
Commentationes Mathematicae Universitatis Carolinae

Luděk Zajíček
On the symmetry of Dini derivates of arbitrary functions

Commentationes Mathematicae Universitatis Carolinae, Vol. 22 (1981), No. 1, 195--209

Persistent URL: http://dml.cz/dmlcz/106064

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1981

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/106064
http://project.dml.cz


COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

22,1 (1981) 

ON THE SYMMETRY OF DINl DERIVATES OF ARBITRARY 
FUNCTIONS 
L. ZAJICEK 

Abstract: In the article the strongest relation connect­
ing the Dini derivates of an arbitrary real function which 
holds except on a first category set is found. We further pro­
ve that the relation holds except on a G -porous s§t. The men­
tioned result is an easy consequence of a DolSenko s theorem 
on angle cluster sets. An additional result on the symmetry 
of Dini derivates is proved by the Jarnik-Blumberg method, too. 

Key words: Dini derivates, 6-porous sets, boundary be­
haviour of functions, Jarnik-Blumberg method. 

Classification: 26A27 

1. Introduction. The well known Denjoy-Young-Saks theo­

rem (see [33, chap. IV, th. 4.4 or [12], p. 271) is the most 

important theorem concerning the Dini derivates of arbitrary 

functions. This theorem establishes certain relations (so cal­

led Denjoy relations) valid almost everywhere, which connect 

the Dini derivates of arbitrary functions. On the other hand, 

there exists a function (e.g. the function f from Example 1) 

for which the set of all x at which the Denjoy relations hold 

is a first category set. 

We can ask what is the strongest relation connecting the 

Dini derivates which holds except on a first category set. By 

the Neugebauer's theorem [111 for any continuous function f 

the set of all points x at which 
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(1) D*f(x)*D"f(x) or D+f(x)=4-D_f(x) 

is a first category set. But the Neugebauer's theorem cannot 

be extended to the case of an arbitrary function f. To see this 

simple fact it is sufficient to choose a dense set Ac R for 

which R-A is also dense and put f = C*. For f (1) holds at 

each point x e R. 

For this function f at each point of a residual set (in 

fact at each point) either Djf(x) = - oo , D"*f (x) - oo or 

D~f(x) = co , D+f(x) = -co .We shall show that this circum­

stance is not accidental. In fact, for an arbitrary function f 

except on a first category set at least one from the following 

relations holds: 

(i) D*f(x) = D~f(x) and D+f(x) = Djf(x) 

(ii) D_f(x) = -*o f D
+f(x) -co and D+f (x) ̂ D~f (x) 

(iii) D~f(x) = co , D+f(x) = - co and Djf (x)^D
+f (x). 

The examples in part 5 of the present article show that 

this assertion gives the strongest relation connecting the Dini 

derivates of an arbitrary function which hold except on a first 

category set. Denote by Â , the set of all points x at which no­

ne from the relations (i),(ii),(iii) holds. We stated that A* 

is a first category set and the Denjoy-Young-Saks theorem 

yields that A^ is also a null set. Actually we shall prove a 

little more precise result (Theorem 1) which asserts that A« 

is €>-porous. Note that the system of all 6'-porous sets is 

smaller than the system of all null sets of the first category. 

For the definition of the #-porous set and further informati­

ons see part 2. Example 8 shows that this result concerning 

the magnitude of the sets of the form A^ cannot be strengthened* 
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Of course, for some "subsets" of A^ the sharper results hold. 

fie shall prove (Theorem 2) that for an arbitrary f the s et of 

all x for which one from the numbers 

max (|D+f(x)i, |D^f(x)|), max (|D~f(x)|, |Df(x)|) 

is finite and the other is infinite is 6*-strongly porous. 

We prove our theorems by the Jarnik-Blumberg method. In 

other words, we obtain our theorems on derivates of a function 

f as easy consequences of theorems concerning the boundary be­

haviour of functions of two variables (the boundary behaviour 

of the function g(x,y) = (f(x) - f(y)) (x - y ) " 1 in the half-

plane x > y is investigated). This elegant method was first used 

by Jarnik C7J,f8J and Blumberg C2J. For further informations 

concerning this method see e.g. C43,C63,C93« In the present ar­

ticle we use theorems on the angle cluster sets. Theorem 1 is 

a consequence of the DolSenko's theorem C5J and Theorem 2 is 

proved by a new result (Proposition 1) on the boundary behavi­

our of functions of two variables. 

2. Preliminaries. We denote by R the set of all real num­

bers and put U s RIH- oo %eol . The symbol £i> stands for the 

outer Lebesgue measure in R. If Mc R then M' is the set of all 

points of accumulation of M. The open circle of thfe centre 

2 

xeR and the radius r is denoted by B(x,r). For M c R we put 

-M * ix; -x€.M}. For x e R and M c R we mean by >̂ (x,M) the dis­

tance from the point x to the set M. 

Let McR, xeR, r^O. Denote by p(M,x,r) the maximum of 

the lengths of connected sets I such that I c (x-r,x+r) - M. 

Obviously 0^p(M,x,r) ̂ 2r and if xeM, then 04&p(M,x,r)^ r. 
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A set McR is said to be porous at a point xeR i f 

lim sup p(M,x,r) r > 0. 

A set M c R is said to be strongly porous at a point x e R 

if lim sup p(M,x,r) r"1 = 1. 
fc -> 0+ 

A set M c R is termed a porous set iresp. a strongly porous 

set) if M is porou9 (resp. strongly porous) at any point xs M. 

A subset of R is termed a 6^-porous set (resp. a e'-strong­

ly porous set) if it is the union of a sequence of porous sets 

(resp. strongly porous sets). The notion of a G-porous set was 

defined by E.P. DolBenko £53. Each ^-porous set is obviously a 

first category set and by the density theorem it is also a null 

set. On the contrary, there exist (perfect) null sets of the 

first category which are not ^-porous. This assertion was sta­

ted in 152 and proved in L14J. The notion of a 6*-strongly po­

rous set is identical with the notion of a ^ -(x,1/2)-porous set 

from L14J. There exist (perfect) porous sets which are not # -

strongly porous £141. Note that exceptional sets which are first 

category measure zero sete are frequently also d-porous sets 

(see e.g. £133,11]). 

3. The boundary behavipur of functions of two variables. 

In the following we denote the open half plane -{(x,y); y > 0 ] by 

H and the open half plane 4(x,y); x>y? by H* . 

For 0 -*£ &< 3f and t e R we denote by L(t, & ) the ray in H 

which terminates at (t,0) and makes an angle 9* with the x-axis. 

By L* (t,9») we denote the ray in H* which terminates at (t,t) 

ard makes an angle ©» with the half line {(x,y); x=y, x-<tj. 

For 0 < oo < (3 < st and t 6 R we denote by A(t,oC , (3 ) the 

open angle in H determined by Ti(t,os ) and L(t,/3 ). By 
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A * (t,oC,£) we mean the open angle in H * determined by 

L* (tf «J ) and L* (tf £ ) . An angle of the form A(t, oc f p) 

(reap. A* (t,ac f fi )) is termed an angle at (t,0) (resp. (t,t)). 

If f is a real function defined in H (resp. H* ) and A is 

an angle at (t,0) (resp. (t,t)), then we denote by C(fftfA) the 

cluster set of f at (t,0) (resp. (t,t)) with respect to A. Thus 

C(f,tfA) is the set of all y e. R such that (t,0) (resp. (t,t)) 

is a point of accumulation of the set f" (V)/1A for any neigh­

bourhood V of y. 

The following theorem is a special case of a DoliSenko's 

theorem i5]. 

Theorem D. Let f be an arbitrary function defined on H. 

Let M be the set of all t€R for which there exist angles A,, A2 

at (t,0) such that C(f j t jA .^)^ C(f ,t,A2). Then M is & -porous. 

It is easy to see that Theorem D has the following conse­

quence. 

Theorem D* . Let f be an arbitrary function defined on H*. 

Let M be the set of all t e R for which there exist angles A^, AJ 

at (t,t) such that C(f ,t,A.j* ) -fr-C(f ,t,A.«f ). Then M is 6^-porous. 

Lemma 1. Let S c H be a set and 0 < <=c <: /3 «- *r . Denote by 

M the set of all x c R such that (x, 0) <£ (SA A(x,oC , ft ))' and 

(x,0) € (Sfl A(x, oc ,3*))' for each /3 <: / < # . Then M is 6T-

strongly porous. 
2 

Proof. We identify R with the set of all complex numbers 

by the standard way. Thus we have (x,0) = x and the symbol arg z 

is defined for zeH. For a positive integer n denote by Mn the 

set of all x e M for which &(x, oc , ft ) f) B(x,l/n) f) S * 0. Let 

xeM n. Then there exists a sequence x k — > x, x^eS such that 
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arg (xk-x)V(3 . Let x̂ f and x£ be the real numbers for 

which arg (xk-x£* ) ~ <*> a™* arg *xk~x.k ' s ^ • It is easy to 

see that for sufficiently large k the interval (x^ tx£ ) does 

not contain points from M ^ x^ —> x and 

lim (x£- x*)(x- x* r1 = 1. 

Consequently M is strongly porous at x. Iherefore each V^ is 
CO 

strongly porous and M = Ll. MR is tf -strongly porous. 

Proposition 1. Let f be an arbitrary function in H, z e R" 

and 0 < *z < I3 < ar . Denote by M the set of all x e R such that 

z £ C(f ,x,A(x,o$ ,/3 )) and z e C(f ,x,A(x,oc , #-)) for each /3<.^-< tr. 

Then M is <o -strongly porous. 

Proof. It is sufficient to choose a neighbourhood V of z 

for which (x,0) $ (f (V)fl A(x,<* ,t3 ))' and to apply Lemma 1 to 

S =- f"X(V). 

It is easy to see that Proposition 1 has the following con­

sequence. 

Proposition 1* . Let f be an arbitrary function in H* , 

z e R and 0 < oo < /3 < ur . Denote by M the set of all x & R such 

that z^C(f,x,A* (x,oc,/3)) and z£C(f,x,A* (x,ocf-y)) for each 

ft < T < ^ • Tnen M ifl ̂ -strongly porous. 

4. The main results. In the following f is an arbitrary 

real function defined on R and g(x,y) = (f(x) - f(y)Kx-y)"" . 

--«emma 2. Let D~f (t)< D*f (t)< oo • Then there exists an 

angle A at (t,t) such that D+f(t)f C(g,t,A). 

Proof. We shall show that it is possible to choose 

A -= A* (t,jf/4, jr/2) =- -f(x,y); x >t,y< t,t-y> x-t]. 
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Choose an e > 0 such that D~f(t) + 4e <: D+f (t). .Let (x,y)€ 

€ A. If (x,y) is sufficiently near to (t,t), we have 

(f(x) - f(t)) / (x-t)<D+f(t) +e and (f(t)-f(y)) / (t-y)< 

«<D+f(t) - 4e . 

For such (x,y) we have 

f(x)-f(y) (f(x)-f(t)) + (f(t)-f(y)) 
g(x,y) = = £ 

x-y (x-t) + (t-y) 
(D+f(t) +6) (x-t) + (D+f(t) - 4e)(t-y) . 

£ = D+f(t) + 

(x-t) + (t-y) 

g(x-t) - 4e (t-y) 
+ . 

(x-t) + (t-y) 

Using the inequality t-y> x-t we obtain 

g(x,y)^ D+f (t) + (e - 4 e )/2< D+f (t) - e . 

Therefore D+f (t)<£ C(g,t,A). 

Lemma 3. Let -<*> < D^f (t) -^D~f (t) < oo . Then there ex­

ists an angle A at (t,t) such that co £ C(g,t,A). 

Proof, tie shall show that it is po93ible to choo9e 

A = A* (t, ar/4 - arctg 1/2,^/4) = 4(x,y).; x< t,y< t,2(t-x)< 

< t-y?. 

Choose K^O such that max ()D-.f(t)l, j D~f (t))) < K. If (x,y)6A 

is sufficiently near to (t,t), then we have 

(f(x) - f(t)) / (x-t)-^-K and (f(t) - f(y)) / (t-y)^K. 

For such (x,y) we obtain 

f(x)-i(y) (f(x) - f(t)) + (f(t) - f(y)) 
g(x,y) = 

x - y (x - t) + (t - y) 

-K(x-t) + K(t-y) 3(t-y)/2 
é £ K = ЗK. 

(x - t) +(t -y) (t-y)/2 
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Therefore oo 4 C(g,t,A). 

Theorem 1. Let f be an arbitrary function on R. Then the­

re exists a £-porous set P such that for any xcR-P at least 

one from the following relations holds: 

(i) D+f(x) = D~f(x) and D^f(x) = Djf(x) 

(ii) D_f(x) = -co , D*f(x) =A0 and D^f (x)^ D"f (x) 

(iii) D~f(x) = oo , D+f(x) = - a> and D_f (x)4 D*f (x). 

Proof. If h is a function on R then we denote by A(h) 

the set of all xe R at which D"h(x)<D h(x) and the relation 

(ii) does not hold. Further put B(h) = i x; D~h(x)-*r V*h(x)<rco3p 

C(h) = {x; D+h(x) = oo and - oo^. J>Ji(x)£ D~h(x) < co ? and 

D(h) =4x; D+h(x)>D"h(x)|. Obviously A(h)c B(h)u C(h) u D(h). 

Let h be a function and xcB(h). Put g(x,y) = (h(x) - h(y)) / 

/ (x - y). Then by Lemma 2 there exists an angle A at (x,x) 

such that D h(x)£ C(g,x,A). Since D h(x) = lim sup g(z) 
z~+ (M, y,), ze L*(z,3 zr/4-) 

we have D+h(x)e C(g,x,A* (x,3T"/2, 4^/5)). Therefore by Theo­

rem D* we obtain that B(h) is a e'-porous set. Quite similar­

ly we obtain by Lemma 3 that C(h) is a e'-porous set. Since 

D(h) is countable (see [12J, p. 261) v/e have that A(h) is e-

porous. Now let P be the set of all points at which none from 

the relations (i),(ii),(iii) holds. Then 

P = A(f(x))UA(-f(x))U-A(f(-x)) U-A(-f(-x)) 

and therefore P is a €-porous set. 

Corollary. For an arbitrary function the set on which 

one unilateral derivative exists and is finite but the deriva­

tive does not exist is a 6-porous set. 

Lemma 4. Let -co -*-r D_f (t)^ D~f (t) -*: co and D*f(t) =co. 

Then oo $ C(g,t,A* (t,x/4-arctg 1/2,or/4)) and 
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oo 6 C(g, t ,A* ( t , 3 f / 4 - arctg 1 / 2 , - / ) ) for each or/A< tf<?r. 

Proof. In the proof of Lemma 3 we have proved that 

o° 4 C(g, t ,A* ( t , t f / 4 - arctg 1/2 , j r / 4 ) ) . Let rf/i «- r ^ x ' 

Choose &/4<<f< min ( ^ , 3 . J f / 4 ) . I t i s s u f f i c i e n t to prove 

that 

(2) lim sup g(z) = co . 
%^alt),ae Va7<r) 

I f we put p = tg ( c f - J t / 4 ) , then p > 0 and we eas i ly obtain 

that ( x , y ) e L* ( t , <f) i f and only i f y - < t < x and x- t = p ( t - y ) . 

Since D f ( t) = co there e x i s t s a sequence x ^ t such that 

lim g(x , t ) = oo . Define the sequence (y ) by the equation 

(3) xn - t = p ( t - y n ) . 

Obviously (xn,yn) e L * (t, cT) and (xn,yn)-—> (t,t). 

Choose an arbitrary K > 0 . Then for sufficiently large n we ha­

ve g(t,yn)> D_f(t) - 1 and g(xn,t)>K. Using (3) we obtain for 

these n: 

g 
f(xn) - f(yn) (f(xn) - f(t)) + (f(t) - f(yn)) 

^xn,yn' = = ™ 
xn " yn ^n " yn 

(xn - t)K + (t-yn)(D_f(t) - 1) _ pK + D.f(t) - 1 

(xn - t) + (t - yn) p + 1 

Thus we have proved (2) and the proof is complete. 

Theorem 2. Let f be an arbitrary function on R. Denote 

by M the set of all te R for which one from the numbers 

max (|D+f(t)|, |D+f(t)|)t max (!D"f(t)l, iDJT(t)f) 

is finite and the other is infinite. Then M is #-strongly po­

rous. 

Proof. Using the function f(-x), -f(x), -f(-x) as in the 
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proof of Theorem 1 we easily see that it ia sufficient to 

prove that the set B = -ft; - co ( D . f ( t ) i . ) " f ( t ) < : co , 

D f(t) = oo I is e*-strongly porous. But the last assertion 

is an immediate consequence of Lemma 4 and Proposition 1* . 

5* Examples. The function f from the following example 

is well known (see e.g. C103). I do not know the origin of 

this simple construction (it is possible that it is due to Z. 

Zahorski). 

Example 1. Let Mc R be a meaaurable set such that 

(U,(Mni)>0, (<,(I - M>> 0 for each compact interval I and 

(U,(Mn(0,oo)) = (U(Mn;(- co ,0)) = oo . Put 

f(x) = (a,(MA<0,x» for x£0 and 

f(x) = - tu(Mn<x,0» for x<:0. 

Then f is an increasing homeomorphism of R onto itself. Put 

g(x,y) = (f(x) - f(y)) / (x - y). Using the Lebesgue density 

theorem we easily obtain that for any teR 

lim sup g(z) = 1 and lim inf g(z) = 0. 
*-*a,t),;*c H* z-»Ct,t),*e H* 

By.Theorem 1 from [41 we obtain that 

lim
ч
 su£ §(z) = D"f(t) = 1, lim sup g(z 

rCЪtЪzeLЎCtrf/ïï 

, lim inf , g(z) = D f(t) = 0 

lim sup g(z) = D+f(t) = 1, 
z-^Ct,t\z€L*Ctl$sf/*') 

lim inf g(z) = D.f(t) = 0 
%-*Ltlt),z*L*(tl3jr/*) + 

hold for each t from a residual set Gc R. Let the real numbers 

a4b be given. Define 
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f-^x) = (b-a) f (x) + ax. 

Then obviously D+f-L(t) = D""f]L(x) = b and D 4 f x ( t ) = D ^ i t ) = 

= a for t e G. 

Example 2. Put h = f^ . Then for each x from the r e s i ­

dual s e t H = f-.(G) we have^ 

D+h(x) = D"h(x) = co and D^h(x) = DJi(x) = 1 . 

Let a be an arbitrary real number. Put 

f2(x) = h(x) + (a-1) x. 

Then obviously D+f2(x) = D~f2(x) = 00 and Djf2(x) = D_f2(x) = 

= a for xeH. 

Example 3. Let a,b,G,f, be as in Example 1. Choose a 

countable dense set CcR and put 

f3(x) = f-^x) for xeR-C, 

f^(x) = f-̂ Cx) + 1 for xeC. 

Hien obviously D"*f.>(x) = 00 , D^fj(x) = - 00 , D+f^x) = a, 

D~f-*(x) = b for each x from the residual set G-C. 

Example 4. Let a,H,f2 be as in Example 2. Choose a coun­

table dense set CcR and put 

f4(x) = f2(x) for xeR-C, 

f.(x) = f2(x) + 1
 foT x e C 

Then obviously D^f^x) = co , D^f^x) = a, D~f^(x) = 00 , 

D_f,(x) = -00 for each x from the residual set H-C. 

Example 5. Choose in R three pairwise disjoint sets 

M, L, K such that M is residual and L, K are dense. Put 

fc(x) = 1 for xe L, 

f5(x) = 0 for xeM, 

f5(x) = -1 for xeK. 
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Then obviously D+f5(x) = D~f?(x) = oo and D^Cx) = Djf^(x) * 

= - co for each x from the residual set If. 

Example 6. Let Gc R be a residual measure zero set. Then 

there exists (see e.g. £3J, chap. 14, Th. 3.2) a continuous 

function fg such that fc(x) = oo on G. 

Example 7. Let G,fg be as in Example 6. Choose a count­

able dense set Cc R and put 

f7(x) = f6(x) for xcR-C, 

tj(x) = f6(x) + 1 for xcC. 

Then obviously f^(x) = oo , D~f (x) = oo , D„f(x) = - oo -

Considering the functions **•? (x), -f.j(x), f..(-x), -f^-x), 

i = 1,...,7, we obtain the following proposition. 

Proposition 2. Let D+, D+, D~, D_ be elements of R such 

that at .least one from the following relations holds: 

(i) D+ = D", D+ = D_ 

(ii) D_ = -oo , D+ = oo and D+^D" 

(iii) D" = oo , D+ = -oo and D_^D+. 

Then there exist a function f and a residual set G such that 

D+ = D+f(x), D~ = D~f(x), D^ = D+f(x), D_ = D_f(x) for each 

xeG. 

3he following example shows that Theorem 1 is the sharp­

est result on the magnitude of the sets k*. 

Example 8. Let Ac R be a £-porous set. We shall construct 

a Lipschitz function f such that D"f(x)-£D f(x) for each x<sA 

and consequently AcA^. By the definition Of e'-porous sets the-
oO 

re exist porous sets An such that A = ^> A . It is easy to con­

struct closed sets Fn3 AR with the following properties: 
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(i) F is porous at each point of An 

(ii) If (a,b) is an interval contiguous to Fn then 

b~a<l and (b + a) / 2<£A. 

Put fn(x) = n"
2^(x,F n). The function fn has the following 

properties: 

(a) 0^fn(x)^n"*
2/2 

—2 

(b) f is a Lipschitz function with the constant n 

(c) D~f n(x)^ D+fn(x) for each x<sA 

(d) D""fn(x)-<D"
,"fn(x) for each X G A ^ . 

In fact, (a) and (b) are obvious, (c) follows from (ii) and 
CO 

(d) is an easy consequence of (i). Put f = IS. f . Then f is 

obviously a Lipschitz function. Choose an arbitrary xeA. Then 

there exists a positive integer k such that xe A.. Find an in­

dex m for which 
(4) 2 S n ^<D*fv(x) - D fv(x). 

rrrv oo 

Put s = S . fw and r = 2 f . By (c) we easily obtain 

(5) D+fk(x) - D~fk(x)-£D*s(x) - D~s(x). 

From (b) follows 

(6) D"r(x)^ 21 ^ n""̂  and D.r(x)£ - 2 „n . 

Since f = s + r, we obtain by (4),(5),(6) D~f (x)< D+f (x). 

Note. Using Theorems 12, 13 from El33 and the Jarnik-

Blumberg method we can obtain also some new results concerning 

the symmetry of approximate Dini derivates. These questions 

will be investigated in a subsequent article. 
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