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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
22,3 (1981)

NOTES ON GENERALIZED PRIME AND COPRIME MODULES 1.
Josef JIRASKO

Abstract: The article continues the study of prime and
coprime modules which were introduced by L. Bican, P, Jambor,
T. Kepka, P, N¥mec in [7]. The concept of semiprime module
which generalizes the notion of semiprime ideal as well as
various generalizations of prime and semiprime modules are
given. Numerous results known on prime (semiprime) rings and
prime radical can be transferred to the modules. in
which every module is generalized prime are characterized.
The preradical approach makes the dualization of these con-
cepts possible; this leads to the definition of generalized
gogrime :odules to which the second part of the article is

edicated.

Key words: Prime modules, semiprime modules, their ge-
neralizations, prime radical.

Classification: 16A12

In the following R stands for an associative ring with
unit element and R-mod denotes the category of all unitary
left R-modules.

A preradical r for R-mod is a subfunctor of the identi-
ty functor i.e. r assigns to every module M its submodule
r(M) such that every homomorphism f:M —>N induces a homo-
morphism from r(M) ifxto r(N) by restriction.

A module M is r-torsion if r(M) = M and r-torsionfree
if r(M) = O. The class of all r-torsion (r-torsionfree) mo-

dules will be denoted by 5"1. ( 9;.).
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A preradical r is said to be

- idempotent if r(M) € ;T’r for every module M,

- a radical if M/r(M) € &, for every module M,

- hereditary if for every module M and every monomorphism
f:A—>r(M), A e 3"1,,

- pseudohereditary if for every projective module M and eve-
ry monomorphism f:A—> r(M), A6 ﬂ‘r,

- superhereditary if it is hereditary and J, is closed un-
der direct products,

- cohereditary if for every module M and every epimorphism
£:M/r(M)—> A, A €3,

The idempotent core ¥ of a preradical r is defined by
T(M) = = K, where K runs through all r-torsion submodules K
of M, the cohereditary core ch(r) by ch(r)(M) = r(R)M, M &
€ R-mod.

The superhereditary (cohereditary) preradical correspon-
ding to a two-sided ideal I is defined by s(M) ={meM; Im =
= 0% (s(M) = IM), Me R-mod. The injective hull of M will be
denoted by E(M). (

A submodule N of a module M is characteristic in M, if
there is a preradical r such that N = r(M).

For a non-empty class of modules a pa' denotes the ra-
dical defined by p% (M) = N Ker £, feHomp(M,A), A e @ -

A moduh M is pseudo-injective if p{m is hereditary. A
module P is strongly M-projective if P/(O:M)P is projective
in R/(0:M)-mod.

A ring R is a left VS-ring if every module is pseudo-in-

jective., A ring R is left quasi-hereditary if every two-sided
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ideal is projectwe as a left module.

Proposition O.1. Let Me R-mod. Then the following are

equivalent

—

M}

(i) p'{u} is pseudohereditary (p is pseudohereditary),

(ii) ch(p{"}) = ch(p{E(“n) (ch(p{m) = ch(pm(“)} )),
(1ii) (0:M) = (0:EGD)) (PO (R) = (0:EMN))),
(iv) ch(p™)(EM)) = 0 (ch(pP¥) (EM)) = 0).

Proof. Obvious.

Finally Soc(J) will be denoted the Socle (Jacobson radi-
cal) and N the set of all natural numbers; zer denotes the

zero functor.

§ 1. Prime and semiprime modules

1l.1. A module Mé& R-mod is called

- prime if pw}(ll) = 0 for every nonzero submodule N of M,

~ pseudoprime if ch(p‘m} )J(M) = O for every nonzero submodule
N of N,

- i-prime if —p-ﬁ?(ll) = 0 for every nonzero submodule N of M,

- i-pseudoprime if ch(;:o?Fg )(M) = O for every nonzero submodu-
le N of M,

- semiprime if Nn p{m (M) = O for every nonzero submodule N
of M,

~ pseudo-semiprime if Nn ch(p{m J(M) = O for every nonzero
submodule N of M,

- i-semiprime if Nn;ﬁ (M) = O for every nonzero submodule K
of M,

- i-pseudo-semiprime if NN ch(p{m)(l) = 0 for every nonzero
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submodule N of M.

Por modules M, N and their submodules ASM and BEN let
us define t(A,M,B,N) by t(A,M,B,N) = = f(a), T e Homp(M.B).

Proposition 1,2. Let Me R-mod and 0 —>K<—> PE&>M—> 0

be a projective presentation of M. Then

(1) M is prime if and only if p'u“= p{m for every non-
sero submodule N of M if and only if t(A,M,B,M)%0 for all
nonzero submodules A,BEM,

(ii) M is pseudoprime if and only if ch(p.'m}) = ch(p{m)
for every nongero submodule N of M if and only if (O:M) =
= (O:N) for every nonzero submodule N of M if and only if
t(A,P,B,M)+0 for all ASP, A4K and 0+B<=M,

(iii) M is i-prime if and only if ;Ti;= ;T)TS for every
nonsero submodule N of M if and only if t(A,A,B,M)40 for all
nongero submodules A,BS N,

(iv) M is i-pseudoprime if and only if t(A,A,B,M)4Q for
all AcP, A%K and O$BSN,

(v) M is semiprime if and only if t(A,M,A,M)#+0 for eve-
ry nonzero submodule A of M if and only if t(A,M,B,M)+0 for
all submodules A,BSM with AnB#$0,

(vi) M is pseudo-semiprime if and only if Nn(O:N)M = O
for every nonzero submodule N of M if and only if t(A,P,g(A),M)+
+ O for every ASP, A¢K if and only if t(A,P,B,M)+0 for all
ASP, BEM with g 1(B)n A4K,

(vii) M is i-semiprime if and only if t(A,A,B,M)=0 for
all submodules A,B&S M with AnB=%+0,

(viii) M is i-pseudo-semiprime if and only if t(A,A,B,M)#
+0 for all ACP, BEM with An g L(B)K.
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Proof. (i) was proved in LT].

(viii), Suppose M is i-pseudo-semiprime, AcP, BEM,
Ang 1(B)4K and t(A,A,B,N) = O, Then A = ;ﬁim and hence
glA)= ch(;ﬁi)(l). Thus g(Ang'l(B)) 2 Bng(A)s Br\ch(;{—m)(l):
= 0, a contradiction.
On the contrary if O+N<M and Nn eh(;ﬁ)(lhko then set A =
= p'™ (P) md B = N. Then t(A,A,B,M)40 since Ang l(B)2K,
Hence A4 p'{m (A) = A, a contradiction.

The remaining assertions can be proved similarly.

Remark 1,3. In Proposition 1.2 N and B can be replaced
by N cyclic and B cyclic.

Proposition 1.4, let Ms R-mod.
If M is projecfive then

(i) M is prime if and only if M is pseudoprime,

(ii) M is i-prime if and only if M is i-pseudoprime,

(1ii) M is semiprime if and only if M is pseudosemiprime,

(iv) M is i-semiprime if and only if M is i-pseudo-semiprime.

If M is uniform then

(v) M is prime if and only if M is semiprime,

(vi) M is i-prime if and only if M is i-semiprime,

(vii) M is pseudoprime if and only if M is pseudo-semiprime,-

(viii) M is i-pseudoprime if and only if M is i-pseudo-semi-
prime.

Proof. Obvious.

Proposition 1.5. Every completely reducible module is se-
miprime.

Proof. Obvious,
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Clearly, the classes of all prime, i-prime, pseudoprime,
i-pseudoprime, semiprime, i~semiprime, pseudo-semiprime and

i-pseudo-semiprime modules are closed under submodules.

Proposition 1,6. Let N be a submodule of M and
0—>Ke—>» P8, M50 be a projective presentation of M.
Then

(i) M/N is pseudoprime if and only if t(A,P,B,M)$N
whenever g(A)$ N and B¢N,

(ii) M/N is pseudo-semiprime if and only if t(A,P,B,M)¢
& N whenever g(A)nB¢N;
if M is projective then

(iii) M/N is prime implies t(A,M,B,M)$ N whenever AN
and BEN,

(iv) M/N is semiprime implies t(A,M,B,M)$ N whenever
An B$N;
if N is a characteristic submodule of M then

(v) if t(A,M,B,M)$ N whenever A$N and BEN then M/N is
prime,

(vi) 4if t(A,M,A,M)4 N whenever A4 N then M/N is semi-
prime.

Proof. (iii) and (v) were proved in [7].

(ii). Suppose M/N is pseudo-semiprime AcP, BSM and g(A)n
NB%N. Then t(A,P,(B+N)/N,M/N)= 0 since (g(A)+N)/N N (B+N)/N+
% 0 and M/N is pseudo-semiprime. Thus f(A)40 for some f:P—
~—> (B+N)/N, Therefore there is a homomorphism h:P—» B such
that e h = £, where & is the natural epimorphism. Thus
h(A)$ N end consequently t(A,P,B,M)4 N.

On the other hand if Ac P, B/NcM/N such that (g(A)+N)/Nn
NB/N#0 then t(A,P,B,M)$ N since g(A)n B4N, Hence there is
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a homomorphism £:P—> B with £(A)$ N, Thus ¥ = &« £:P—> B/N,
where & is the natural epimorphism, £(A)+O and consequently
M/N is pseudo-semiprime since t(A,P,B/N,M/N)+0.

The remaining assertions can be proved similarly.

(Left) ideals I with the property R/I to be prime (pseu-

doprime) were described in [7].

Proposition 1.7. The following are equivalent for a left
ideal I in R:

(i) R/I is semiprime,

(ii) for every xe R\N1 there is ye I+Rx with Iy<I and
xy ¢1I,

(iii) for every xe R\' I there is ze R with Izx<I and
xzx ¢ I.

Proof. The equivalence of (ii) and (iii) is cbvious.

(i) implies (ii). If x&é R\* I then there is a homomorph-
ism £:R/I—5 (I+Rx)/I with f(x+I)% 0. Set f(1+I) = y+I. Then
Iy€1 and xy ¢ 1.

(ii) implies (i). If IEKSR and x€ K \*' I then there is
y< I+RxcK with IyS1 and xy¢ 1. Let us define a homomorphism
£:R/I —K/I by £(r+I) = ry+I. Then £(x+I)40.

Proposition 1.8. The following are equivalent for a left
ideal I in R:

(i) R/I is pseudo-semiprime,

(ii) 4if A, B are left ideals then A. BcI implies AnBEI,

(iii) 4if A is a twosided ideal and B is a left ideal with
A-Bel then AnBEsI,

(iv) if A is a left ideal then A%cI implies ASI,

(v) if a<R, aRa<I then a€el.
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Proof. (i) is equivalent to (ii). It follows immedia-
tely from Proposition 1.6 (ii). The rest is clear.

Corollary 1.9. The following are equivalent for a twosi-
ded ideal I in R:

(i) R/I is semiprime,

(ii) R/I is pseudo-semiprime,

(iii) if A, B are twosided ideals then A:B<1I implies
ANBEI,

(iv) if A is a twosided ideal then A%c I implies AcI.

Proof: It follows immediately from Propositions 1.6 and
1.8,

Remark: J. Dauns showed that if M is pseudoprime and N

is a complement in M then M/N is pseudoprime ({81, Prop. 2.7).

Proposition 1,10, If I is a twosided ideal in R and s is
the superhereditary preradical corresponding to I then

(1) M is pseudoprime implies s(M) = M if s(M)+ O,

(ii) M is pseudo-semiprime implies s(M)NnIM = O,
Moreover if I is idempotent then

(iii) M is i-pseudoprime implies s(M) = M if s(M)40,

(iv) M is i-pseudo-semiprime implies s(M)NIM = O,

Proof, (iii). Let 0 —»Ke—> P&, M50 be & projec-
tive presentation of M. As it is easy to see IPc p“(l)} (P)
and hence IPs-;'i_im (P) since I is idempotent. Now IM = g(IP}@
Gc(m (P)) = ch(—];_{'_(m3 }(M) and consequently IM = O if
8(M)% 0 and M is i-pseudo-prime.
The rest can be proved similarly as above.

The following lemma has a technical character., We present
it here without the proof.
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Lemma 1.11. Let Mc R-mod and 0 —»K<—>P &, M—>0
be a projective presentation of M. For ASP, BEM let us de-
note T(A,P,B,M) = = f(4), feHomp(P,P) and Im go £SB. Then
(i) g(T(a,P,B,M)) = t(A,P,B,M) for all ASP and BEM,

(ii) t(T(A,P,B,M),P,C,M)< t(A,P,t(g"1(B),P,C,M),M) for all

AS P and B,Cc M,

(iii) t(t(A,P,B,M),M,C,M) = t(A,P,t(B,M,C,M),M) for all ASP

and B,Cc M.

Proposition 1.12. Let N be a submodule of M and C be

the largest characteristic submodule of M contained in N. Then

(i) if M/N is pseudoprime then M/C is so,

(ii) 4if M/N is pseudo-semiprime then M/C is so.
Moreover if M is projective then

(iii) 4if M/N is pseudoprime then M/C is prime,

(iv) if M/N is pseudo-semiprime then M/C is semiprime.

Proof., (iii) and (iv), It follows from (i) and (ii) and
Proposition 1.6.

(ii). Let 0 —»K<c—>P-&,.M-—>0 be a projective presen-
tation of M, AS P and BS M such that g(A)n B$C. Suppose
t(a,P,B,M)S C. Then t(T(A,P,M,M),P,t(B,M,M M), M) <
< t(A,P,t(P,P,t(B,M,M,M) M) M)c t(A,P,t(B,M,M,M) M) =
t(t(aA,P,B,M),M,M,M)c t(C,M,M,M)c C<N by Lemma 1.11 (ii) and

[}

(iii) since C is characteristic in M. Now M/N is pseudo-semi-
prime, hence X = t(A,P,M,M)n t(B,M,M,M) = g(T(A,P,M,M))N

N t(B,M,M,M) &N, Further, t(A,P,M,M) and t(B,M,M,M) are charac-
teristic in M, hence X is characteristic in M. Thus Xc C and
therefore g(A)n B€X&C, a contradiction.

(i). It can be proved similarly as in (ii).
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Coroll 1.13. (i) If M is pseudoprime then P/(0:M)P
is prime for every projective module P,

(ii) If M is pseudo-semiprime then P/(0:M)P is semipri-
me for every projective module P.

Proof. (ii). Let 0 —»Ke¢—>F—>M —>0 be a free pre-
sentation of M. As it is easy to see (O:M)F is the largest
characteristic submodule of F contained in K and ¥T/(O:M)F is
semiprime by Proposition 1.12. Hence R/(0:M) is semiprime and
one may check easily that P/(O:M)P is semiprime for every pro-
Jjective module P,

(i). It can be made similarly as in (ii).

Corollary 1.14. Consider the following conditioms :
(i) M is prime (semiprime),
(i1) M is pseudoprime (pseudo~semiprime),
(iii) R/(0:M) is a prime (semiprime) ring,
(iv) R/(0O:M) is a prime (semiprime) R-module,
(v) there is a prime (semiprime) module N with (0:N) = (0:M),
(vi) every submodule Q with (0:M)PNQ = O of a strongly M-
projective module P is prime (semiprime).
Then the conditions (iii),(iv),(v) and (vi) are equivalent,
(1) implies (ii) and (ii) implies (iii). Moreover if M = Ra,
where (O:a) is a twosided ideal then all conditions are equi-
valent. ‘
Proof. It follows immediately from Corollaries 1.13 and
1.9.

Corollary 1.15. ILet M be a module without nontrivial cha-
racteristic submodules. If J(M)<+M then M is pseudoprime.
Ppoof. It follows from Proposition 1.12.
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Proposition 1.16. Let Me& R-mod. Then
(i) if M is prime and Soc(M)# O then J(M) = O,
(ii) if M is pseudoprime and Soc(M)+0 then J(R)M = o,
(iii) 4if M is i-prime and Soc(M)#O then J(M) =0,
(iv) if M is i-pseudo-prime and Soc(M)# O then J(R)M = o,
(v) if M is semiprime then Soc (M)nJ(M) = O,
(vi) if M is pseudo-semiprime then Soc(M)n J(R)M = O,
(vii) 4if M is i-semiprime then Soc (M)nJ(M) = 0,
(viii) if M is i-pseudo-semiprime then Soc(M)n J(R)M = O.

Proof. Obvious.

Proposition 1.17. (i) Every module is prime if and on-
ly if every nonzero module is a cogenerator if amd only if R
is isomorphic to a matrix ring over a skew-field.

(ii) Every module is pseudo-prime if and only if every
nonzero module is faithful if and only if R is a simple ring.

(iii) Every module is semiprime if and only if R is a
left VS-ring if and only if every radical is hereditary.

(iv) Every module is pseudo-semiprime if and only if
(0:M) = (0:E(M)) for every module M if and only if every ra-
dical is pseudohereditary if and only if every left ideal is

idempotent.

(v) Every module is i-prime if and only if p{m = ger

for every nonzero module M if and only if R is isomorphic to
a matrix ring over local left and right perfect ring.

(vi) Every module is i-pseudoprime if and only if
;Tii(R) = 0 for every nonzero module M. Moreover if Soc(R)#0
it is equivalent to: R is isomorphic to a matrix ring over lo-

cal right perfect ring and ch(J)(R) = O; if R is left quasi-
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hereditary it is equivalent to: R is a ring without nontri-

vial idempotent two-sided ideals.

e

(vii) Every module is i-semiprime if and only if p{MS

is hereditary for every module M if and only if every idem-
potent radical is hereditary.

(vii) Every module is i-pseudo-semiprime if and only if
;Tﬁ? is pseudohereditary for every module M if and only if e-
very idempotent radical is pseudohereditary.

Proof. The equivalence of the first and the last condi-
tion of (i) waas proved in [71. Further every module is prime

if and only if p{ui = zer for every nonzero module M iff R has

no nontrivial radicals.

(ii). Every module is pseudo-prime iff ch(pimg) = ger
for every nonzero module M iff R has no nontrivial coheredita-
ry radicals.

The rest is clear.

For (iii) see [13), Proposition 3.1. The rest is clear.

(vii) and (viii) can be made similarly as in (iii).

(iv). It follows from Proposition 0.1 and the fact that
every radical is pseudohereditary iff every cohereditary radi-
cal is hereditary. The rest follows from [15], Proposition

VI.1.29.
(v). As it is easy to see every module is i-prime iff

—

p M. zer for every nonzero module M iff R has no nontrivial
idempotent radicals.
The rest follows from [15], Proposition VI.1l.24.

(vi). Every module is i-pseudoprime iff ch(;?ir) = ger
if M40 4iff either r(R) = R or r(R) = O for every idempotent
radical and it suffices to use 15 , Proposition VI,l.23.
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Let @ (B) be the class of all prime (pseudo-prime) mo-
dules. The prime radical ﬂ’:B (pseudo-prime radical ?1) is de-

fined as follows: = p& (P = pﬁ )e

Proposition 1,18, Let Me R-mod and 0 —»Ke—> P85 M_—» 0

be a projective presentation of M. Then

(1) &) =P (M) if M is projective,

(ii) ®)(M) is the set of all elements m of M with the
following property: "whenever im;,i ¢ N3ic M, ‘.bi,i e Nicp
such that my = m, g(b;) = m;, by € Rb; and my e t(Rb;,P,Rmy,M)
for all i e N then there isk e N withm_ =0 ", provided
that K = (0:M)P,

(iii) Pym) = p™ (M) where M is the class of all pseu-
do-semiprime modules, provided that K = (O:M)P,

(iv) M is pseudo-semiprime if and only if P,(M) =0,
provided that K = (0:M)P,

(v) if M is projective then P(M) is the set of all ele-
ments m of M with the following property: whenever {m;,i € N3c
S M such that m) = m and mi+1et(Rmi,M,Rmi,M) for all ie N
then there is k € N with m = O,

(vi) P(R) = p™ (R), where 7 is the class of all semi-
prime modules,

(vii) if M is projective then M is semiprime if and only
if P(M) = 0,

(viii) if M is projective and for every submodule N of
M NK s defined inductively as follows: N = N, N1
= t(NS,M,N,M) = t(N,M,N“ M) for k € N then M is semiprime if
and only if M has no nonzero nilpotent submodules i.e. when-

k

ever ASM and A = O for some k € N then A = 0.
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Proof. (i). It follows immediately from Proposition
1.12 (iii).

(ii) and (iii). Let X be the set of all elements m of N
with the property which is given in (ii) and M/N be a pseudo-
semiprime module. Suppose X$N. Then there are xlé X, x1¢ N,
b€ P, g(by) = x;. Suppose {xy,...,qiS XN N, tbs,...,B ISP,
g(by) = x;, b;e Rb; ; and x;< t(Rb; _,,P,Rx M) for iei2,...

i-1?
+eoyk}. Then t(Rbk,P,ka,!l)$N since M/N is pseudo-semiprime
and Bx, % N. Hence there is x, ,,€ t(Rb,P,Rx, M), x ., ¢N. Thus

Xpy T 8% for some ac R and it suffices to set by, = 8by.
Hence xl$ X, a contradiction. Therefore X& pm(u), where M
is the class of all pseudo-semiprime modules.

On the other hand if x e ;T’l(ll), x$X then there are {mi,ie
e Niec M, ib;,i € N¢<c P such that x = my, g(b;) = m;+0,
b;,1€ Rb; and m; ¢ t(Rb;,P,Rm; ,M) for every i ¢ N . Put S =
= {bi,i e Nt ., Let C be a submodule of P maximal in the set of
all submodules D of P with D2K, DnS = @ and D characteristic
in P. Suppose that A< P, BE M such that g(A)4 g(C), B¢ g(C) and
t(A,P,B,M)<c g(C), As it is easy to see CEC + A=C + T(A,P,M,M),
cgC+ g B)cc + g 1(t(B,M,M,M)) and C + T(4,P,M,M), C +
+ gﬂl(t(B.l,H,M)) are characteristic in P, Hence there is ke N
such that Rbo & (T(A,P,M,M) + C) (g 2(t(B,M,M,M)) + C), Thus
By 4y € t(Rb P, Rn M)c t((T(A,P,M,M) + C),P,(t(B,M,M,M) +
+ g(C)), M) t(T(A,P,M,M),P,t(B,M,M,M),M) + t(C,P,t(B,M,M,M),M)+
+ t(T(a,P,M,M),P,g(C),M) + t(C,P,g(C),M) < t(4,P,t(P,P,t(B,M,M,M,
M),M) + t(C,P,M,M) + g(C)c t(A,P,t(B,M,M,M),M) + g(C) =
= t(t(4,P,B,M) M, M,M) + g(C)c t(g(C),M,M,M) + g(C)=g(C) by
Lemma 1.11 (ii) and (iii). Thus m,,€ 8(C)ng(s) = &, a con-
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tradiction. Therefore M/g(C) is pseudoprime and xe g(C) N
ng(s) = @, a contradiction. Thus P (M)S X,

(iv). If M is pseudo-semiprime then 3'31(“) = 0 by (iii),
Conversely if &,(M) = 0, ASP, A$K then g(A)§ P, (M). Hence
there is a homomorphism f:M—> N, where N is pseudoprime and
£(g(A))#+ 0. Let 00—k «— PI—E}-,» N—> 0 be a projective
presentation of N. Then there is a homomorphism h:P — P1 with
gy°h = fog. Further k(h(A)) =+ 0 for some homomorphism k:P) —
—>f(g(A)) since N is pseudoprime. Now fo p = ko h for some
homomorphism p:P —> g(A) and hence t(A,P,g(A),M)40. Thus M
is pseudo-semiprime by Proposition 1.2 (vi).

(v) follows immediately from (ii) and (i).

(vi) Follows immediately from (i), (iii) and Proposition
1.12 (iv).

(vii) Follows from (i) and (iv).

(viii). Obvious (see Lemma 1.11 (iii)k

Proposition 1.19. The following conditions are equiva-

lent:
(i) every pseudo-semiprime module is completely reducible,
(ii) R/ P(R) is a completely reducible ring.

Proof. (i) implies (ii). Tl(R/CP(R)) = 0 hence R/ P(R)
is pseudo-semiprime and R/7(R) is completely reducible by aas-
sumption.

(ii) implies (i). If M is pseudo-semiprime then :Pl(R)I!
= pM(R)Me p"n(u) = 0 where 7 is the class of all pseudo-se-
miprime modules by Proposition 1.18 and consequently M is com-
ple tely reducible.
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