
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(ii) if M is r-pseudocoprime and J(M)=J=.M then Soc(M) * 

= M, 

(iii) if M is pseudo-semicoprime then J(M/Soc(M)) * 

a M/Soc(M), 

(iv) if M is r-p8eudo-semicoprime then J(M/Soc(M)) » 

* M/So£(M), 

(v) if M is finitely generated pseudo-semicoprime then 

M is completely reducible, 

(vi) if M is finitely generated r-pseudo-semicoprime then 

Soc(M) • M. 

Proof, (v) and (vi) follow immediately from (iii) and (iv). 

(ii). Let N be a maximal submodule of M. Then M * 

= h(p7ĵ J'j ) (M)£ Soc(M) since M is r-pseudocoprime. 

(i) can be proved similarly as (ii). 

(iv). Let §Sc(M)*M. If J(M/Soc(M)) #M/Soc(M) then there 

is a maximal submodule N of M with Soc(M)&N. Hence M • N • 

+ h(p^j^j)(M)SN • Soe(M) » Nf a contradiction. Thus 

J(M/§oc(M)> « M/§5c(M). 

(iii) can be proved similarly as (iv). 

Proposition 1.12. 

(i) Every module is coprime iff every module is pseudocoprime 

iff R is coprime iff R is pseudocoprime iff every nontsero 

module is a generator iff every nonzero module is cofaith-

ful iff R is isomorphic to a matrix ring over a skew-field. 

(ii) Every module is semicoprime iff every module is pseudo-

semicoprime iff R is semicoprime iff R is pseudo-semico­

prime iff P.(m is cohereditary for every module M iff 

Ptj|-- is pseudo-c©hereditary for every module M iff every 
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idempotent preradical is cohereditary iff every idempo-

tent preradical is pseudocohereditary iff R is a c empa­

le te3y reducible ring, 

(iii) Every module is r-coprime iff pTj^ s id for every non­

zero modu3e M iff R is isomorphic to a matrix ring over 

local left and right perfect ring, 

(iv) Every module is r-pseudo-coprime iff h(i>̂ Jĵ ) * id for 

every nonzero module M. If every module is r-pseudo-co­

prime then R is isomorphic to a matrix ring over local 

right perfect ring. Moreover if R is left hereditary 

then the converse is true, 

(v) Every module is r-semicoprime iff p̂ Jji is cohereditary 

for every module M iff every idempoteifc radical is co-

hereditary iff R is left and right strong3y perfect ring, 

(vi) Every module is r-pseudo-semicoprime iff p^j is pseu­

docohereditary for e very module M iff every idempotent 

radical is pseudocohereditary. If every module is r-pseu­

do-semicoprime then R is a right strongly perfect ring. 

Moreover if R is left hereditary then the converse is 

true. 

Proof. The equivalence of the first and last condition 

of (i) was proved in C7J• Further every module is coprime 

(pseudocoprime) iff pcM>
 s id (MpiMi) * id) for every nonze­

ro module M iff R has no nontrivial idempotent (hereditary) 

preradicals. The rest follows from Proposition 1.11 (i) or 

it is clear. 

(ii). It follows from Propositions 1.5, 1.11 (•) or 

it is clear. 
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(iii). As it is easy to s ee every module is r-coprime 

iff p£|i$ = id for every nonzero module M iff R has no non-

trivial idempotent radicals. The rest follows from [15)t Pro­

position VI.1.24. 

(iv). Every module is r-pseudo-coprime iff h(p7jj[$) * *d 

for every nonzero module M. If H(p̂ Jjfj) « id for every nonze­

ro module M then R has no nontrivial hereditary radicals. If 

R is left hereditary then the converse is true. Now it suffi­

ces to use tl53, Proposition VI.1.20. 

(v). Every module is r-semicoprime iff pTyfi *s eohere-

ditary for every module M iff every idempotent radical is co-

hereditary and it suffices to use 115], Proposition VI.1.25. 

(vi). Every module is r-pseudo-semicoprime iff Psy^i is 

pseudocohereditary for every module M iff every idempotent 

radical is pseudocohereditary. In this case R is right strong­

ly perfect by [.15J , Proposition VI.1.21 since every heredita­

ry radical is cohereditary. Now if R is left hereditary then 

h(r) is a hereditary radical for a radical r hence h(r) is 

cohereditary in a right strongly perfect ring if r is a radi­

cal and consequently every radical is pseudocohereditary in 

this case. 

Let & be the class of all pseudocoprime modules. Put 

%1 s % 

Proposition 1.13. Every module M with A^(M) * M is 

pseudos emicopr ime. 

Proof. If % ( M ) = Mf ASE(M), Mt^A then J^1(M)^A. Hen­

ce there is a pseudocoprime module N and a homomorphism f :N~-> 

— y U such that f(N)i^A. .Further there is a homomorphism 
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h:E(N)—>E(M) such that ho iN • ig * f, where ±xiX <̂ -v E(x) 

is the inclusion. Now N is pseudocoprime hence a(h*"̂ (4) s(N) 

Nnh" (A),N) + N. Thus there is a homomorphism kiN**^ $(#) with 

k(Nnh"1(A)) * 0 such that Im k$h" 1(A). Consider the follow­

ing diagram 

N/(Nnh"1(A)) 5 > M / ( A A M ) 

M 
E(N) , 

where U, k are induced by h, k respectively. Now h is a mono-

morphism hence there is a homomorphism p:M/(Ar\M)—^.B(N) which 

makes this diagram commutative. Put q - hpar* , where jf:M—> 

—*M/(AnM) is the natural epimorphism. As it is easy to see 

Im q-^A. Hence s(AfE(M),AoM,M)+M and consequently M is pseu­

do-semi coprime by Proposition 1.2 (vi)# 
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