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BOUNDED NONLINEAR PERTURBATIONS OF SECOND ORDER
LINEAR ELLIPTIC PROBLEMS
Pavel DRABEK

’ Abstract: In this paper we prove thé existence and mul-
tipli¥Ity results for the Dirichlet problem

Lu - -glu) = in 0
{u Ao Buxiao@an’,

where g: R—> R is a bounded continuous function.

Key words: Nonlinear elliptic problems, multiple solu-
tions, kray-Schauder degree theory. ’

Classification: 35J65

1. Assumptions. Let Q) c RY ve a bounded domain with
smooth boundary 30 . Let A:D(A)c 12(0) —> 12(Q) be a linear
operator with closed range R(A). Moreover the nullspace N(A)
of A is generated by a function ¢ e cl@) such that ¢ > O in
L ,¢=00n 380 and-g’%<0 on 3Q ,vhere-é%—is the
outward normal derivative. We can suppose that .é ¢ =1, let
us suppose that

12(0) = N(4) ® R(a),

and K = A”! is a well-defined operator from R(A) onto D(A)n R(A
(K is called the right inverse of A). Moreover, let us suppose
1) k(R0 PW) cWBP@)nwr2(@), pz2,

and
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(2) kel < cpr\\ , Te R(A)A TP(Q).
P ()

w21P(q)
Example. Let i be a second order symmetric uniformly

elliptic operator with smooth coefficients acting on real
. valued functions defined in a bounded smooth domain Q. im
RN. Let us denote by ?Ll the first eigenvalue of the eigen-
value problem fu=2uinQ , u=0on 32 . Then the o-
perator

Asub—> Lu - J'Llu

satisfies all the above conditions (see [ 2]).

Let us denote by P and Q the orthogonal projections on
LZ(Q.) into N(A) and R(A), respectively. Then each f¢ Lz(il)
admits a decomposition

£ =Pf +Qf =8y +h, 8c R ,hecR(A).

Let gt R—> R be a continuous and bounded function and
let b>0 be such that |g(z)l < b, for all ze€ R . Then the
Nemytskii operator

G(u) (x) = glu(x))
is bounded and continuous in every IP(Q), 1<p<4+ e , and
el £b (meas f ) l/p’ ue IP(Q).
P (0)

2, Main result. ILet us suppose that there exist real
numbers Tl and ’I’2 such that the function g satisfies the fol-

lowing condition:

(g) for any given R>O there is t >0 such that
fﬂg(u)gpz&‘z, J;lg(v)ga £T, Ty £Tp
for all u,vec12(0N) with uz to® » VE-t, 9 , lQu an(mé R,
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lQuil <R,

12(q)
Theorem 1. Let A and g satisfy all the above assumpti-
ons, fc L®(Q). Then the equation

(3) A(u) + G(u) = ¢

has a solution ue Wg'z(.(l)nwz'p(ﬂ), for all p>2, provided
ol 5 € <Ty,Tpre .

*lel2g "2

Proof. The equation (3) is equivalent to the bifurca-
tion system "
(41) v + KQG(tp + v) - KQf = 0,

(4ii) PG(tep +v) - Pf =0,

u=tg +v, veR(A), teR.

Let vc R(A) be an eventual solution of (4i) for arbitrary but
fixed t e R . Since g(typ + v)e L®(Q) it follows from (1)
that ve '2,p(o_)nw<1>,2m) for all p, and from (2) we obtain

vl ,  zc_[bmeasn)P +leel 1.
W P Q)

:p(ﬂ)

By the Sobolev imbedding theorem (see e.g. [6] ) it is
ve ¢ (@) and
Nvl

cl’“(ﬁ')é const. = c.
Let us remark that the constants Cphs © do not depend on te R.
By a standard application of the Leray-Schauder degree
theory it is possible to prove that for fixed t ¢ R there is
at least one ve R(A) satisfying (4i). Let us denote
S = {(t,v) ¢ R> R(A); v satisfies (4i)j.
Then the solutions of (3) are exactly such u = ty + v that
(t,v)e S and y(t,v) = (f,cy)Lam), where 3 (t,v) =
= [ag(tcp + v)p is a real function defined on S. According
to (g) there exists such a t,>0 that
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(5)  feltye + Mgz T, fal-t,p +Wg<T,
for all (t,,v)c S and (-t,,w)€S.

According to lLemma 1.2 from [1] there exists a connected sub-
set S,C S such that (-tl,tl> C projp ;. The function Yy
—> R is bounded, continuous and according to (5) y(ty,v)Z
z(f,p), y(-t;,W)<(f,p), for all (t,,v)eS,;, (=ty,w)€ 5.
These facts imply the existence of t e(-tl,tl) and v cR(A)
such that u = t¢ + v is the solution of (3). This fact Comp-

létes the proof of Theorem 1.
Remark 1. The assertion of Theorem 1 includes Theorem 1
from [3]. Let us suppose
(8+) Llipe(z) =g, , g_<g, .
For fixed t €¢ R and h = Qf € R(A) put

= inf o vitw), Teoup, ywitw.
Then T, = inf %, T, =
173 1 t, 2 taeu& % and let us suppose
(6) T, <T,.

Theorem 2, Let us suppose the same as in Theorem 1 and
moreover (g ),(6). Then for £ = sy + h the problem (3) has
(a) at least one solution if g "9 | 2 . ("i"l,‘T-z);

(b) at least two distinct solutioms if 8 llg | 2 © (Ty,8_)v
U (g,,T,) (T = T, (n), T, = Tz(h) depend on h eR(A)).

Proof. Let h GR(A) be fixed. If s g “LZ(n,)‘ (T,,T,) then
‘there exist t,,t,€R such that for all (t,,v)eS,(t,,w)eS it
is. y(t),v)>e W“L"’(n) and y(ty,w)<s gl , . Then the
part (a) ia proved using Lemma (1.2) from 1 . Ifslg “Lz(mc
¢ (T),g.) then there exists t, € Rsuch that y(t,,v)<slg@ “La(m
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for all (t,,v)€ S according to the definition of —fl. It is

sufficient to prove the existence of toytq € R such that

ylt;,v)>s “‘?“Lz for all (t;,v) €S, i=2,3. Let us denote
Qp¢=ixel jtex) + v(x)<n, for all (t,v)e S},
Qopy® ixel; te(x) + v(x)>-n, for all (t,v)e Sj.

It is easy to see that

o =0
t_%i*_.oo meas 1y ¢

for eachm ¢ IN.
For sufficiently small ¢ > O we can choose according to (g+)

such a ty € R that for t, = -ty it is

(M L[ sltye +9g —sl<2, | [ &ty +Mgl<
‘Q-.m;tz

ANV
Ot 3
< 72

and for t3 =t it is

® | [ &t,9 +vgp-glcé, 1S gt +vgl<
.Q\ntglig’ ¢ 8+‘2'%t83? %

4,_,13 B A ) ¢

< E 7

for all (ty,v)eS, i = 2,3, "

From (7),(8) we obtain

(9) tfns(tzga + Ve -s,‘< € and |,f;ls(t3go + V) -

- 8..,,< 2 9
for all (t;,v) €S, i = 2,3. The last inequalities (9) imply
that the function y has the desired property. If s ¢ “Lz(me
€ (g,,Tp), the proof of the part (b) is analogous.

Remark 2. In the case of the first eigenvalue the pre-

vious Theorem 2 extends the results obtained in [5].

3. Examples. Let us consider the Dirichlet problea
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2
(10) {-Au- ﬁlu-ue'u =fin O,
u=0on9Q.

It follows from our Theorem 1 (see also [3, p. 631)) that (10)
has a solution for each f1l¢ . It is g, = g_ =.0 and for
each he R(A) where A(u) =-Au - Aju,it is T, (h)< 0<T,(n).
It follows from Theorem 2 that for each he R(A) the problem
(10) has at least two distinct solutiors provided £ = s +
+h, s M“LZ(QJG (Tl(h),o)u(o,’r'z(h)).

Let us consider the Dirichlet problem

_l
(11) {-An-ﬁlu-eu

u

£in Q,
Oon 300 »

Then g, = g_ = 0, Ty(h) = 0, T, (h)< 0, for each he R(A). The-
orem 2 implies that the problem (11) has at least twoﬁstinct
solutions provided f = sy +h, slg “LZCQ-) € (T, (h),0).
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