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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
22,2 (1981)

MONOTONIC VALUATIONS AND VALUATIONS OF TRIADS
OF HIGHER TYPES
1. MLCEK

Abstract: This paper is a contribution to the mathema~r
tics in the alternative set theory. In [ M2], we introduced
the problems of valuations of special structures, so called
triads. E.g. we can deal with equivalences, ideals and fil-
tres as triads. )

Our problems consist in finding a simple representation
(valuation) of triads in special, "numerical" ones. The key
role is played here by the theorem on valuations of 67 -

and g®-triads, which has been presented in [M21. In this
paper, we define a stronger variant of the notion of valua-
tion lthe so called monotonic valuation) and we state the ba-

sic theorems on monotonic valuation of 6% - and #? -tri-
ads. Furthermore, we define triads of higher types, i.e. gt -
and n5””-triads, and present some results about their valu-
ation,

Key words: Alternative set theory, valuation, monotonie
valuation, matrix of classes, 6 P -class, ¢ % -class.

Classification: 02K10, 02K99, OBAO5
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Introduction. In § 1, we study monotonic valuations of

triads. We present there some consequences for ideals and fil-
ters. In § 2, matrices of classes and 6x? - and 6% ~clas-
ses are defined and their basic properties stated. Results
concerning valuations of triads of higher typea are present-
ed in § 3. '
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§ O. Preliminaries

0.0.0. We use usual definitions and notations of the
alternative set theory. The class of natural numbers (fini-
te natural numers resp.) is denoted by N (FN resp.). We use
LyPrysds§ y 2% (m,n,i,j,k resp.) as variables ranging o-
ver natural (finite natural numbers resp.). We shall use

lower-case letters to denote sets. RN is the class of ratio-

nal numbers and we put RN(= 0) = {xeRN;x= 0%, RN(>0) ={xe
¢ RN;x>0j., (0/,1] denotes the interval {'xeRN;0<x,él§. The
~ identity mapping :'la designated by Id.

0.0.1. A codable class %7 is called a standard system
irr 1) Ve 7 , (2) 1let ¢(x) be a normal formula of the
language FL,, .(For FL,, , see 0.1.0.in [M1].) Then
ix; @(x)j e ¥ . (3) Let X e W be a class such that
04 XcN. Then there exists the least element of X. Through-
_oil_g this paper ie_t %L denote a standard system. A string is

a relation R with dom(R)e N, A string R is a 6 -string iff
R"$<¥ S R"{x +1% holds for each <+l cdom(R)., A class X is
called &% - ( @ -resp.) class iff there is a string R <
e 270 such that X = ”l{ R"{n} (X = Q R"{ n% resp.). X is a

& = (o = resp.) class iff X is a union (intersection resp.)

of countable sequence of set-theoretically definable classes.
X is a 6w - (76 - resp.) class iff X is a union (intersec-
tion resp.) of countable sequence of s'-classes (& -classes
. resp.).

0.0.2. An e-structure is a structure O = {(A,F,E) where
F is a binary function, E is a unary function and we have
(1) P is associative on A, (2) E o E=Id and (3) F(E(x),E(y))=

= E(F(x,y)) holds for each x,yc A or F(E(x),E(y))=E(F(y,x))
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holds for each x,yc A, We define the canonical relation <Ta

of a,:xaay::.(ﬂz €A)(F(x,z)=y). If there is no danger of
confusion, we shall write simply <0 instead of < . The rela-
tion <7 is transitive on A.

Example. We define the mapping F°:(V2u{0})2—+ o {0%
as follows: FO((x,y>,{u,v>)= (x,v)> (0 resp.) iff y = u (y4+u
resp.) and F°(w,0) = F°(0,w)=0 for each wevlu 103, (V20 {0%,
Fé,Id) is an e-structure.

0.0.3. Let 4 =<A,F,E> be an e-structure and let Q,BSA
be classes closed under F and E. We denote by Ol Q the restric-
tion of the structure @ on Q. The triple < Q,Q!Q,QIB) is
called a triad over (I . Let (1(Q,B) designate this triad. A

8P . (M - resp.) triad is a triad ((Q,B) such that Q,
Be M and Q is a 6%-class ( x @ —class resp.).

Convention. We shall write 6° (x° resp.) instead of
6 v (¥ resp.) where Sdy is the standard aystém of all
set-theoretically definable classes.

Examples. { N,+,Ia) (FN,{0}) is a &°-triad, (RN(Z0),+,
I8 ([203,103) is a or°-triad. (We put [ = 0] = {x e RN(= 0);
x=0% where x ¥ y=(¥n) (Ix-yl< %v(x>p&y>n) vV (x<-n&y<
<-n).) |

0.0.4. Let O =<A,F,E>, A=<’,F,E> be e-structures. A
mapping H:A — % is called yaluation of A in @ ift for each
x,y € A holds: H(F(x,y))<igF(H(x),H(y)) and H(E(x)) = E(H(x)).
let .(Q,B), 5(5,§) be triads. A mapping H:A —> X is called
valuation of Q.(Q,B) in 5,(65) iff H is a valuation of (L in

il and we have for each xeA:xec Q=H(x)< Q and xeB=H(x)e B.

0.1.0. Let ke FN. Let, for each i<k, R, be an a(i)+1-
ary relation, a(i) ¢ FN. We denote by [Rl]k(X,Y) the formula
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Rl eyg .. arpxakle y,

0.1.1. Let O ={A,F,E) be an e-structure. We define the
mapping F3:A3-——>A as follows: F3(x,y,z) = F(F(x,y),z).
A G-string R is called 6 -string in (L over B iff R"{0} = B,
R"{dom(R)-1% = A and EF,F3]1(R".{D¢} ,R"{0 +1%), E"R"{oc? & R“{d
holds for each o e dom(R)-1.

0.1.2. An e-structure <A,F,E) is commutative iff F is a

commutative mapping on A,

§ 1. Monotonic valuations

1.0.0. Let O be an e-structure and let QSA. Q is clo-

sed in (L iff
(VxeA)(VyeQ)(x <g ¥ —>xeQ).

A triad G (Q,B) is called closed triad iff Q, B are clo-
sed in O .

Examples. (1) Let Q= (Azu{o},Fo,G) be an e-structure
and let 0+ RSA%, R is closed in (I iff R = rng(R) = A.

(2) Suppose, moreover, that A has at least two points.
Then no relation R, O#RQAZ, is a closed in ( and closed un-
der F°,

(3) Let QSP(a) be an ideal. Then Q is a closed univer-
se in {(P(a), U ,Id>.

(4) <{N,+,Ia> (FN,{0}), (RN(2 0),+,Id> ([=z 0],10}) are
closed triads.

1.0.1. A valuation H of an e-structure O in an e-struc=-

ture 0, is called monotonic valuation of L in @ iff we have
(Vx,ye d)(x <, y—> H(x) <1 4H(y)). A valuation of a triad
0(Q,B) in a triad U (T.B) is called monotonic iff it is a
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monotonic valuation of & in & .

Examples. (1) We put, for each « e N, G(oc) = 2% @
is a monotonic valuation of (N,+,Id> (FN,{0}) in (RN(>0),.,
Id) (BRN(> 0),€1%). ‘ _

(2) We put, for each x € EN(Z0),8(x) = 2°%. We have G:
tRN(Z 0) —> (0,1] and G is a monotonic valuation of (RN(> 0),
+,Id)> (BRN(Z 0),{0%) in <(0,11,.,Id> ((0,1],{13).

Proposition. Let G be a valuation of a triad 7 in s
triad 7 and let H be a monotonic valuation of X in a triad
# . Then Ho G is a veluation of ¢ in & . If, moreover, G
is a monotonic valuation then He G is a monotonic one.

Proof follows immediately from the definitions.

Proposition. Let H be a monotonic valuation of a triad
4" in a closed triad £ . Then {/I'\ is a closed triad.

Proof. Let 0= A(Q,B), 5= 2.(Q,B). Assume that ycQ
and xeA, x<1 y. Then H(x) <1 H(y) and H(y)e Q hold. Thus
H(x)e Q anl, consequently, x€ Q.

© 1.1.0. Let A= (A,F,E) be an e-structure. A structure
{(4,F,E,G) is called a u-expansion of (1 iff G is a binary
function and we have for each x,y,zecA: (1) F(G(x,z),G(y,s)=
= G(F(x,y),2z) (distributijity) -

(2) x=y — G(y,x) = x

(3) G(x,y)ax.

Example. ( P(a),v,Id,n? is a u-expansion of
{P(a),v,Ia>.

Theorem. (On monotonic valuation of 6% - and &% -
triads.) Let 0 be a commutative e-structure, O e %7 , and

suppose that (, has a u-expansion in #! .
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(1) Let I be a closed 6@ -triad over & . Then the-~
re is a monotonic valuation H of & in (N,+,Id) (FN,{0}) and
He .

(2) Let 7’ be a closed o™ -triad over (. . Then the~
re is a monotonic vaiuation H of J° in (RN(Z 0),+,Ia)([> 0],
{0%) and H e 770 .

At first we shall prove one lemma. Note yet that writing

y < x we mean the relation y <t xvy =
7/

Lemma., Let @ =<A,F,E) be a commutative e-structure and

let A c A€ A,c 3_A be classes such that [F,EI (A A).+l)

+1pold for i = 0,1,2. We put, for i = 1,2, P, =

= = (A{NE"A;). Then we have P, S P,, F"Pi._l’2 and, for i =

"
and <7 AiE Ai

= 0!1’

"
ME P 158540 B"Pi S Py 2P 06R .,

Proof. We deduce from the commutativity of @ that the
following relations hold: x< y —> E(x) I E(y), x=Xky=§-»
—> F(x,y) 2 F(X,y). Thus, we have E"P, ,SP; ., i=0,1. By us-
ing the transitivity of = we deduce that <"P i+1SPia1y 12

= 0,1. The relation P,EP, is clear. We put, for i=0,1,2,3,
Q; = A;NE"A;. We have, for i=0,1,2: QS A;SQ; . SA .,
F"Q25Q1+l and E"QiSQi. We shall prove that —"Q;<Q,,
holds for i=0,1,2. Assume y<J x and x €Q; (i=0,1,2). We have

<A s Ay +1 and, Consequently, yec A;,, holds. We have E(x) e
€Q; and, obviously, E(x)e A;. We obtain from this that E(y)e
€A,y and, finally, ye4A; lr\E"Ai+1. We deduce from the re-

lations above that A Q cp < Q. holds for i=0,1.

1+1’
We shall prove F"f’l P,. Assume that x,yePl, X,yeQ
x=X, y=Y hold. We have F(X,j)e Q, and F(x,y)< F

- 382 -
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We deduce from this that F(x,y)e P,.
Proof of the theorem. We have [F,E, <] (Q,Q) and

rFE,<J1 (B,B), Let S be a 6 -string of Q, S ¢ Wt , such
that dom(S)é& FN and B£S(0)<S(c ) cA, [F,E, = (S(et),

S(c¢ +1)) hold for each oc+le dom(S). The existence of the S
follows from 2.1.0 in [M1]l. We put, for each « € dom(S), o¢c =
Z1:P, = 2" (S(x¢ )" E"S(cc )). We deduce from the previous lém—

ma that the following hold for each «~ < dom(S)-2:

2 "
S(ec)EP ,,58(x+2), F'PL <SP o, E"P  EP ., =P ¢
B,

Thus UP, = Q holds. Let Se %dom(S)-FN. We put
(X,> e M=(6=0& xeB)v (1€ o < P& x € =Z"(S(2c¢ )1 E"S(2¢ ) )v
v(a=9& xeA).
We have M ¢ %0 and, moreover, M"{oc{ =P, ,1<£oc < %, and
M*{0% = B, M"{$} = A. Thus the following propositions hold:
(i) M e W is a & -string in (L over B, (ii) <="M(«)<M(cx)
for each «« £ & , (iii) % M(n) = Q.

A path in A is a function t such that dom(t)e K and
rng(t)S A, Let t be a path in A. We put ’lf“(t) = 5{6X(x);x e
e rng(t)}, where G*:A — N is the function defined as follows:
G*(x) = 0 iff x B and GF(x) = UiNbo= P xeM(X) ypp o o ) _ p,
We define the function [F] with the domain U{{t}x{< e ,p3>;
o £ 3% 3 dom(t)§; t is a path in A} by induction over N:
[F1(t,{ot,c>) = t{ec) and [F] (t,{x, 3+1>) = F([FI(t,<oc, 3>),
t(p+1)). Writing [FI(t) we mean [F](t,<0,dom(t)-1)). We have
proved in [M2], 3.0.2 that the function H:A —> N such that
H(x) = min{Vy(t)3[F1(t) = x{ is a valuation of @(Q,B) in
{N,+,Ia)(FN,{0}) and H € %7 . We shall prove that H is a mo-
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notonic valuation of Q. in (N,+,Id). Let {A,F,E,G> be a
u-expansion of (I in % . Let x <y and suppose that t is
a path in A such that [FI(t) = y. We define the path t* in
A with dom(t*) = dom(t): t®(e¢) = G(t(oc},x) for each o €
e dom(t). The following holds:

(i) oo e dom(t) —>[PI(t*,0,0¢) = G([FI(t,0,00),x).

Remark. We write here and [FI(t,¢,(3) instead
of [FI(t,{x,pB3>).

Proof of (i). By induction. t*(0) = G(t*(0),x). Thus
[F1(t,0,0) = G([FI(t,0,0),x) holds. Suppose that the state-
ment holds for o and let « +1 cdom(t). We have
[F1(t%,0, c+1) = P(IF1(t%,0,0c ),t (e 1)) = F(LFI(t¥,0,),
G(t(e+1),x)) = F(G([FI(t,0, «),x) . G(t(x+1),x)) =
= G(F([F](t,0,cc),t(cc+1)),x) = G([F1(t,0,+1),x).

(ii) L[F1(t®) = x,

Proof: [F1(tX) = G(IPI(t),x) = G(y,x) = x.

(1i1) (VY € dom(t))(t¥(oc) <= t(e)).

Proof: We have t¥(oc) = G(t(<¢),x) and G(t(cc),x)qt(cc).
Only the following must be proved: x<y —>H(x)£H(y).
Suppose that [F1(t) = y and let ’lfn(t) =’H(y). Let e dom(t)
and let ¥ < be such that t(cc)e M(4). We have <''M()<s
S M(y). er obtain from this and by using (iii) that t¥(ec)e
< M( ). We deduce from this that ’U’u(tx) P4 ‘V’l(t). Thus we ha-
ve H(x) < Y (t¥) 2 U (t) = H(y).

The statement (2) can be proved similarly.

1.1.1. We say that a function H:P(a)—> RN(=0) (H:
:P(a) — (0,11 resp.) is an addjtive (multiplicative resp.)
function on a iff we have for each x,yec P(a): (1) H(xvy) =

<H(x) + H(y), (2) xcy— H(x)<£H(y), ( (1) H(xny) =
‘- 384 -



> H(x)-H(y), (2) x<£y-— H(x)£H(y) resp.).

We say that an ideal Q (a }ilter Q resp.) on a is deter=-
mined by an additive (multiplicative resp.) function H on &
Aiff H is a monotonic valuation of (P(a),v ,Id> (Q,0) in
{RN(= 0),+,Ia) ([>0],0) (KP(a),n ,Id> (Q, O) in
{(0,11,.,Ia> ([£1],0) resp.). (We put L <11 = (0,11n[1].)

We deduce from the previous theorem that the following holds:

Theorem. (1) Let Q be en ideal on a which is a 7 -
class, Then Q is determined by an addltive set-function on a.

(2) Let Q be a filter on a which is a & -class. Then Q
is determined by a multiplicative set-function on a.

Remark. The following assertion holds: let a be an in-
finite set. Then there is an ideal Q on a such that Q is a
a -class and there is no function v:a —> RN(<£0) so that Q =

={uca; S{ivix);xeui= 0%,

§ 2. Matrix of classes, o Pl - apd Jro“m-clgsses

2,0,0. R is called a matrix in A of the type ¢ (f&N)
iff R is a relation with dom(R) = ¢ 2 and we have for each
L, 3 € § :R"{lct, 3>} S A, We shall write simply R(<,f3)
instead of R"{<o¢, 3},

Let R be a matrix in A of the type ? . We put

Hgy (R) = LU 0 Rim,yn)

®e (R) =) Rm,n)

A® R is a matrix in A of the type g 8o that A® R(,8) =
= A - R(x,3) holds for each o, 3 ¢ € . Ris a ¢o -matrix
in A of the type § iff R(cc+1,3)2R(c¢,(3) holds for each
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o+l, @ e £ and Rlec,3)2R(cc,f +1) holds for each o, 3+
+1l ¢ % . Ris a o 6 =-matrix in A of the type € iff AOR
is a 6'ar -matrix in A of the type § .

2,0.1 Convention. Throughout this paper let § be an
infinite natural number (i.e. ge N-FN). By a matrix we mean

a matrix of the type § .

Proposition. (1) Let R be a 69r -matrix in A, Then

’5€ (R) *se g-FN %R(m,ﬁ).
(2) Let R be a 76 -matrix in A. Then ’363,6,(11) =
'PEQFN (n Bm, ).

2,0.2, Let R be a matrix in A. We denote by R®" (R76
resp.) a matrix ir? A so that the following holds for each
o, peg
(x,{et, 7€ RG’J"-»xe [YARAR

=x€ le J\_)(3R(~b~,d“) r‘esp.).

Ry ,0") (Kx,{ct,3>>e R =

Proposition. Let M be a matrix in A. (1) (A © M) a

=AO N, (2) By, (M) =%, 0T, 3) G LM =
6
e M),
Proof. (1) (Ao W™ (o, ) = 4 ;O A - Wy ,o) =

= 0) S My, o) = A - u“(ac,(s). 2) M(c,p) =
3»-«../‘- l(q’ J ). We put M('a“,(s) =4 M(g’,d’). We have
Wy, + 1)Uy, ), Rpg M) = Y f\ u(m n) = %, (i) ana
M (o, 3)2M(cc, 3). Thus H__ " > ¥y (M) nolde. Sup-
pose that xe Q Mﬁlﬂ(m,j). We have x € Q iE_JmM(i,j). Let F
be a function, F:FN —> m+l, such that xe M(F(j),j) holds for
each je FN, By using the axiom of prolongation we obtain a
number i <m 80 that’ F(j) = i, holds for infinitely many va-
lues of j. Thus xe M(i ,J) holds for infinitely many values
- 386 - ‘



of j. We deduce from this that x ¢ g}l(io,j) and x € aew (M)
holds. We obtain immediately that Qu"f (my§)=HK,, (M) and,
consequently, %y, (M%) < H gy (M) holds. (3) "366-_,.( (M) =

= 3, (AO M) =¥y, (Ao MPT) = R, (A0 N = #_, ™),

2,0.3. A matrix in A is over B iff BSM(o,>) holds

for all oC,[.%eg .

Proposition. Let M be a matrix im A over B, M e @1 ,
(A1) M 4is a &g -mairix in A over B, M7 e W, (a2) If
() M(m,n) sn M(m+1,n) holds for all m then fm\ M (m,n) &
= () M(m,n) holds for all m. (Bl) W' is a x6&-matrix in A
over B, M7 e W, (B2) If Y/ M(m,n) 2 Y/ M(m+l,n) holds for
all m then \/ M€ (m,n) = L/ M(m,n) holds for all a.

Proof. The assertions (Al),(Bl) are easy, (B2) follows
immediately from (A2). We shall prove (A42)., Let ¥ ve a matrix
8o that ﬁ(oc,(s) =JQ(3 M(o¢,0") holds for each «, B3 e § .
We have [ M(x,j) = ) M(ec,j) and Mo, p+1) Mo, 3 ).
M(o«,3) holds. By using the defini-

~ .
Thus f?.\M(oc,a) °BqLaJFN

tion of M°” we obtain M“qu{é) = My, (3)+ Finally, the

5 F
following holds:

. o . T
O MT(m,§) = o M, p) = P U WG, ) = 00 TG, §)=

pe FN
=. U N M@E,n) = N Mnm,n).
m lee%

LEm
2.0.4. Recall some notions from [Ml) which we shall use

in the following. Let 77 be a codable class. Writing FLa‘L we

mean a language FIK such that there is a relation S so that

{S,K> is a coding pair which codes the class 7L . A formula

@ is <X,Y) -=hereditary iff the general closure of the follow-

ing formula holds:
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xo. !o xl !1
LEX&Y CY,— (Plg 5 ) = (g 3 )
X 1,
(where @ (x »yy ) denotes the formula obtained from $ by re-
placing all free occurences of X, Y by X , Y, resp.).

Theorem. Let R be a 6 -matrix in A and let A,R € L.
Let ¢(X,Y) be a normal formula of the language Flyy, wlhich is
{X,Y) -hereditary and suppose thet ¢(A,A) holds. Suppose,
moreover, that ¢ (/) R(m,n), /) R(m+l,n)) holds for each m
€ FN, Then there is a 6o -matrix M in A, M e @7, and we have
(1) 41, e gMler,), Mot +1,3)), (2) (Vm)

() R(m,n) = 7\ M(m,n)),

Proof. Let P be a & -matrix in A so that: P e 07 |
P(§-1,f5) = A holde for each Be € , P(x,B) = R(x,3)
holds for each < € § , 0 <@ € £ . We have for each meFN:
:(\R(m,n) = Q P(m,n). We define functions t, t on § > £ =
:t(0,3) =3 for B e,

(1) TU<+1,3) = max{y;7< min(t(o, B), I &

& g(P(oc,t(oc, 3)), Plec+l, 3))}
(11) e, ) = min{ilec, )5 2 > 7 -
We have dom(t) = dom(%) = E=<€ because w(A,A) holds.
We deduce from the definitions that t(«,p )£ ot ,p)_é 3
holds for all «,f3 ¢ § . Thus P(oé,ﬂ)EP(oc,t(oc,[s)) holds
for all «, f3 € g . We shall prove that

(iii) @ (Plx,t(x, ), Plc+l,t(¢+1,3))) is true for
each <+1, 3¢ § «

We deduce from the definition that @(P(ec,t(oc,3), P(c+l,

%(c«C+1,5))) holde for each oc+l, B e § . We have t(oc+l,3 )<

!—.’i’(oﬂl,[s ). We obtain from this and by using the facts that
- 388 =



P is a 6x -matrix and ¢(X,Y) is <{X,Y) -hereditary that
(iii) holds. .
We have t(oc+1,B3)<£t(,3) for all «<+1, Be £ .
) (t(ec+1, 3) 2%(oc+1,8) £ (e, 3)).
We deduce from (ii) that

Ckx)  tloc, )£ tloc,3+1) holds for all o , p-l.eg- ‘

Let M be a matrix in A with the following properties:

M(oc,3) = Plec ,tloc,3)) for all o, B € § *

(We have t(o,(3)2(3 for each «, (3 € ¢, thus, the matrix M
exists.) We have M(« ,3)cP(at,(3) (X, 3e§) and M(cc,3 ) =
= Ploc,to(,(3)) SPlec +1,t(x+1,3)) = M(X+1,3) (x+1,B€€ ),
This follows from (k) and from the fact that P is a & -mat-
rix. We deduce from (x*) that M(«,B3 +1) = P(oc,t(oc,[3+i))£
SP(t,t(x,3)) = M(cc,3) holds for all oc,B+le § -

The condition (1) of our theorem follows immediately from
(iii) end from the definition of M. We shall prove (2). It is
sufficient to prove that each function t(m,e)/FN (of the ar-
gument - ) is unbounded. (We deduce .from the definition of t
that each function t(m, .- ) is non-decreasing.) We shall prove
it by induction on m. If m = O then t(0,cc) =oc and the asser-
tion holds. Suppose that the assertion holds for m. Let k €FN,
We shall prove that there isan neFN so that t(m+l,n)>k. We
suppose CP(Q P(m,i), MP(m+l,i). Thus (5 P(m,i), P(m+1,k))
holds. By using the induction hypothesis we have Q P(m,i) =
= [\ P(m,t(m,i)). We have ¢(P(m,cc)P(m+l,k)) for all < € § -
- FN and, consequently, there is a je FN such that ¢ (P(m,
t(m,j), P(m+l,k)) holds. The function t(m, - )/ FN is non-de-
creasing and unbounded. Thus, there is a n>j, ne FN, with

k<min(t(m,n)n). We have for all i> n:t(m+l,i) Z k. Thus
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t(m+1,n) holds. 3

2,0.5. Theotem. Let R be a &6 -matrix over B, R,Be 2L.
Let ¢(X,Y) be a normal formula of the language FL, which
‘is {X,Y)> -hereditary and suppose ¢(B,B). Suppose, moreover,
that @ () R(m+l,n), %R(m,n)) holds for all m €FN. Then
there is a ot 6 -matrix M over B,M ¢ @L , and we have:

(1) «+1, B € § — g (Mlc+1, 3), M(<,3)), (2) (Vm)
¢ ”Ld R(m,n) = \J M(m,n)). .

Proof. Let P = VO R. P is a 6% -matrix in V - B, Pe¢
€ 00t . The formula & (X,Y) = (V-X,V-Y) is <{Y,X)-hereditary
and % (V-B,V-B) = ¢ (B,B). We have for all meFN: ¢ (U R(m+
+1,n), qu R(m,n)) = & (V- Y R(n+1,n), V- U R(m,n)) = (O V=~
-R(m+1,n), N V-R(m,n) = @ (P(m+1,n), P(m,n)). We deduce from
the previous theorem that there exists a 6o -matrix S in V-
S e 7t , and the following holds: o«+l1, B3 € § — J (S(ac+1,
By Slx,(3)), (v’m)(Q S(m,n) =QP(m,n)). Let M = VO S,
The M has the required properties.

Bt_ (e

2,1,0, Xis a 6 - resp.) class iff there ii

e matrix M ¢ @’ so that X = ¥ (M) (X =3 (M) resp.).
We shall write 6x° ( 76° resp.) instead of the symbo:

G’arde ( e Sdy resp.). X is a 6a - (grem-reap.) class ift
there is a 65r (x6 resp.) matrix M e 2 and X = ¥y, (M)
(X = ¥, (M) resp.). This follows from 2.0.3.

2.1.1. A standard system @! is called saturated stan-

dard system (g8.8.8. briefly) iff for every sequence {Xn}s .74
there is a relation R &€ @ with (Vm)(R"{m} = X ).
For example, every S::I’%< is a s.s.s., but Sdy is a stan-

dard system which is not saturated.
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Proposition. Let 771 be s.s.s. (1) Q is a 6 _ (P -
resp.) class iff there is a sequence {Xn§ € 7%t and we have
Q=X (Q = /)X, resp.).

_ Proposition. Let % be a s.s.8. (1) Q is a 6xP class

iff Q =\)Q, where each Q is a a® ~class. (2) Q is a

m’b‘m-class iff Q =Q Qm, where each Qm is a b‘m-claas. '
Proof of this proposition follows immediately from the

following
Proposition. (1) Let {Q-’i be a sequence of *®_c1las-

ses anmd let @! be s.8.8. Then there is a matrix M € @l with
(Ym)(Q, =/ M(m,n)). (2) Let 4Q% be a sequence of s <
classes and let W7 be s.s.s. Then there is a matrix M e %L
with (VY m)(Q, = %M(m,n)).

Proof. Let -{Sm§ be a sequence 80 that we have for each
meFN: (i.e. Q = S (n))
a) Spe? , b) S is a 6-string of Q of the length € .
There is a relation R € @ such that (Vm)(R"{m} = S ) holds.
We have for each m: (Y« < m)(R"{m§ is a 6 -string of the length
€ ) Thus, there is a e N-FN so that (Y < & )(R"{«c¢ is
a 6 -string of the length 3 ). We can construct the required
matrix M immediately from the relation R/ & . (2) follows
from (1).

Corollary. Let %1 be a s.s.3. Let X be a 677 = (76 -
resp.) class. Then X is a 6“ar’m - (Jfﬂm-resp.) class.
(For the notion of 6@ - (&6 -resp.) class see 0.0.1 .)
2.1.2. We say that a sequence {X % is a 6- (& -resp.)

seguence iff we have (V m)(X < Xm_,_l)((Vm)(Xm+19 Xm) resp.).

Proposition. Let @(X,Y) be a normal formula of the
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language FL,, which is {X,Y)-hereditary. Let 7L be a s.s.s.
Let A e @ and assume that ¢ (A,A) holds. (A) Let iQ,t be a
6 -sequence of xP'-classes so that @ (Qp, Q1) % Q€ A holds
for each me FN, Then there is a 63 -matrix M € 291 in A such
that (1) /M M(m,n) = Q holds for all m, (2) we have
@M, 3), M(ot+1,3)) for all x+l, 3 & € -

(B) Let {Qm} be a 4 -sequence of 6™ _c1asses so that
?(Qm+1,qm)&A9Qm holds for all m. Then there is a 6 -mat=-
rix M e P over A such that (1) {/M(m,n) = Q, for each m,
(2) @(M(x+1,3), M(oc, 3)) holds for each «+1, 3 € € -

Proof., (A) Let P be a matrix in A, P& %L , 8o that
(V’m)(Qm =M P(m,n) holds. (The existence follows from the
previous proposition.) The matrix P@( has the following pro-
perties: P°" is a 6@ -matrix in A, P e , and (¥ m)
(N Pdﬂ(m,n) = Qp). The existence of the matrix in question
follows from this and from 2.0.4.

(B) Let R be a matrix so that R « L and (Vm)(Q, =

an/J R(m,n)) hold. Let P be a matrix so that P(ac,p3) =
R(e¢,3)ud (xx,B €€ ). We have (Vm)(Qy = 4/ P(m,n)). The

H

matrix P7% is a g6 -matrix over A, P < M and Q, =
= % Pﬂg(m,n) holds for each me FN, The proposition follows
from this and by using 2.0.5.

2.2,0. Let, for each i<k, R; be an a(i)+l-ary relation.

We say that Q is a universe w.r.t. AR?  ife TRT, (Q,Q)

holds. Q is a en® . (ﬂGmoresp.) univerge w.r.t. {Rigk iff

Q is a universe w.r.t. -iBi?yk and, moreover, Q is a 6T

class (.ﬂ’6’m-claea resp.). (For [ 1 gsee 0.1.0.)

2.2.1. Proposjtion. Let Ry € % , i<k, be as above.
Let A,B,Q be universes w.r.t. 1Ri¥, and suppose that BEQSA,

-
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B e ™ am Q is a 6977 ~class. Then there is a 67r ~matrix
P in A over B, Pe @t and we have: (1) %45 (P) = Q,
(2) *+1, e g — [RD (P, BIP(cC+1, 3)).

Proof. There is a &3 -matrix M in A so that M e %l and
we have ¥y, (M) = Q, Let P be a matrix in A with P(0,(3) =
= M(0,3 )uB for each € § and P(x+l,3) =, R;Pa(i)
(e, 3o M(cc+l, 3)UP(oc,3)uB for each c+l, B & €«
Clearly, P is & 69 -matrix in A over B, P ¢ % and we have,
for all ¢, 3 e € , P(x,3)2M(oc,3). Thus Q & ¥, (P)
holds. We have &, (P) = R@H‘N P(m, 3). The relations
P(0, A)<M(0, 3)UBSQ hold, Assume, for each 3 € ¢ -FN,
P(m, 3)S Q. We deduce from the definition that we have for
each (3 € £ -FN, P(m+1,3)S Q. Thus,we have ¥, (P) Q and
the statement (1) is proved. Finally, the statement (2) fol-
lows immediately from the definition of P,

2.2,2, We say that a class Q is a limit 5@ -universe
wer.t. {R;5, iff there exists a matrix M € @ such that
(1) ¥, M) =Q and (2) we have for each meFN:

IR I (Y M(m+l,n), Y Mm,n)) & | M(m+l,n) < U M(m,n).

2.2.3. Proposition. Let R; € %7 be an a(i)+l ary rela-
tion, i<k. Let A,B e @ be universes w.r.t. 41 R;¥, and let Q
be a limit o P -universe w.r.t. {Riik, BSQ&A. Then there
exists a 6 -matrix M s %L in A over B so that (a) ¥, (M)=
= Qand (b) «<+l, B e >R T (M(cx+1,8), Mlec,3)).

Proof. There is a matrix R e @ with %, o(R) = Q and
|9 kRps19Ry) &R, q, Ry holds for each m. (We put R =
= U R(m,n).) Let P be a matrix so that P(oc,3) = R(a,3)v
UB holds for each o, 3 € ¢ . We have P¢ 7t ana BEQ%.
We deduce from this that Ry =P, = U P(m,n) holds for each m.
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P"® is a 76 -matrix over B, P < m , and P:€= P;" holds
for each m. By using 2.0.5 we obtain a matrix P ¢ %L over B
so that 3¢, 5 (P) = Q and we have ¢ +1, e § —> IR T
(—1;(05"1, @)g P(w,(3)). Let M be a matrix so that M(«, 3) =
- ?(oc,ﬁ)UA holds for each «<, B € £ . The M has the requi-
red properties.

§ 3. Valuations of e&a®’ - and 76 P _triags.

3,0.0. & triad 4(Q,B) is a 6%’ —triad (limit m6 Z¢-

iriad resp.) iff we have (1) A €W ,B e M, (2) Qis a
6x Pl class (limit 762 universe w.r.t. {E,F% resp.) (where
Q = {A,E,E?).

Remark. We need not define limit 65 wtriads because
it follows from 2.2.1 that each 6P -triad would be such a
limit 6™ -triad.

Now, we shall construct some useful triads. We put, for
each f,g cEN, 2f +g ={{( (0 )+g(c),o?; o« € § ¢ (where we
put EN ={£SE<§ ; £ is a function&dom(f) = ¢).

Let J;, be the triad (EN, Sz-+,Id> (Qy, »103x ) where
Qpy =1L EN; (30 e § -FN)(Vor € ) (£(oc) 6 FN)3. The Tgg
is closed, & O_triad.

Let Jyg be the triad <SEN(Z0), 5+,1a> (Q, ,0%=§)
where Qe = { £ RN(Z 0);( Vet € £ ~FN), (£ )2 0)3. (For = see
0.0.3.) The Jy¢ is a closed, limit o 6°-tried.

Let = A(Q,B) be a triad and let A be an universe in
@ (i.e. Q11X is a substructure of (L ). We designate the tri-
ad A1X@Qn%,BnEK) by 7°(3,

We put i\{;aﬂ = &, Hre EN; f is a non-increasing func-
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tion} and ?,1[’6' = Tg Htegm(z 0); £ is 5 non-decreasing

. Y ., o, . -
functiony. Jy is closed, 6ar°-triad and J . is a closed,

limit ¥ @ %-triad.

3.0.1. Theorem. Let J be a Gﬂm—triad. Then there

exists a valuation H of J° in f(m , He .

3.0.2. Before we prove this theorem, remember some as-
sertions from [M2],

There is a normal formula & (x,y,X,Y) of the language
FL so that the following holds: let (L be an e structure and
let B be a universe in (. , Let S be a & -string in (I over B
(see 0.1.1), A,B, S € @¢ . Put HS ={<{x,y>; & (x,y,,S).
Then BS is a valuation of O(B,B) in <{N,+,Id)({0},10}) such that
Q) cixe A;Hs(x)é 2%} € Q(cC +1) holds for each « +1c dcm(S)
and B e Wt . Suppose, moreover, that R e @1 is a & -string
in @ over B, dom(R) = dom(S) a;d S(e¢ ) € R(e<) holds for each
« € dom(R). Then we have, for each xcA, HR(x)EHS(x). (See
3.0.3 in [ M2].,)

3.0.3. We now turn to the proof of the theorem., Let J =
= 0 (Q,B). Fix a P € N such that 2- ¢ € ¥ , We deduce from
2.2.1 that there is a 63¢ -matrix P in A over B of the type
A, Pe® , and the following holds: ¥,y (P) = Q and « +1,
ped—> [F,EI(P(ec,3),P(ct+1,3)). Let R be a matrix of
the type % such that x, 3 €P—> R(et,3) = P(x,B) N
NE" P(c¢,(3) holds. We have B = E® BEE" P(er,3) (for each
o , (32 € %) and, consequently R is a 6o -matrix in A over B,
R e @l , By using 2.0,4 in [M2] we obtain ”L'{B(m, p) =
= U P(m,(3) and F* R%(«t, ) ER(c6+1,3), E"R(,3)SR(<c,3).
At first, ¥y, (R) = ¥ o (P) = Q holds. Let S be a mafrix such
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that we have: S(0,>) = B forall B¢ § , S(x,p3) =

= R(2,3) for a1l 1£«<f =-1,B<c§ and S(§-1,3) = A

for all B« € . It is easy that S is a 6I7 -matrix in A over
B, Sem , am we have:F"s?(cc,3)SS(ox+1,3), F383(t,pB)s
S 8(x+1,3) (41, B €§) (because P53 (o, ) = FyR(20c,B)c
S F"R?(2c041, 3 ) S R(2(x+1),/3) = S(cc+1, 3) holds) and
E"S(e¢, 2)ES(¢,(3). (For Fy see 0.1.1.) We have also
Hog(S) == U ) Sm, B).

We designate by S(- ,>) the relation {<{x,o«>; x€S(c,
p)3. Each S(+,p), Be§, is a 6-string in L over B. We
put /

Ly, x>, 3>eH =d(y,x,d,s(-,p)).
We have H € . and H"{f3} is a valuation of ((B,B) in
(N,+,Ia7 ({03,10%). We put, for each xe4, <{,B3>,Xx)€G=
= o = H*"{PB¢ (x). It is easy that G is a function, G:A —
-—>§§ , and G € 7 , We shall prove that, for each xcA,
G(x) is a non-increasing function. We have (3 £ o — S(o 3 )2
2 8(o¢,d"). Thus, by using the facts from 3.0.2, we deduce
that H"{(3% (x)4H"{J¢(x). We conclude from this and by ua-
ing the definition of G that G(x) is a non-increasing func-
tion, It remains to prove that l

1) xeQ=(3d5e § -FN)(V 3 € 0 )G(x)(3) € FN and

2) xeB=G(x) = {03~ § »

1) We have x€Q =(3d € § ~-FN)(Im)(xeS(m,d"))=(Fde € -
-FN)HE" {'t (x) e FN=(Jd e § -FN)(G(x)( ) e FN)=(3 e § =-FN)
(VB £d)((a(x)( ) € FN),

2) We have: xeQ=(V € €)(G(x)(3) = 0)=G(x) =403=< § -

Thus, G is a required valuation.
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3.0.4. Theorem. Let J° be a limit 75 P _triad. Then
A
there exists a valuation H of J' in J,o» , He 0.
Proof of this theorem is analogical to the previous one

and we omit it.

3.0.5. The analogous results as the ones formulated
in the previous theorems can be proved also for monotonic va-

luations. We shall present the more simple of them.

Theorem. Let J be a closed, car™ —triad. 1) Then the-

re is a monotonic valuation H of & in [, , He L.
Proof. Let 72*<¢ N be such that 2¢ < 2% . Let Re @
be a 69r -matrix in A over B of the type 2% such that 1)

H gy R =q, 2) [F,E, <1 (R(«,p )R(cc+1l 3)) holds for
each ¢ +1, B € 2% . (The existence of R follows from 2.2.1.)
Let M be a matrix such that M(0,3) = B, M(¢ -1,3) = A holds
for each p€§ and M(x,p3) = é"R(Zc(,(S )N E"R(2, (3)) holds
for each ¢, 3 € ¢ . We deduce from the lemma in 1.1.0 that
F*M% (o, (3)SE M(ot+1, 3) (X+1,B €€ ), E"M(ot,3)SM(o(, (3 ),
<" Mloc ,B)SM(c,3) (¢, 3 € §) and we have for each =,

B+ 2cf :R(2et,3)SM(o(,3+1)S R(2c¢,2(3+1)). We deduce from
this that Bedi,,f (M) = Q. We put P(ec,p) = ﬁ"(R(oc,(}) Ia)
NE"R(ot, 3))., We deduce from the lemma in 1.1.0 that
P (o, f) = PP (2, )€ FPP(2+1, B)S P(2(c+1, B) =
= M(e¢ +1, 3). Thus, we have the following: M is a matrix in A
over B, M € % , and (a) each M(-, ) is a & -string in (L
over B (where M(+, (3) ={<{x,0¢); xeM(ec,(3) ),

1) Let & € @7 be a commutative e-structure so that (L
has a u-expansion in 7%, and let 7 be over O .
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(b) =2"M(,3)<s Ml,(3) holds for each <, 3 € £ , (c)
M is a 6ar -matrix.

We put (y,x?, B>€H=&(y,x,0M(-,3)). We can prove
quite analogously as in the proof cf the theorem 3.0.1 and
by ueing the arguments from the proof of the theorem in 1.1.0
that the mapping G:A —> fg such that <ot ,B> ,x>€G =X=

= H*{3% (x) is the required monotonic valuatien.
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