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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

22,1 (1981) 

A NEW CONCEPT OF SEPARATION 
Reinhard NEHSE 

Abstract: Two different notions of separation of sets by 
convex functionals are introduced: separation by a graph (g-
separation) and separation by level sets (1-separation). For 
both separation properties necessary and sufficient conditions, 
respectively, are proved. Moreover, relations between g-sepa-
ration and 1-separation are given. 

Key words: Separation of sets, non-convex sets, noa-li-
near functional analysis. 

Classification: 46-00, 46A40 

§ 1. Introduction. Separation theorems are known to have 

fundamental importance for several fields in mathematics, for 

instance in functional analysis, convex analysis and mathemati­

cal optimization. Such theorems about separation of convex sets, 

where the separation is carried out by hyperplanes or affine 

manifolds, are used mainly for studies in convex optimization 

problems and certain non-convex problems, too; but the borders 

of those considerations are well-known (cf. [6]). Therefore, in 

order to get results about global properties of more general 

non-convex problems we need a new way of separation. 

In this paper we look into one direction of such develop­

ments that is the so-called separationly "convex functionals". 

In this topic some first results are given in [11, where the 
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finite dimensional case is considered, and in 12] (without 

proofs). The purpose of this paper is to give a first repre­

sentation of these assertions in a complete form. 

§ 2. Notions and first results. Throughout this paper H 

denotes the field of the real numbers ordered (and topologi-

zed) in the usual way, R+ is the set of non-negative reals. 

In the most of the assertions given below we use a (topologi­

cal) vector space E« with dim E.j?2 assuming that this space 

has a representation in the following manner; E. <^> "E x -A 9 

where A is a onedimensional subspace of E* which is (topolo-

gically) isomorphic to R. 

A subset K of E. is called a cone if 

JtK£K \fX e R+ 

holds. For a subset A of a (topological) vector space E. co A 

denotes the convex hull of Aj int A and r-int A denote the set 

of all interior points of A and the set of all interior points 

of A with respect to A, respectively, where A ia the affine 

hull of A (equipped with the topology which is induced by Bj)j 

the closed hull of A is denoted by cl A, 

With respect to separation of seta we need the following 

definition. 

Definition. Let A and B be non-empty subsets of a TOOtor 

space E. with dim B.Z 2 and E.-f̂ -V S ^ -A * 

(1) A and B are said to be (proper) separable by a graph (ab­

breviated: g-ssparable) if there is a convex functional f: 

— > R auch that 
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(2.1) I Ac í(x,Ak)éExЛ/f(x) ś A j , 
B£ í(x, Ak) é E xЛ/f (x) > A } 

(and f(x)=#A for at least one (x,Ak)feAUB in the case of 

proper separation). 

(2) A and B are said to be (proper) separable by a level set 
A 

(abbreviated: 1-separable) if there is a convex functional f: 

: E, —>• R such that 
A 

r A£ epi f, 
(2.2) i \ 

I B£hypo f 

(and (y,0)<£ graph f for at least one yeAUB in the case of 

proper separation), where epi f and hypo f denote the epigraph 

and the hypograph of f, respectively. 

Clearly, (2.1) is equivalent to 

, . f(x) 4 A V(x,ak)fe A, 
(2." % 
M') •[ 

f(x) § X V(x,Ak)£B.; 

(2.2) is equivalent to 

?<y)*0 \/yeA, 
(2.2 ) 

f ( y ) 2 0 VycB. 

Moreover, it is easy to see that the following assertion is 

true (by use of if(y):= f(x) -A, y = (x,Ak), ( x ^ k l e ^ ) . 

Lemma 1. If A and B are g-separable subsets of a vector 

space E. «-—>- E x A , then A and Bare 1-separable. 

In order to show that for certain sets their g-separabi-

lity follows from 1-separability we need the next lemma. 

Lemma 2. Let A and B be non-empty subsets of a topolo­

gical vector space E. , let K be a convex cone in E. with 

int K+0. 

(1) If A+K and B are 1-separable by f, then A+K and B-K are 
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A 

1-aeparable by the same f. 

(2) If A+K and B are proper 1-separable by f, then A+K and 

B-K are proper 1-separable by the same f. 

Proof. Since (2) follows from (1), we shall prove (1). 

By assumption we obtain int(A+K)4-0, int(B-K)#-0 and, there­

fore, 

(2.3) ^(A+K) * X(B-K) = Et. 

Using that fac t and in t K4=0, for any b-k2 with b e B , 

k 2 eK\ - iO$ there e x i s t y € B and a+kj with a e A, k^eK and 

A c (0,1) such that 

(2.4) y = a(a+kt) + (l-A) (b-k2). 
A 

By assumption we have for a convenient convex functional f 
(2.5) f(a+kt)^0-^j?(b) Va^A, VbeB, V ^ e K . 

Applying (2.4) and convexity of f, then 

0^£(y)^ Af(a+kt)+(t-A)f(b-k2)^(t-a)f(b-k2) 

follows. Hence 

0^f(b-k2) VbeB, Vk2feK. 

Together with (2.5) this proves the assertion. 

Lemma 3. Let A and B be non-empty subsets of a topolo­

gical vector space E. <^> Ex A for a convenient onedimensi-

onal subspace A £ E-, let K be a convex cone in E, with 

int K4*0. If A+K and B are 1-separable by a continuous convex 

functional f such that f(a )<0 for at least one aQe A, then 

A and B are proper g-separable. 

Proof. We choose keint K and put A:= {%\/Xe R$ such 

that B. «^> E .xA . Now we give the proof in three steps. 

(1) For every xeE there is X e R such that f (x, Xk) =- 0: 

Let xeE any fixed. By assumption for that x there are X. e R 
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with 

Cx, Jlk) € A+int K V^t > & -

and 71 g €. R with 

Cx, ATE) 6 B-int K V a -̂  A,2# 

Therefore, we get by Lemma 2 

C2.6) fCx, ̂ l)^0^#Cxf(ak) V & ̂  A,,, V ^ -< ̂ ?. 

Using Bolzano's theorem C1) is proved. 
A — 

(2) For every xcl there is exactly one Xe R with fCS"fAk)= 

= 0: 

Assuming there are xcE,E t 5 6 R with X ^ X such that 

fCxf 5k) a fCIf!k) * 0. 
A 

Since f is convex, 

C2.7) f(!tA.S)60 V A « C A , l 3 , 

C2.8) f Cx, &k)5 0 y^ # CI, I 3 

follow. As in the first part we may find X* £ A such that 

Cx, ̂ lk)fe A+imt K for all % ^ X^m Hierefore, tiy C2.6) and 

C2.8) 

•t?cx,^k) =0 vx > x% 

and, further, by convexity of f, 

£Cx, Al)»0 VA £ X • 

Now we choose X > X such that 
Cx, X^)e A + int KSint CA + K), a0*Cx, X^k). 

A A — 

Since fCao)<0 and fCx, XQk) = Of on the line going through mQ 

and (x"t it0k) there are points a €int (A + K) such that f CI)>»Of 

but that is a contradiction to (2.5) and (2) is shown. There­

fore, 

M^(0):« 4Cx, j U E ) € l x A / f C x f Xk) = 0 } 
def ines a func t iona l f :B—> R by 
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(2.9) f (x ) - J t « f (x f »ak) - 0 , X 6 S , X € H| 

and we have 

f (x ) .6 A V ( x f A k H A , 

f (x) £ A V ( x f A k ) € B , 

f ( x 0 ) -< ^ 0 f o r a 0 * (xQf (aQk) . 

The proof of Lemma 3 i s f i n i s h e d , i f (3) i s shown. 

(3) f defined by (2.9) i s convex on 1 : 

Let i ^ x ^ c l , (it ( 0 f t ) and X%, i i gCHsuch t h a t 

f ( x | f a fk) » ?(x2 , A^c) = 0, 

t ha t means X. = f ( x . ) f X2 = f ( x 2 ) . Then, by convexity of ff 

f ( ^ x f + ( t - ^ ) x 2 > C ^ A ^ d - ^ ) A j p k ) ^ ^ f ( x 1 f l f k ) + 

+ (l-^a).?(x2 f Agk) a 0 . 

Hence 

f ( ^ x | + (1 - { c4 , )x 2 )^ | a f (x l )4 . ( l - { a ) f (x 2 ) . 

§ 3. Results on g-separability. In this section we give 

some conditions which are necessary and sufficient, respecti­

vely, for g-separability of two sets. 

Theorem 3•t. Let A and B be non-empty subsets of a topo­

logical vector space IL. If A and B are g-separable, then 

int AnB a 0 holds. 

Proof. If int A = 0f then that condition is satisfied. 

Now let int A4f0» If we assume that y = (x,Ak)eint AflBf whe­

re ( x , U ) e l x A and S ^ ^ I K A , then (2.t) implies 

int AS int { Cx,lk)/f (x) & XI -

that means on the one hand f(x)-< X • CM the other hand (2.1) 

implies fix) Z X ; that is a contradiction and the assertioa 
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is proved. 

Corollary. Let A and B be non-empty subsets of a topo­

logical vector space E-, and let int A 4*0. If A and B are g-

separab-le by a convex functional f, then A and B are proper 

g-separable by f and, moreover, f is continuous. 

The proof is easy by a result of Holmes (cf. E 31, p. B4) 

and by the proof of Theorem 3*1. 

Theorem 3*2. Let E^ <—-> l?<A be a topological vector 

space, where A is spanned by k, let A and B be non-empty sub­

sets of Ep and let v = (0,3C k), A e int R̂ , any fixed. If A 

and B are g-separable, then the following relation holds 

r-int (A + R^ v)^B = 0. 

Proof. If r-int (A + R^'v)4-0, then there is a subspace 

E£E such that with respect to E x A the relation 

' r-intExA U + R+ ? ) = i n tExA ( A + R+ ? ) 

is true. Then we have for the restriction fcf of the separating 

functional f :E—-> R on E in fact 

A£A:M(x,Jlk)£E^A /f^(x) _4 A} 

Therefore A + R. v£ % and also 
+ 

(3.1) int (A + R^ v)sint A. 

If we assume y = (x,&k)£int (A + R^ V ) A B , then we obtain 

f(x) = f£(x)<: % 

by (3.1). Using (2.1) we get a contradiction. 

Theorem 3.3. Let A and B be non-empty subsets of a topo­

logical vector space E*, let K be a convex cone in E- with 

int K4=0 such that A+K is convex. If 

(3.2) int (A + K ) A B = 0, 
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then A and B are proper g-separable by a continuous functio­

nal f. 

Proof. For fixed *k£ int K we use A = {Xk/X e Rj and 

E x A « ^ I | as a representation of S.. Clearly, by assumption, 

for every x € 1 there is X <£ R such that 

(3.3) (xf!k)€A+ K. 

Now we show 

(3.4) f ( x ) : = inf-CA e W(xfXk)e A+K|>- co % x € E , 

by c o n t r a d i c t i o n . Assuming the re i s x € l such t ha t 

(3.5) C x o i a I ) e A + K SX < X 

(it is possible to make this assumption by convexity of A + K). 

Prom this 

(3.6) (x0, Xk) + K£ (A + K) + K = A + K 

follows by convexity of K. For any f ixed point y = (x, A k) € 

€ I x A we obtain 

y = (xofO)+COff ¥)+ | Ce Cx-xo3,I)+(0f ~ | 1 ) , 

where 6 > 0 i s chosen in such a way t h a t 

A - i < % and C 6 Cx-xQ3 ,¥) e K. 

Then, using (3.5) and C3#6)f we ge t for XtsX«~ ^ 

C x f l k ) £ A + Kf 

tha t means A + K = M* . This i s a con t r ad i c t i on to C3«2) accor ­

ding to B 4 0 . Since A + K i s convex, f defined by C3.4) i s con­

venient for g - s e p a r a b i l i t y of A and B. 

Moreover# s ince t h i s g - sepa ra t ion i s given in f a c t for A + K 

and B# the properness and con t inu i ty follows from the Corol la­

r y . 
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, § 4. Results on 1-separability. With respect to separa­

tion of sets by level sets of a convex functional we are able 

to prove two results which are closely connected with similar 

conditions in theorems on separation by hyperplanes. 

Theorem 4.1. Let A and B be non-empty subsets of a to­

pological vector space 1., let A be convex and int A4*0. If 

int An B = 0, then A and B are proper 1-separable by a conti-
A 

nuous functional f, where 

f (a)«: 0 Vaeint A. 

Proof. Let a e int A any fixed element. Then 
0€ int (A - aQ) and (B - aQ)n int (A - aQ) = 0. 

Using the Minkowski-functional 

pg(x) ;= im£iX> 0 /x e % (A - a Q ) J , x £ E t f 

of A;= A - a we ge t 

l ( x ) ; = p X ( x - aQ) - 1 , X € l 1 f 

as a convenient functional for proper 1-separability of A and 

B (cf. C51f p. 183 ff.). 

Theorem 4.2. ' Let A and B be non-empty subsets of a 

locally convex Hausdorff-vector space 1L • If 

cl (co 4)#cl (co B), 

then A and B are proper 1-separable by a continuous functional. 

Proof. Let y e cl (co A) any fixed element. We consider 

A:= cl (co A) - y , S:* cl (co B) - y . 

1) The idea of this theorem was given by R. Hildenbrandt in 

CtJ. 
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Then OcA and we may assume - without loss of generality -

that B-y is not contained in A. Therefore, there is b e B such 

that b -y £ A. Then, using a well-known separation theorem (cf. 

£41, p. 109), there is u e E^ such that 

(4.1) ( <«.W -1>0' 
I <u,a-y0> - 1^0 V a e c l (co A). 
A 

If we define f by 

f(y):= max 40, <u,y-yQ> - 1}, y e ^ , 

A 

then convexity and continuity of f are clear by that defini­

tion. 

Furthermore, according to (4.1), we obtain 

f(b)£0 V b € B , 
A 

f (b )> 0 for at l e a s t one b Q e B , 

f ( a ) = 0 V a e A 
A 

that means f i s convenient. 
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