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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
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ON MULTIVALUED MAPPINGS IN PARANORMED SPACES
Olga HADZ|

Abstract: In Theorem 1 a sufficient condition for multi-

valued mapping F:K—> X (KEE and E is a paranormed space) is
given such that F has the finite approximatiom property [3]
and in Theorem 2 that F has the glmost continuous selectiomn
property, where K satisfies Zima's condition [6]. Also some
corollaries in the fixed point theory are given.

Key words: Multivalued mappings, paranormed space, fixed
point.
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Iet E be a linear space over the real or complex number
field. The function Il I*:E—>[0,m ) will be called a para-
norm iff:

1. IxI*= 0e=x=0

2. J-xI*= lxW*, for every xcE

3. Jx+yi*z Ix*+)yl*, for every x,yc E

4. I1f Dxp=x I* —> 0, A —> A then || A x - A x I*— 0

Then we say that (E, | i*¥) is a paranormed space. E is
also a topological vector space in which the fundamental sys-
tem of neighbourhoods of zero in E is given by the family
{Ugd. .o where U, = {x|x¢eB, IxI*<¢e}.

In [6] the following theorem is proved:
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Let K be a bounded, closed and convex subset of E and

T:K —> K be a completely continuous operator on K. If there

exists a number C>0 such that:
(1) faxi*< CA Nl xI|*, for every 022 £ 1 and xe K-K

then there exists an element pe K such that Tp=p.

Zima has given in [ 6] an example of the space E and of

the set K such that the condition (1) is satisfied.

Definition. Let (E, I |*) be a paranormed space and X

be a non-empty subset of E. If there exiéte C>0 such that!

faxi*<«ca lixi*, for every 04£A <21 and xeK-K
we say that K satisfies the Zima conditiom.

In the next text we shall use the following notatiom. By
ZK (Kc E) we shall denote the family of all non-empty subsets
of the set K and by R(K) the family of all non-empty convex
and closed subsets of the set K.

Now, we shall prove a theorem on the finite approximati-
on property.

Theorem 1. Let (E, || §*) be a paranormed space, K be a

non-empty, closed and convex subset of E am F:K —> R (K) be
mpty and be

8 closed mapping such that F(K) is_relatively compact and sa-

tisfies the Zima condition. Then for every ¢ > O there exists
a finite dimensional, closed mapping F, :K —> R(K) such that

F¢ (K) is relatively compact and:
F, (X)SF(x) + V., Vxe K

where: V. = {x|lxeE, Ixl*zec}-
Proof: Since the set F(K) is relatively compact, there

exists a finite set «fxl,xz,...,xnic F(K) such that:

(2) F(K) < €J4{xi+ Ugl (g =fxlxen, IxI¥<gh

.
v
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Let:

F (x) =[F(x) + co (U% N (F(K)-F(K)))]l n co M
for every xeK, where M = £x1,X5ye-¢ X}

For every xcK we have that F. (x)+ . Indeed, if ueF(x)
it follows that there exists x;¢ M and zew% N (F(K)-F(K))

so that u=-z=x3 from which we conclude that:
u-z e [ F(x)+co(U & N (F(K)-F(K)))J N co M

(this follows from (2)).

Further € F_ (x) = F.(x), for every xcX since ¢o F(x)=
=F(x) for every x<K, and F¢ (K)= € M which implies that the
mapping Fs is finite dimensional. Let us prove that the map-
3

oCedl
net such that acl'én‘lﬂ X=X, J €Fg (x, ), for every < € A

ping Fe is closed. Suppose that {x < K is a convergent

o

and ccl.émﬂ Y. = ¥. We shall prove that ye F. (x) which means
that the mapping F is closed. Since y € F. (x. ), for every

« € A it follows that there exists z _eF(x, ), for every
<efl endu e (U 5 N (F(K)-F(K)), for every oc € A such
that:

z +

e = 2 uccecoM

Since the set F(K) is compact there exists a convergent subnet

{zuca,? of the net {z_ ¢ and let Up 3, = 2. Since y —> ¥

it follows that “acd- =Yy " > u=y-z. Further, the mapp-

ing F is closed and since lgrm X s

Zo, € F(xocd_) it follows that z € F(x). From the relation:

= x, lid_m z"‘a‘ = z and

Lo co (u % N (F(K)-F(K))), for every d’
it follows that ue o (U%H(F(K)—F(K))) and so:
y=u+z € (F(x)+Co (U%ﬂ (F(K)=-F(K))))NTo M = F¢ (x).

Now, we shall prove that for every xe K we have:
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‘ ¢ (x)EF(x) + V,
Since F. (x)EF(x) + T (Ug N (F{K)-F(K)) it remains to prove
c

that:
(3) & (UL N (FK)-FK))) eV,

Suppose that ue co (U{r N (G(X)-F(K))). Then u = 2,1 t;25, whe-
re Zt 451, t;20 (i=1,2,...,n) and zleu{, N (F(K)-F(K)).

So we have:

m
lul* = nig tizill c, Z ity -E =¢

and so uéV, . Since V; is closed it follows that the rela-
tiom (3) is proved. It is obvious that F. (K) is relatively
compact since F. (K)c To {xl,xz,...,xn§ , and so the proof is
complete.

From Theorem 1 it is easy to obtainm the following Corol-
lary.

Corollary 1. Let (E,l II*) be a paranormed space, K be a

non-empty, closed and convex subset of E and F:K —> R(K) be a
closed mapping such thé_g_ F(K) is relstively compact and satis-

fies the Zima condition. Then there exists xe€ K such that

x e F(x).

Proof: From Theorem 1 it follows that there exists, for
every € > O,a compact finite dimensional mapping Fg:K —> R(K)
such that:

Fe (x)eF(x) + Vo , VxeK
and that F. (M)c M where M is €O {xl,xz,...,xn} (see Theorem
1). If we apply Kakutani’s fixed point theorem we conclude that
for every ¢ > O there exists x, such that x, € Fg; (x. ) and
so:

(4) x, € F(xg) + Vg
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Since the set F_ (K) is compact there exists a sequence (e,~> 0)

%F‘ngneN such that xen-—> xeK and since F is closed it is
easy to see that x e F(x).

Remark: From Theorem 1 it follows that every closed and
convex subset of E which satisfies the Zima condition is © -
admissible [4] and so we can apply a result of S. Hahn in or-

der to obtain a fixed point theorem for multivalued mappimg

£41.

Corollary 2. Let (E, || [I*) be a paranormed space, W be

a closed@ neighbourhood of be E, K be a closed, convex subset

of E and satisfies the Zima condition. Let FiWNK —> ®R(K) be

a compact mapping such that:

x € 9WNK, p>1=> fx+(1 - 3)b&F(x)

Then there exists a point x € WNK such that x e F(xo).

Now, we shall prove a theorem on almost continuous selec-
tion property for multivalued mapping in paranormed space.
First, we shall give a definition [2], introducing the

notion of uniformly u-continuous mapping.

Definition 2. Let X be a topological vector space, K be

a non-empty subset of X, F:K—> * and Q. be the fundamental

system of symmetric neighbourhoods of zero in X. The mappimg F
is uniformly u-continuous iff for every Ve U there exists
Ue U such that the following implication holds:
x11X; € K,X7-X, € U and yy € F(x))=> there exists y,eF(x,),
Y1-Ya € v
Definition 3 ([1]). Let X be a topological vector space,
U be the fundamental system of neighbourhoods of zero in X,
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K be a non-empty subset of X and F:K —> & (K). The mapping F

has the almost continuous selection property iff for every

Ve U there exists a continuous mapping hy:K —> K such that:
hy(x)e F(x) + V, for every x €K
Theorem 2. let (E, | Ii¥) be a paranormed space, K be a
compact and convex subset of E which satisfies the Zima condi-

tion. Then every uniformly u-continuous mapping F:K —> R (K)

has the almost continuous selection property.

Proof: ILet € > O. Since the mapping F is uniformly u-
continuous on K there exists J > O such that the following
implication holds:

Xy,X €K, x3-X,€ Uy , yy € F(x)) => there exists y, eF(x,),
¥y1-¥€ Ve

From the compactness of the set K it follows that ihere exists

{xl,xz,...,xn}s; K such that:

m/

K E.U4{xi + Upt

4=
and let -igi'i 4=1 be the partition of the unity subordinated to
the open cover ix; + Ui '-::1. Then g; (x)=0 if x¢x; + Uy (i =
"
=1,2,...,n), g;(x)=0 (xek, i=1,2,...,n) and %§4gi(x)=1.
let us define the mapping ha :K —> K in the following way:
m
he (x) = 4-'?4 8;(x)y;, for every xeK

where yieF(xij (i=1,2,.,..,n). Let us prove that:
(5) he (x)e F(x) + V, , for every xecK

i.e. that for every xe K there exists z(x) e F(x) such that
he (x)-2(x) e Vg . Let xeK and g;(x)>0. Then x-x;¢ U and so
there exists uj e F(x) such that ¥yi~u;€ V¢ , since F is uniform-

ly u-continuous and y; € F(x;). Let:
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z(x) =4'.:9,1-_(§)>0 si(x)ui

Then z(x)e F(x) since F(x) ¢ R(K). Further:

bhe (x)-z(x)il* = |, %bo gi(x)(yi-ui)ll* e

19

% sigaho0 CBIXMF=¢

and so the proof of (5) is complete.

In the next Corollary we shall use the notion of ¢ -fixed

point of the multivalued mapping G in the following sense.

Definition 4. Let (E, Il I¥) be a paranormed space, K be
& non-empty subset of E and F:K—> 2%, en xeK is an ¢-fixed
point of the mapping F iff:
x eF(x_ ) + 7V,

Corollery 3. Let (E, Il I¥) be a paranormed space, K be a

compact, convex subset which satisfies the Zima condition. Then

for every € > O amd every uniformly u-continuous multivalued

mapping F:K —> ®(K) there exists e-fixed point of the mapping
F.

Proof: Since from Theorem 2 it follows that there exists
hg :K —K, with (4), such that h, is continuous and h; :K —
—> €O {xl,xz,...,lgn} from Brouwer fixed point theorem it fol=~

lows that there exists x_ € K such that x;, = h_ (x.) and so:

3
x,=h, (x )eF(xeg) + Vg

which means that x. is an e-fixed point of the mapping F.
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