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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
22,3 (1981)

NOTES ON GENERALIZED PRIME AND COPRIME MODULES 1.
Josetf JIRASKO

Abstract: The dualization of the notions generallzed
prime and semiprime module which are 1ntroduced in [7] and
L[16] is glven. General1zed coprime and semicoprime modules
as well as rings in which every module is generalized copri-
me (semicoprime) are characterized.

Key words: Coprime modules, semicoprime modules, their
generalizations.

Classification: 16A12

In what follows R stands for an associative ring with u-
nit element and R-mod denotes the category of all unitary
left R-modules.

A preradical r for R-mod is a subfunctor of the identity
functor i.e. r assigns to every module M its submodule r(M)
such that every homomorphism f:M —> N induces a homomorphism
from r(M) into r(N) by restriction.

The identity functor will be denoted by id.

A module M is r-torsion if r(M) = M and r-torsionfree
if r(M) = O. The class of all r-torsion (r-torsionfree) modu-
les will be denoted by T} (5.

A preradical r is said to be

- idempotent if r(M) e‘T; for every module M,
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- a radical if M/r(M) e §, for every module M,

- hereditary if for every module M and every monomorphism
f:A—> r(M), Ae T,

- superhereditary if it is hereditary and J', is closed un-
der direct products,

- cohereditary if for every module M and every epimorphism
£:M/r(M) —>A, Ae F,

-~ pseudocohereditary if for every injective module M and e-
very epimorphism f:M/r(M)—> A, A e F.

The radical closure T of a preradical r is defined by
¥(M) = NL, where L runs through all submodules L of M with
M/Le ¥, and the hereditary closure h(r) of a preradical r
is defined by h(r)(M) = Mnr(E(M)), Mc R-mod. E(M) will be
denoted an injective hull of a module M,

The superhereditary (cohereditary) preradical correspon-
ding to a two-sided ideal I is defined by s(M) = {meM; Im =
= 0% (s(M) = IM), MeR-mod.

A submodule N -of a module M is characteristic in M if
there is a preradical r such that N= r(M).

For a non-empty class of modules ( p, denotes the i-
dempotent preradical defined by py (M) == 1Im £, fe Homp (A,M),
Aed.

A module M is cofaithful if h(p,;) = id.

A submodule N of a module M is
- essential in M if KS M, KnN = O implies K = O,

- small in M if Kc M, K + N = M implies X = M,
- d-complement in M if there is a submodule V of M such that
N is minimal in the set of all submodules K of M with K +

+ V=M
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A module M is cocyclic if there is a simple module S

such that S is essential in M,
- hollow if every proper submodule N of M is small in M,
A ring R is
- left strongly perfect if it is isomorphic to a (finite)
direct sum of full matrix rings over left perfect local
rings.
Finally Soc(J) will be denoted the Socle (Jacobson ra-
dical).
The following proposition is dual to the Proposition 0.l of
{16]. We present it here without the proof.

Proposition O.1. Let M& R-mod. Then the following are
equivalent:

(1) PiM} is pseudocohereditary (ﬁ;;} is pseudocoheredi~
tary)

(ii) if 0 —K <> P —M —>0 is a projective presen-
tation of M then P = K + h(pg;) (P)(P = K + h(py) (P)),

(iii) there is a projective presentation 0 — K <> P—
—>M —>0 of M such that P = K + h(pgy;)(P)) (P=Ken(pg) (P) .

Corollary 0.,2. Let R be a left hereditary ring and M€
€ R-mod. Then the following are equivalent:

(i) Piyy is pseudocohereditary (52;; is pseudécoheredi-
tary),

(i1) there is an h(pgyy)~torsion (h(p;y;)-torsion) pro-
jective presentation of M,

(iii) there is a projective presentation 0 —yK <> P—>

—>M —»0 of M such that h(p{“) = h(piP})(h(m = hipsp)).
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Corollary O.3. Let Mg R-mod with a projective cover

%@
C(M) —-—'—‘9 M. Then the following are equivalent:

(1) Ppgy} is pseudocchereditary (pyy; is pseudocohereditary)
(11) h(pge)(COD) = ) (h(pgg)(CON) = CM)),
(111) hlpgyp) = hipgoyy ) (WD) = h(pgo yy -

§ 1. Coprime and semicoprime modules
"1.1. A module M is called
- coprime if P i/} (M) = M for every proper submodule N of M,
- pseudocoprime if h(p{um})(u) = M for every proper submodu-
le N of M,
- r-coprime if m (M) = M for every proper submodule N of
M,
- r-pseudocoprime if h(%)(l‘) = M for every proper submo-
dule N of M,
- gsemicoprime if N + PEM/N3 (M) = M for every proper submodu-
le N of M,
- pseudo-semicoprime if N+ h‘Pam})“‘) = M for every proper
submodule N of M,
- r-semicoprime if N + 6-{?//!13(") = M far every proper submo-
dule N of M,
- r-pseudo-semicoprime if N + h(p’{?m/;)(ll) = M for every pro-
per submodule N of M.

For modules M, N and their submodules AcM and BEN let
us define s(A,M,B,N) by s(A,M,B,N) = nel), te Homp(N, M),
£(B) = 0.

Proposition 1.,2. Let M¢ R-mod. Then
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(i) M is coprime if and only if Piuy = Piu/N} for eve-
ry proper submodule N of M if and only if s(A,M,B,M)$M for
all proper submodules A,BEM,

(ii) M is pseudocoprime if and only if h(p_{‘”) =
= h(p{M/N}) for every proper submodule N of M if and only if
s(A,E(M),B,M)4M for all ASE(M), M&A and BEM,

(iii) M is r-coprime if and only if 1’)?;} = E{?/E for
every proper submodule N of M if and only if s(O,M/A,B,M)+M
for all proper submodules A,B&M,

(iv) M is r-pseudocoprime if and only if s(O,E(M)/A,B,M)+
+M for all AC E(M), M4 A and BEM,

(v) M is semicoprime if and only if s(A,M,B,M)<$M for
all submodules A,BEM with A+ B+M if and only if s(A,M,A,M)4
#M for every proper submodule A of M,

(vi) M is pseudo-semicoprime if and only if s(A,E(M),ANn
AM,M) %M for every ASE(M), MdEA if and only if s(A,E(M),B,M)+
+M for all ACE(M), BEM with B + ARM,

(vii) M is r-semicoprime if and only if s(O,M/A,B,M)%M
for all submodules A,BSM with A + B#M,

(viii) M is r-pseudo-semicoprime if and only if s(0,E(M)/
/A,B,M)+M for all ACE(M), BEM with A + BRM,

Proof. (i) was proved in [7]. .

(viii). If M is r-pseudo-semicoprime, ACE(M), BSM, M ¢
4 4 + B and 8(0,E(M)/A,B,M) = M then B¢~ (E(M)/A) = O and
hence M = B + h(m} J(M)S B + AnNMEB + A, a contradiction.
Conversely suppose N§M and N + h(ms)(l)#l. Put A =
= Peu/ng (E(M)) and B = N, Then M$A + B and hence s(0,E(M)/A,
B,M)# M. Thus P y70: (E(M)/A) $0, a contradiction.
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The rest can be proved similarly as in (viii),

Remark 1.3. In Proposition 1.2 N and B can be replaced
by N and B with M/N and M/B cocyclic and E(M) by Q, where M <

€ Q, Q injective,

Proposition 1.4. Let M€ R-mod.
If M is injective then

(i) M is coprime if and only if M is pseudocoprime,

(ii) M is r-coprime if ani only if M is r-pseudocoprime,

(iii) M is semicoprime if and only if M is pseudosemico-
prime,

(iv) M is r-semicoprime if and only if M is r-pseudo-se-
micoprime.
If M is hollow then

(v) M is coprime if and only if M is semicoprime,

(vi) M is r-coprime if and only if M is r-semicoprime,

(vii) M is pseudocoprime if and only if M is pseudo-se-
micoprime, )

(viii) M is r-pseudocoprime if and only if M is r-pseu-
do-semicoprime

Proof. Obvious.

Proposition 1.5. Every completely reducible module is
semicoprime.

Proof. Obvious.

Remark 1.6. The classes of all coprime, pseudocoprime,
r-coprime, r-pseudocoprime, semicoprime, pseudo-semicoprime,
r-semicoprime and r-pseudo-semicoprime modules are closed un=

der factormodules.
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Proposition 1.7. Let NSM&Q, where Q is injective.

Then

(i) N is pseudocoprime if and only if N<s(A,Q,B,M)
whenever N A and N¢B,

(ii) N is pseudo-semicoprime if and only if N4 s(A,Q,
B,M) whenever N¢ A + B;
if M is injective then

(iii) N is coprime implies N4 s(A,M,B,M) whenever N$ A
and N¢B,

(iv) N is semicoprime implies N¢ s(A,M,B,M) whenever
N4 A + B;
if N is a characteristic submodule of M then

(v) if N4 s(A,M,B,M) whenever N A and N§B then N is
coprime,

(vi) if N¢ s(A,M,B,M) whenever N¢A + B then N is semi-
coprime.

Proof. (iii) was proved in [7].

(ii). If ASQ, B&M, N¢ A + B and N is pseudo-semicopri-
me then 8(A,Q,BNAN,N)+ N, Hence there is a homomorphism f:N —
—>Q, £(Bn N) = O such that Im £$A. Now f can be extended
to a homomorphism g:M—»Q with g(B) = 0. Thus g(N)$A and con-
sequently N4 8(A,Q,B,M),

Conversely if ASQ, BEN and N4 A + B then N¢s (4,Q,B,M)
by assumption and hence there is a homomorphism f:M—> Q, £(B)=
= 0 such that £f(N)4$A. Now it suffices to restrict £ to N. We
have s(4,Q,B,N)#N.

The rest can be proved similarly.

Proposition 1.8. Every d-complement of a pseudocoprime
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module is pseudocoprime.

Proof. Let N be a d-complement of a pseudocoprime modu-
le M and VM such that N is minimal in the set of all submo-
dules D of M with the property D + V = M, Suppose A= E(M), B<s
cM, N¢A, N¢B and NSs(A,E(M),B,M). Then BANEN and hence
(BnN) + VM. Further s(A,E(M),((BAN) + V) ,M)2 8(A,E(M),
(BAN),M)2 s(A,E(M),B,M)n s(A,E(M),N,M) 2N, Thus s(A,E(M),
((BAN) + V),M)2 N + V = M, Hence MS A since (BN N) + VEM and
M is pseudocoprime, a contradiction. Therefore N is pseudoco-

prime by Proposition 1.7.

Proposition 1.9. Let I be a two-sided ideal in R, s be

the superhereditary and r the cohereditary preradical corres-
ponding to I. Then
(i) M is pseudocoprime implies r(M) = O if r(M)+4 M,
(ii) M is pseudo-semicoprime implies s(M) + r(M) = M,
Moreover, if I is idempoternt then
(iii) M is r-pseudocoprime implies r(M) = O if r(M)#4M,
(iv) M is r-pseudo-semicoprime implies s(M) + r(M) =
Proof. (iv), As it is easy to see Piy/r (M) (M) & s (M),
Hence h(m)(l)c s(M) since I is idempotent. Now if
r(M)$ M then M = r(M) + h(m), Y(M)ES r(M) + s(M).

The remaining assertions can be proved similarly.

Corollary 1.10. Let M be a pseudocoprime module such
that Soc(R/(0:M))4 0, Then M is completely reducible.
Proof. It follows from Proposition 1.9 (i).

Proposition 1.11, Let M& R-mod. Then
(i) if M is pseudocoprime and J(M)%M then M is comple-
tely reducible,
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(i) if M is r-pseudocoprime and J(M)<M then Soc(M) =
= H,
(iii) 4if M is pseudo-semicoprime then J(M/Soc(M)) =

= M/Soc(M),
(iv) if M is r-pseudo-semicoprime then J(M/Soc (M) =
= M/Soc (M),

(v) if M is finitely generated pseudo-semicoprime then

is completely reducible,
(vi) if M is finitely generated r-pseudo-semicoprime then

Soc(M) = M,

Proof. (v) and (vi) follow immediately from (iii) and (iv).

(ii). Let N be a maximal submodule of M. Then M =
= h(%; ) (M) < Soc (M) since M is r-pseudocoprime.

(i) canbe proved similarly as (ii).

(iv). Let Soc(M)+M. If J(M/Soc(M))+M/50c(M) then there
is a maximal submodule N of M with Soc(M)< N. Hence M = N +
+ h(Bgan J(EN + Soc(M) = N, a contradiction. Thus
J(M/Soc (M) = M/Soc (M).

(iii) can be proved similarly as (iv).

Proposition 1.12.
(i) Every module is coprime iff every module is pseudocoprime

iff R is coprime iff R is pseudocoprime iff every nonzero

module is a generator iff every nonzero module is cofaith-

ful iff R is isomorphic to a matrix ring over a skew-field.
(ii) Bvery module is semicoprime iff every module is pseudo-

semicoprime iff R is semicoprime iff R is pseudo-semico-

prime iff PiMy is cohereditary for every module M iff

P M3 is pseudo-cohereditary for every module M iff every
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idempotent preradical is cohereditary iff every idempo-
tent preradical is pseudocohereditary iff R is a comp-
letely reducible ring.

(iii) Every module is r-coprime iff 5«[\13/ = id for every non-

(iv)

(v)

(vi)

gero module M iff R is isomorphic to a matrix ring over
local left and right perfect ring.

Every module is r-pseudo-coprime iff h(ﬁa’;) = id for
every nonzero module M, If every module is r-pseudo-co-
prime then R is isomorphic to a matrix ring over local
right perfect ring. Moreover if R is left hereditary
then the converse is true.

Every module is r-semicoprime iff Ef\l/i is cohereditary
for every module M iff every idempotert radical is co-
hereditary iff R is left and right strongly perfect ring.
Every module is r-pseudo-semicoprime iff 51\"(’; is pseu~
docohereditary for e very module M iff every idempotent
radical is pseudocohereditary. If every module is r-pseu-
do-aemicoprimé then R is a right strongly perfect ring.
Moreover if R.is left hereditary then the converse is
true, -

Proof. The equivalence of the first and last conditiom

of (i) was proved in [ 7). Further every module is coprime

(pseudocoprime) iff Piuj = id (h(p_uﬂ) = id) for every nonze-

ro module M iff R has rno nontrivial idempotent (hereditary)

preradicals. The rest follows from Proposition 1.11 (i) or

it is clear.

(ii). It follows from Propositions 1.5, 1.11 (v) or

it is clear.
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(iii), As it is easy to see every module is r-coprime
ire 63;; = id for every nonzero module M iff R has no non-
trivial idempotent radicals. The rest follows from [15], Pro-
position VI.1l.24. .

(iv)., Every module is r-pseudo-coprime iff h(s{\;&) = id
for every nonzero module M. If h(f{\["}) = id for every nonge~
ro module M then R has no nontrivial hereditary radicals. If
R is left hereditary then the converse is true. Now it suffi-
ces to use [15], Proposition VI.1.20,

(v). BEvery module is r-semicoﬁrime ire Sﬁ’} is cohere-
ditary for every module M iff every idempotert radical is co-
hereditary and it suffices to use [15], Proposition VI.1l.25.

(vi). Every module is r-pseudo-semicoprime iff T’?l;i is
pseudocohereditary for every module M iff every idempotent
radical is pseudocohereditary. In this case R is right strong-
1y perfect by [15], Proposition VI.1l.21 since every heredita-
ry vadical is cohereditary. Now if R is left hereditary then
h(r) is a hereditary radical for a radicel r hence h(r) is
cohereditary in a right strongly perfect ring if r is a radi-
cal and consequently every radical is pseudocohereditary in

this case.

Let @ be the class of all pseudocoprime modules. Put
Ry =my

Proposition 1.13. Every module M with R,(M) = M is
pseudosemicoprime.

Proof. If R, (M) = M, ASE(M), M$A then R,(M)§ A. Hen-
ce there is a pseudocoprime module N and a homomorphism f:N-—
—> M such that £(N)$ A, Further there is a homomorphism
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h:E(N) —> E(M) such that ho iy = iy- f, where iy:X .~ E(x)

is the inclusion. Now N is pseudocoprime hence a(h‘l(g), E(N),
NN h'l(A),N)#N. Thus there is a homomorphism k:N-—» B(N) with
k(Nnh™2(A)) = 0 such that Im k$h-1(A). Consider the follow-

ing diagram
MOAn ) —B 5w
x
E(N) ,

where h, k are induced by h, k respectively. Now h is a mono-
morphism hence there is a homomorphism p:M/(An M) —>E(N) which
makes this diagram commutative. Put q = hpo , where x:M-—
—> M/(AnM) is the natural epimorphism. As it is easy to see
In q$A. Hence s(A,E(M),ANM,M)+M and consequently M is pseu-

do-semicoprime by Proposition 1.2 (vi).
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