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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
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ULTRAFILTER WITH 24,PREDECESSORS IN RUDIN-FROLIK ORDER
L. BUKOVSKY, E. BUTKOVICOVA

Abstract: We describe a construction of an ultrafilter
p on the set IN of integers with countable set of types of
predecessors of p in the Rudin-Frolik order. The relation-
ship between characters of ultrafilters and Rudin-Frolik or-
der is studied and the obtained result is used in the above-
mentioned construction.

Key words: Ultrafilter, type of ultrafilter, Rudin-Fro-
11k order, character of a filter, P-point.

Classification: 04A20

§ 0. Introduction., The main result of this paper is a

proof of the following theorem.

Theorem A, There exists an ultrafilter p on the set W
such that the set of types
(0.1) iw(a); qu p}

in the Rudin-Frolik order is isomorphic to the inverse order
of the set of natural numbers.

Assuming the continuum hypothesis, this theorem has been
proved by A. Louveau [7] and R.C. Solomon L12], Our proof does
not need any set~theoretical assumption and works in any rea-
sonable set theory, e.g. in the Zermelo-Fraenkel set theory
with the axiom of choice. By a slight modification we obtain

also
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Theorem B. There exists a sequence ippin € N{ of ul-

trafilters such that the set of types

12(Q); pPpyE aS Py}
has cardinality 2$° for each n € N and there is no ultra-
filter p smaller than each p,, n &N in the Rudin-Frolik or-
der.

As usually in such a situation, the desired ultrafilter
is constructed by the transfinite induction. Using simple re-
ductions everything we ask from the ultrafilter being const-
ructed is to behave well in relation to a family of sets of
cardinality continuum. On each step of the transfinite induc-
tion exactly one set of this family is considered. Therefore
we must not construct the ultrafilter before the continuum’th
step. As far as we know there was only one useful technology
for keeping the transfinite construction of an ultrafilter not
to finish before continuum steps: the method of independent
sets developed by X. Kunen [5],061.

In this paper we present amnother method for keeping the
transfinite induction not to finish very early. The method is
based on a simple relationship between the character (= local
weight) of points of a set and the character of points of its
closure (theorem 2.1).

The paper is organized as follows. The first section con-
tains necessary facts concerning Rudin-Frolik order. The se-
cond part studies local weights of points in BN ., The third
part contains proofs of the theorems A ani B, The fourth part

is devoted to some related open problems.
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§ 1. Preliminaries. The notations used in this paper are
much as in the most recent literature, e.g. W.W. Comfort and
S. Negrepontis [3], but for the reader s convenience, we shall
remind some notions.

In the whole paper we shall deal with filters and ultra-
filters on the set N of natural numbers only. The Stone-Cech
compactification BN is assumed to be the set of all ultra-
filters on N . For a set Ac N , the set s(A) consists of
all ultrafilters containing the set A. The femily {s(A); A =
< N} 1is the clopen basis for the topology on AN ., A set
ues BN is a neighborhood of an ultrafilter p € 3N if
and only if there is a set Ae p such that s(A)c U,

In the next, by a discrete set X < BN we always under-
stand an infinite countable discrete subset of BN . Moreover,
we alway assume that

(1.1) X={xn;ne N3

and A ,ne N are subsets of N such that

(1.2a) ApnAp = 0 for n4m,
(1.2b) Apex,

and

(1.2¢) mLe)NAn = N,

It is well known that every homeomorphism of BIN onto
(3N is induced by a permutation of the set W . Two ultra-
filters p,q € [AN are said to be type equivalent iff there
exists a homeomorphism h of BN onto BN such that h(p) = q.
The type of p is denoted by <« (p). Thus, <(p) = «(q) if and
only if p. q are type equivalent. Sometimes, the tvpe <x(n)
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is simply denoted by p. We shall deal with properties of ul-
trafilters that are invariant for the type equivalence.

Let X be a discrete set. Then there exists a unique ho-
neomorphism h of BN inte AN such that

(1.3) h(n) = x, for every n e N .

If pe 3NN , the ultrafilter q = h(p) is denoted by = (X,p).
The type of = (X,p) does not depend on the enumeratiom (1.1)
of the set X. One can easily see that 3. (X,p) belongs to the
closure X of the set X and that for every set A € N the fol-

lowing holds true:

(1.4) A e Z(X,p)= injAc xn}spgh-1(s(A)nX)ep.

Conversely, if reX then there exists a unique ultrafil-
ter Q (X,r) such that
(1.5) =K, 0040)) = r.

It is easy to see that

(1.6) A e Q(Xr)= %LEJA ALET.

If q = = (X,p) for some discrete set X, we shall write
p% |. The relation & , introduced by 7Z. Frolik (41 and later
studied by M.E. Rudin [101, is called the Rudin-Frolfik order.
The basic properties of the Rudin-Frolfik order are presented
e.g. in [10],[111,[2], We remind the most important for our
considerations.

Let X, Y be discrete sets X ={x ;;ne N{ , Y ={y ;nc
¢ Nt , p=3(Xq), r = 3(,j). Then the following holds

true:

(1.7 if p=r, Yc X - X, then jE q.
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Now, let q = j. Then
(1.8) per if and only if in;X,=¥pd€ q.
For any ultrafilter x we have

(1.9) if xe XnY then 0 (X,x), SL(¥,x)

are type equivalent.
Speaking about types of ultrafilters we always consider

uniform ultrafilters only,., Thus, e.g. a uniform ultrafilter
p has the minimal Rudin-Frolik type iff for any uniform ultra-
filter q=p, q is type equivalent to p. The height of a (uni-
form) ultrafilter p in the Rudin-Frolik order is the cardina-
lity of smaller types, i.e.
i7(q); q=p3.

Thus p is minimal if and only if its height is 1.

We recall that a uniform ultrafilter p is said to be P-
point (selective) iff for any system A, ne N , A ¢p,
N A G N  there exists a set Aep such that for each ne
e N y ApnA< #,(A, ~A = 1), Every P-point is Rudin-Frolik
minimal. By K. Kunen [6], there are Rudin-Frolik minimal ultra-

filters which are not P-points,

A filter & on N can be represented by the non-empty
closed subset
s(F) = N41s(A);A € F¢
of BN . If F,cF, then s(F4)28(F,). For an ultrafilter

j we have s(j) =433,
If 53} is a family of subsets of N with the finite in-

tersection property then (5) denotes the filter generated

by H, i.e.
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e (B) = (BB',...,Bhe ®» ) Bn...nB cA.
If % is a filter, A a subset of N such that N- A &€ F
then (%' {A}) is simply denoted by (F,A). If = (B), B
is closed for finite intersections, then & is said to be a

basis of the filter % .
A sequence {X f . ©Of discrete subsets of BN is cal-

led a discrete sequence iff for every n € M

(1.10) Xpe1s Xy = Xoo

One can easily see that for a discrete sequence {xnine N’

the sets X, n e N  are mutually disjoint, i.e.
(1.11) xnn}gn=¢for n+m,

R.C. Solomon in [12], p. 211 has shown an important tech-

nical property of discrete sequences.

lemma 1 (R.C. Solomon). Let X i, y be a discrete se-
quence, pp, p being ultrafilters such that p = = (X,,p,) for

every ne N | If there exists an ultrafilter q such that
qEp, for every n € N  then there exists a discrete set

Y = \di X such that peY and Q(Y,p)s p, for every ne N.

If B is a subset of a topological space T then the cha-
racter % (B) is the minimal cardinal oc such that there ex-
ists a system of open sets ﬁ =o¢ such that an open set V
contains B if and only if AcV for some Ae A& , If % is a
filter on N then the character % (s(%)), also simply deno-
ted %(% ) is the minimal cardinality of a basis of the fil-
ter ¥ . Remark that a filter # is principal if and only if

%(F) = t. If 3 is non-principal then 1(F) = %,
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A filter & is said to be adherent to a discrete sequen-~
ce &&; nelN ift

(1.12) 8(F) n ) X, +92.

Let Y be a discrete subset of L\ X, X},  \ being a dis-
crete sequence. A filter ¥ adherent to {X} nei Dresses down
the set Y iff there exists a set A e % and a natural number

n e N such that

(1.13) Yns(A) s U Xpe

mem

Similarly, the filter § pushes out the set Y iff there exists
a set Ae7F such that

(1.14) s(A)nY = 4.

Both properties are hereditary. If 3"5 3’2 are filters, 3"1
presses down (pushes out) a set Y then the filter ?’2 also

does so.

The filter ¥ can press down (can push out) the set Y
iff there exists a filter ¥’ such that

(1.15a) F<7’,
(1.15b) %(3")_‘_‘!(/(’5') Y
(1.15¢) %’ is adherent to {Xni neN

and 4’ presses down (pushes out) the set Y,

Lemma 2. Let {X % _, be a discrete sequence, Y being
a discrete subset of the union »nLeJlN X,» Let j be an ultrafil-
ter adherent to the sequence {X %

neiN
a) If j pushes out the set Y then jé& Y.

b) If jeY and j presses down the set Y then there ex-
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ists a natural number m such that 0.(Y,j) and 0 (X,,J) are
type equivalent.

Proof. The part a) is trivial: if j pushes out the set
Y then by (1.14) we obtain jé& Y.

Now suppose je?. Since j presses down the set Y there

exists a natural number n e N and a set Ae j such that

Yns(A) e \J Xy

Then
Je¥ns) e W (XnY) = U (X;nY),

i.e. j belongs to Xpn Y for some m. The lemma follows by (1.9).

q.e.d.

Corollary 1. ILet {X3,6 y be a discrete sequence, j be-
ing an ultrafilter adherent to it. If every discrete subset
Y of méJ,N)g\ is either pushed out or pressed down by the ul-
trafilter j then there is no ultrafilter q such that
qQ € 2(X,,J) for every n e N .

Proof. Directly from the lemma 1 and lemma 2.

q.e.d.

§ 2. (haracters and Rudin-Frolik order. Every non-tri-

vial ultrafilter on W has character greater than *o+ The

Martin’s axiom (see [ 8]) implies that every non-principal ul-
trafilter on N has character 2$°. K. Kunen [5] and J. Baum-
gartner and R. laver [ 1] have constructed models of set the-
ory in which 24’:'J = ¥, and there exists a selective ultrafil-
ter with %haracter %4+ B, Posp13il [9) I{as shown that there

20

-
exists 2 ultrafilters of character 2 °. K. Kunen [61 has
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shown that there exists a Rudin-Frolfk minimal ultrafilter-- .
with character 230. - 4

The character of an ultrafilter behaves well in relation
to the Rudin-Frolik order. .The simple and importani roi}tion-
ship between characters and Rudin-Frolik order is’ expr”;l'oed

in the following

Theorem 1. Let X be a discrete set, p, q being non-tri-

vial ultrafilters such that p = Z=(X,q). Then
1(P) = () - Ant sup , x(xp).
Proof. Let M be a basis of the ultrafilter p, B =

= x(p).
It is clear that the set (see (1.2})

1in; BnAje x }; B e B¢
is a basis for the ultrafilter q = Q. (X,p). Thus z(p) = x(q).
Now, suppose, to get a contradiction, that there exists a

set Ae q such that for every ne€ A the character 7 (xn) is
greater than 7 (p). Thus the system

ia,nB; B e Blnx

is not a basis of the ultrafilter x, for any ne A. Therefore,
there exists a set C,€ X, such that C, contains no A N Be X

B e3 as a subset. We denote

C= fnLé,A(cnn An)'
By (1.4), we have Cec p. Since B is a basis of p, there exists
a set B e ®» such that BeC. Since An'e are disjoint, for eve-

ry neA we have CnA, = Cpe (1.4) implies that the set

{n; BoAje xp 30l
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belongs to the ultrafilter q, especially, there exists a na-

tural number ne A such that BnAne Xy On the other hand

Bn AnQCnAn = cn
- a contradiction.
q.e.d.
It seems that the theorem ?' is in some sense the best

: N .
possible. We need a notion, A set ¥ NN of functioms from

N into N is said to be a dominating family iff for every

function £ €N N  there exists a function g € ¥ such that

g(n)z f(n) for each n e N . There are models of set theory

in which 2$° > )ﬁ‘ and there exists a dominating family of
cardinality «,. Also, there are models o§ set theory in
which every dominating family has power 2 ° (e.g. the Martin
axiom implies this). Moreover, it is known that for any se-
lective ultrafilter p there exists a dominating family o€
such that F < 7 (p).

Now we shall give an upper bound for the character of a

produced ultrafilter.

Theorem 2. Let ¥ be a dominating family, 3¢ = & .,
Iet X be a discrete set such that every element of X is type
equivalent to a given P-point p. For any ultrafilter.q we ha-
ve
K 2(X,q)) 4 A - x(p)x(q).

Proof. We suppose denotations of (1.1) and (1.2). Let
B be a basis of p, B = x(p) and € be a basis of g, € =
= %(q).
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Since each x,€ X is type equivalent to the ultrafilter
p, there exists a one-to-one mapping f of N onto N such

that

(2.1) X, ={f;](z); Zepl.

For given Be® , Ce€ , h e ¥ we denote
Dy c,n =\ £,1(B - 10,1,...,0(n)}).

We show that {Dg o ,;Be® ,C e€ ,hed} is a basis of
vy
the ultrafilter X (X,q). The theorem then follows.
let A € =(X,q). Then we have

E={n;A,nAex ieq.
By (2.1), for every ne E we obtain
fn(Ann A)e p.
Since p is a P-point there exists a set Fe p such that
F - £,(A,n4) is finite for every nc E. For neE, let g(n)
be the least natural number such that

F -40,1,...,g(n)3c £, (A n A

From the definition of the dominating family it follows that
there exists a function h € ¥ such that g<h. Since $ , €
are bases of p, q, respectively, there are sets Be » , Ce?

such that BeF, CSE, One can easily check that

DB,C,hE A,
qeeode
.o SP0
Thus, if 2 °> «,, &= x(p) = x(q) = #,, then the
estimate given in the theorem ! is the best possible. Indeed,

this situation occurs in the model of M1].
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.Jn the:third part we'need a stronger veraion of the .
theorem 1, from which the theorem 1 actually follows. We ha-
ve presented the direct proof of the theorem | because of
its simplicity.

“Lemma 3. Let X, 2 be discrete subsets of BN , Z<X -
- X, Let the filter ¥ be such that
(2.2) s(F)NZ+g
and for every ze Z the inequality
(2.3) A (L (X,2)) > 5 (F)

holds true.
Then there exists a set D€ N such that

(2.4) Zcs8(D)
and
(2.5) 8(%)nX - s(D)+4d.

Proof. Suppose (1.1) and (1.2). Let 2 ={z ;jne NE,
Bez,, BnB = @ for n¥mand Uy B = N .
Let © be a basis of & such that 3= o (F). We denote
zh ={C<X; (34 eBnzy) S (B nA)nXcCh,
One can easily see that z} is a filter on X and that
(2.6) z:g {8(A)n X; Aezb.

The last ultrafilter is type equivalent to <£1(X,z)), thus

by (2.3) its character is greater than 7 . Evidently %(z; )
is not greater than % . Therefcore, in (2.6) the equality does
not hold true, i.e. there exists a set E e z, such that

s(E )n X¢zp . Set
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(2.7) D, =U{ANR;; xes(R B},

Then Dez

n and

(2.8) s(B )ns(E )N X = 8(B )ns(D )nX.

Now, denote
D =ﬂL:14Dn'
Since D€ z,, we obtain Zcs(D), i.e. (2.4) holds true.
For to prove (2.5) we let Ae¢% . Since J) is a basis
of & , there exists a set A"« 7 such that A'c A,
Then by (2.2) there exists m € N such that A’e z;. Then al-

so s(A°nBy)nXez) . Since s(E))nX¢z) , we have
s(A’nB)NX - s(E)+4.
By (2.7), DySB, and therefore (B ‘s are disjoint)
Bn - D= Eh - Dn.
Using (2.8) we obtain
s(A)n (X - s(D))2s(A YA (X - s(D)) 2

s(A”)n s(B)n X - s(D) =
s(A))ns(B)NnX - s(D) =

no

s(A’n By)nX - s(E )+ 4.

q.e.d.

§ 3. Proof of main theorems. We start with an important

technical auxiliary result.

lemma 4. Tet the filter ¥ be adherent to a discrete se-

quence “&ninem . let Y be a discrete set, Y C_:%LEJ‘N )S\ such that
(3.1 KAL) > y(F)

for every yeYnX - X, neN.

- 441 -



If 5 cannot press down the set Y then ¥ can push out
the set Y.
Proof. Let B < N be such that Byey, BynB, = g for
Yy Py By = N
Denote
Y, ={ye¥; (I3m>n) yeX ¥,
Vn = ’\,}\EJY,,,BY'
By (1.11) we have
Le X - X

Evidently

(3.2) Ina(- V)e U X.

mém
Since the filter % cannot press down the set Y, then either
Vo,e% or (F, - V) is not adherent to {X{x keN ¢ In both ca-

ses

s( = V))n s(F) r\k(e\fi = g,

Hence, for every n € N we have

(3.3) sV )N 8(F) A, N T + 8.
let %' = (FuiVy,Vyyees,Vy0..3). Evidently, neither ¥/ can

press down the set Y. Hence, for each n € N and for each A €
€ ¥’ we obtain
(3.4) Yn a(A) ¢ML£JM Xpe

If s(A)NY = @ for some A € ¥’ then we are ready. The fil-
ter ¥’ pushes out the set Y. Thus, we shall suppose that
8(A)n Y+@ for each A e F7.
Then from (3.4) we obtain

s(A)n-f;l# 2.

Therefore
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s(F)n —Y;A: g,
Now, using the lemma 3, we get a set Dn e IN such that

(3.5a) Y.< S(Dn),

(3.5b) s(ff”)r\xn - a(Dn)* g.
For ye Yn X, we set

Ey =4mQ:nByn Dm.

It is clear that Rey, q\EJX,LEy <D, and E = By. Now we denote
B = %kej\/ Ey
and

@/n= (gal' - E).

We start with showing that %" is adherent to the sequen-
ce {XI .y Let Aed” , i.e. there exists a set Be §’ such
that B - Ec A, Then

s(A)n X2 S(Bf\Vn - E)n Xn.
Since

E

BAV, - E=BnaV, - »

n ag,keJYm
we obtain
s(A)n X 2X ns(BAV,) - s(D).
This set is non-empty by (3.5b).
Since -E € ¥” and s(-E)AY = @, F“ pushes out the set
Y.
Evidently x(F”)=x(F) %, therefore ¥ can push
out the set Y.
q.e.d.
We are ready to present a proof of the main result.

Proof of the theorem A. We start constructing a discre-
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te sequence {X &p.y Such that for every n € N
(3.6) the height of x< X is n

and for every nme N |, n<m,

H,
(3.7) for each xe Xy, 7 (0 (xn,x)) =2,

According to K. Kunen [6] there exists a Rudin-Frolik
' K
minimal ultrafilter x with character 2 °. Let X, = {xg o ke
1
€ N3  be a discrete set such that each %o,k is type equiva~-

lent to x. We define by inductiom

(3.8) Tnar,e = = Kpo¥Xe )e

Let A ,=¢fork=1=k'andUA,x=lN.

0,k To,x* 4 k"4 x ®REN"®

By induction we set

(3.9) Apetx = U{%,ﬁ Le Ao,k}.

Using (1.4) one can easily show that i1X 3, n is a discrete
sequence. By induction, for m>n, it is easy to prove that

0 (XX, ) is type equivalent to x, ,, y and therefore, again
by induction, theorem 1 and (3.8), we obtain (3.7).

The assertion (3.6) follows by induction and (1.8) frem
(3.8)

Now, let {Y_; f < 2$°§ be an enumeration of all discrete
subsets of the uniom nbjw xn' Using the lemma 4 we can define
a sequence {?':-'E i E< 2"%3 of filters such that

a) 7, is the filter of all cofinite subsets of N;

b) = % for A limit;

e) ?gﬂ either presses down or pushes out the set !E
amd F e Foyy

qa) %("fs ) £ ’?-J:o for each § < 2$°;
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e) each ’3"5 is adherent to {%}nckvl .

Now, let p be any ultrafilter extending the filter

gu,, 3~'€ and adherent to {lg‘} . We denote q = Q (lgn,p).
<2 °

One can easily see (using 3.6) and (1.9)) that

nelN

17(Q); qept = {'d(qn); ne N} .
q.e.ds

Proof of the theorem B is almost the same as that of the
theorem A just you must start with an ultrafilter x with cha-
racter 2$° anxd 2$° predecessors., The existence of such an ul-
trafilter follows bty A.K. Steiner and E.F. Steiner [131, B.
Pospi8il [ 9] and theorem 1.

qe.e.d.

Let us remark that the theorem 1 has been used in the
proof of the theorem A indirectly via the lemma 4 and hence,
via the lemma 3 which is a streng}hening of the theorem 1.

By K. Kunen [6] there are 22 ° Rudin-Frolik minimal ul-
trafilters with character 2$°. Taking in the proof of the the-
orem A different x ‘s we obtain different ultrafilters p’s

with countable set of predecessors (0.1).

§ 4. Some open problems. As far as we know that was P,
Simon who raised the following question.

Problem 1. If p is a non-minimal ultrafilter, does the-

re exist an ultrafilter q such that < (q) < (p) and there is
m type betweer T (q) and = (p) ? In other words, does every
non-minimal ultrafilter have an immediate predecessor?

Prof. J. Jakubik asked another question.
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Problen 2. Does there exist an infimum of any finite
set of type?

The question whether there exists an ultrafilter with cha-
racter smaller than continuum is undecidable. Moreover, neither

we knowto answer the following two questions.

2roblem 3. If there exists a Rudin-Frol{ik minimal ultra-
filter with character smaller than continuum, does there exist

a non-minimal ultrafilter with such character?

Problem 4, Does the existence of an ultrafilter with cha-
racter smaller than continuum imply the existence of a Rudin-
froli{k minimal ultrafilter with such character?

'he theorem 2 gives a partial answer to the problem 3 and
the positive answer of the problem ! implies positive answer

to the problem 4.
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