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REMARK ON COMPLETELY BAIRE-ADDITIVE FAMILIES IN ANALYTIC
SPACES
Petr HOLICKY

Abstract: Completely Baire-additive families in %¢e-ana-
lytic spaces are investigated. A characterization of point-
countable completely Baire-additive families in o -analytie
spaces is proved. The results and methods follow that ef [HI,
[P, and [F-H,l.

Key words: 3¢ -analytic space, Baire set, completely addi-
tive Tamily, 6-discretely decomp:’:anble famiiy, Suslin set.

Classification: Primary 54C50, 54HO5
Secondary 54C60, 54C65

The aim of this remark is to notify that the result em
com;;letlely Baire-additive families from [P, Prop. 1] proved
for complete metric spaces also holds for ae-aﬁnlytic spaces
introduced in [F—H]_]. Essentially it means that it holds in
the product of a complete metric space by a compac¢t sp;cm
The method combines Pol’s proof and Hansell's o:ril:innl proce-
dure [H, Th. 2] with Frolfk’s result [F, Th. 1]. A similar
procedure was used in [F'HZ] to extend a characterization ef
point-finite completely Suslin-additive families from comple-
te metric spaces LK-P] to analytic spaces.

The result is used for a characterization of point-cea-.

table completely Baire-additive families in w-analytic spaces
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(Corollary 2).

l, Preliminaries. The topological space X ig regular
and Hsusdorff if we do not say more.

A Suslin set in X is a set of the form K:{!N IIVQN Fyin

where N = {1,2,...3, 6| n stands for .63, 6,,..., &, and
Ps;ln are clo’ed in X.

If S is Suslin in X then there is a "Suslin stratifica-
tion” of S; it means that there are sets (S)ﬁln for 6 € nl,
neN, such that

S =6§j~”(s)5\n

(S)G\nﬂc (S)é’ln for neN and
S= Y numlN (Sg)n:

6e N
We suppose that some such stratification is fixedly chosen

for any Suslin set in the corresponding space, and the nota-
tion analogical to the above one ((S)é’ln) will be used for it
without other comments.

Baire sets are the elements of the smallest G-a}gebra
of subsets of a topological (uniform) space that is closed
under unions of topologically (uniformly) discrete unions and
contains zero sets of continuous functions. Any Baire set ie—
Suslin.

The family F of subsets of a topological (uniform) spa-
ce X is said to be completely Suslin (Baire)-additive if Ug/
is Suslin (Baire) in X for any G < 7.

The indexed family F ={F(A)|A ¢ Q% is said to be &5-da

or 6’—discre'tely decomposable if there are sets Fn(A) for

| SR
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A eQ and neN such that £(A) -nLe)N F,(A) and the families
{Fn(A)\As 0.% are discrete in the topology (uniformity) of X.

The topological (uniform) space X' is called se-analytic
if ¢ Z @ 1is a cardinal number and if there is an upper se-
mi-continuous compact-valued (further usco-compact) corres-
pondence f£:M —> X with £(M) = X such that M is a complete
metric space of weight <9¢ , and f is 6 -dd-preserving, i.e.
f takes the families with 6 -discrete decomposition to sys-
tems with the same property.

The fundamental properties of analyticipaces and Baire
sets can be found in [F-H,). Especially any Baire set is Sus-

lin- and Suslin subsets of 2e¢-analytic spaces are s¢-analytic.

2. Results

Theorem. lLet £:M—> X be an usco~-compact corresponden-
ce of the complete metric space M onto the topoiogical space
X. Let Q. be a completely %aire-additive family in X, Then
the family '

7 o* = 1271 (a) A e %}
(here Q¥ = {A¥ = ANU 4B e Q|IB#A3lAec Q)
is 6 -discretely decomposable.

The proaf of Theorem is left to sections 3 - 5.

According to the definition of se-analytic spaces we can
immediately derive the following assertion.

Corollary 1. Let X be a ¢ -analytic topological or uni-
form space and let Q) be a completely Baire-additive family.
Then the family Q* is 6-dd in the topology or uniformity,
respectively. ‘
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Corollary 2. let X be an c=-analytic topolegical spa-
ce and let  be a point-countable completely Baire-additive
family. Then ( is countably refinable, i.e. there is a count-
able family € , such that € cd , and UE€=UAQ .

Remarks., Corollary 2 extends a part of a result of R,
Pol from [P], where the analogical result is proved for comp-
lete metric spaces of weight less or equal teo ;&‘1.

It follows that for any B3 c 4 in Corollary 2 the fami-
ly B is countably refinable. If a family (. consists of Bai-
re sets, and P is countably refinable for 3 c & then &
is comple tely Baire-additive, 36 that Corollary 2 gives a cha-
rneterintiAon of completely Baire-additive families nmong'
point-countable families of Baire sets.

Let us remark that in the one-point compactification K
of an uncountable discrete apac§ D there is a completely Sus-
lin-additive family (. such that Q* is uncountable. Put 0.8
Q ={{x,a3) aeD,xek\ D¢.

‘Prbof of Corollary 2. Suppose that (L is not countably
refinable, Let the points xﬂex and the sets A(ae Q4 be cho-
sen for 3<o < #;. The family O =fAs aleu for some
f <<% is countable. Therefore (A N\ &, )u£Aﬂ Ip < ¥ is
not countably refinable, and there is a set A_ s { such that
we can choose an x ¢ Aw\.uup\fw «3 We construct in this
way A € O for o < ¥, such that xuce“ac\uf‘(,s‘ﬂ $a, f3<

' < #, . This contradicts Corollary 1. -

Corollary 2 can be used for an assertion concerning se-

parability of the range of a measurable cbrrespondcnce. No-~-.

tice‘lthat the following corollary enables us to use the se~
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lection theorem from [K-RN] for such correspondences:

Corollary 3. Let F be a Baire-measurable separable- and
closed-valued correspondence from the a)-nnalyti;:lapace X to
a complete metric space M. Then there is a separable subspace
S of M such that F1(S) (={xecXIF(x)nS4#3) = DP (={xeX|
F(x)+43). ‘

Proof. Let %n be & 6'-discrete closed cover of M by .
sets with diameters less than 1/n. Then F-lcfn = {F-l(C)ICG
€ ‘fni is a comple ‘tely Baire-additive point-countable family
which covers the w -analytic space DFec X . According
to Corollary 2 the family F~1 %, has a countable refinement,
i.e. there is a countable family 9’15 ‘t’l such that Pl 5"1
covers DF, For any S, € 'jfl consider Fhe restriction Fslz\
:?'1(81)_—> S, and construct 9?1 from ‘f:l = $Nn 8y similarly
as ‘.?1 was constructed frgm ‘fl. By induction we construct
families &, ':'fh+§ and ‘fn_r,_ll for S € ¥ such that

W) 9, =ViLRIs e S

(i) cg:f:l = ?n-o-ln Sp

s s
(113) 9 e €ty and
s -
(iv) F-lqn!-:l covers F l(Sn).
It suffices to put S =%QN U ¥, for example.

Remark. It cannot !3e proved that F(X) is separable in
ZFC. Assume that %, = 2“°. Let ix |l < Hl} =[0,1], and
put F(xy) = {xﬂ, I3% <% . Then F is a correspondence from
Corollary 3 if X =[0,1) with its usual topology (uniformity),
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and M = [0,1] is endowed with the discrete metric. However

F(X) = M is not separatie.

3. Auxiliary assertions. We suppose that the assump-

tions on f, M and X of Theorem are satisfied.

Lemma 1. Let ¥ be a family of subsets of X and let
£714 be not 6-dd. Then there are families F1 #, such that
G uvF,=F, FNF,=0and £7F, is not &-ad for i =
=1,2.

Proof. The family £717 =9 cen be divided inte two
subfamilies D,, 92 such that $,0 D, = 4, H,vD, =J and
D, is not &-dd for i = 1,2 (see [K-P]). Put

g, ={F « 1£7H(P) ¢ 9,3.

Lemma 2. Let F(W )N K %% and A hc A forn =1,2,... .

Let fw} = f\'i; and diam W converge to zero. Then

LDy Ry #2 and MQNFG;‘) ctiw).
Proof. Let f(w)nA_n - @ for some n, €N, Then there is
an nye N such that F('\V,?nrnl = @. Therefore f(w)ng is a
decreasing sequence of non-empty compact sets and has the non-
empty intergection. Thus the non-emptiness of%fe\Ng is proved.
Let x e (N f_(-i;—))\f(w). There is an open set Gof(w)

such that x¢G. However there is an nyeN such that f(Wn3)cG.

This is a contradiction. Hence ﬁfZVIn) cf(w).

4, Proof of Theorem. Suppose that Theorem does not hold.

The following objects with properties (1) - (5) can be cOnst-

ructed in the k-th step of induction for any i€l = P where
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D =41,2% and ilk stands for il""’ik for k&N ("i|0,” must

be ignored): sets . e Yil e Fiig = Nyxe and natural num-

bers n;‘k, ;'k 1,...,11;}1
1) Qii1,0Y Dyjen,2 = Filxa

@) Qj1x1,0 " Gy)x-1,2 =7

B) Xy = X0 (LA ninm“""‘(iailk)nlilk"

/\f(UiIk)
(We use the notation £F= UF\U (O\F)for any Fc A .)
(4) The diameter of Usyx is less than l/k .
. ¥ =

(5) (Xﬂknu a* i1k} Ui x i8 not &-dd, where Qix =
- *
= ailk nua*.

The first step of the construction can be done as fol-

lows:
such that a«'; N 03'; =4,

Using Lemma 1 we find df'i,a"é
Q*lu d"‘z = Q" and r‘lw‘i is not €-dd. Put A; ={ae & |
iA*e Q*-? for i = 1,2. Now we can choose ni' and ni such that
i ga. ) 10 4% ..) is not 6-dd. Since M is paracom-

ill1 ill
pact we can flnd Ul’ U2 such that (4) is satlsfled and
-1
((:.cal‘l) 110 al‘l)n Ujjq is not 6-dd for any ieI, It

is enough to put X; 4 = X(\(%Gznl 1‘1“ (U, ll) and all pro-

perties from (1) to (5) are satisfied for k = 1.

The induction continues analogically, and we will omit
it. .

We will finish the proof of Theorem by proofs of the fol-

lowing statements:
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(a) Y=, @N Fi|x 16 w-analytic

(v) JLQN Fi|FB for any iel

m F:Jk kQN 5ik = @ whenever i# j,i,jel

(@) i{M F, |k\1eI {is completely Suslin-additive in Y.

These four assertions are in the contradiction with
Lemma 2 from [F-H23 which says that disjoint comple tely Sus-
lin-additive families in co-analytic spaces are countable.

This lemma is dn immediate corollary of [F, Th.1l].

5. Proofs of (a) to (d).

CURR N ARITIL S AN ICATRE

The intersection of Ui\k’ k=1,2,..., is non-empty with
respect to the corstruction. Thus Yc %kglf(hQNUi\k) accord-
ing te the second assertion of Lemma 2. Hencefore
Yc r(%% kQNUilk) ar this is a compact set because f is
usco-compact and (4) holds,

Obviously Y is Suslin and thus it is w-analytic.

(b) Since X; 11k€ f(U k) and it is non-empty we know that
Filx0 fZUﬂk)#ﬂ and the first part of Lemma 2 guarantees

that f\ Fl\k*ﬂ.

(e) and (@), Let i+j and x; € nNFilk’ X Eh@N Fjlk‘ (3)
implies that x;€ () Néﬂdl\k. Especially there is A;e (. such
that x;¢ A; and A; has to be in aﬂk for k = 1,2,... o Simi-
larly x €A with L f\ a,“k but u@na‘ ik "neQN sl = = B,
Thus ‘i*xj and (¢) ia proved.

We easily see that \ {1 Fi,klieJCI§ =U{aell
iAeNEQ g)x for some ieJinY, and thus (d) is verified,

too.
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The family { M Fy| lie 1% is even Baire-additive in Y.
keN 11k

6. Problems. We do not know the answers to the following
natural questions concerning completely-additive families:
(a) Can Theorem be extended for comple tely Suslin-additive
families in complete (separable) metric spaces?
(b) Can Corollary 2 be extended to 3e-analytic spscei with
% > 7
(Consider 6 -discretely refinable instead of countably refin-
able!)

(¢) Can Corollary 2 be extended for Suslin-additive families?
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