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INDEPENDENT BASIS FOR THE IDENTITIES OF ENTROPIC
GROUPOIDS
G. POLLAK. A. SZENDREI

Abstract: The variety E of entropic groupoids, which
is generated by any of the algebras s = {R;o) where R
’

is the set of real numbers, r,s€R are algebraically inde-
pendent and x°y = rx+sy, is known to be not finitely based

[1]. Here we give an independent basis for the identities
of E .

Key words and phrases: variety, identity, equational
theory, basis (of identities), independent basis, entropic
groupoid.

Classification: Primary O08B0O5
Secondary 20LOS

In {11 JeZek and Kepka describe the equational theory
of entropic groupoids. In particular it follows that the al-
gebra Ol= (A;°) defined on the free commutative ring A
with free generators a3y by Xoy = a Xx+a Yy, generates
the variety E of entropic groupoids. They also show that
the equational theory of E (and hence of 1) is not fi-
nitely based. Here we construct an independent basis for the
equational theory of E . These investigations concern also

a question of Fajtlowicz and Mycielskil2] asking whether the
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groupoids gr,s = {(R;°) defined on the set R of real
numbers by xoy = rx+sy have finite bases for their ident-
jities, Clearly, if r and s are algebraically independent
then Qr,s generates the variety E, hence its equational
theory is not finitely based.

We use the terminology and notations of [3]. Since all
algebras occurring are groupoids, we omit all references to

o(8)

the type. In particular, for any cardinal ﬂ, stands

for the set of polynomial symbols of type (2) with vari-
ables {xz: 3<p}. Clearly, }Z(ﬂ) = (P(ﬁ);v> is the free

groupoid on ﬁ generators, For p,pWEP(P), P = ﬁ means

that p and p coincide.

Let R, A and M denote the free unitary ring, free
unitary commutative ring and free monoid with free gener-
ators 2,92, respectively. (We consider M to be a subset
of R.) The length of a word WEM is denoted by |w|. De-
fine the entropic groupoids &R = (R;e) and = {(A;°) by
Xey = a x+a,y. Let o: R—A be the natural ring homomorph-
ism with a0 = ay (i< 2). Clearly, o« is also a groupoid
homomorphism R —{{. For any i<w let cpi:ﬂ(w)—'R be
the natural homomorphism with x;¢; =1 and X593 = 0 if
j#i. Further, set ¢ = 2::¢i « It is not hard to show that

icw
for any p,q eP(w),

(%) p = q iff for every i<w, py; = a9; ;
(363) p and q have the same parenthesis structure, i.e.
p(xo....,xo) = a(xgy.eex)), 1ff pp = g9 .
To see this, and also to make it easier to follow the

rest of the paper, it is worth noting what the homomorphisms
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¢4 mean pictorially. There is a natural way to represent a
W
polynomial symbol in P( ) by a binary tree as follows: to

xy (i<w) we assign the one-point tree

lzi
and to any polynomial symbol poq we assign the tree
arising from //\\ by attaching to its left and right branches
the trees corresponding to p and gq, respectively. Now,
consider the tree of a polynomial symbol pGDP(w), and label
all branches going to the left by a, and all branches go-
ing to the right by a). In this manner, the paths of the
tree of p can be labelled by words from M and every ver-
tex is uniquely characterized by the word corresponding %o
the path going downwards to it. This word will be called the
weight of the vertex. Since the subterms of p are in a
natural one-to-one correspondence with the vertices of the
tree of p, we can also speak about the weight of a subterm
of p. In particular, the variables are also subterms of p.
Now it is easy to see that for any i<w, PY; is nothing
else than the sum of the weights of all occurrences of the

variable Xy

Example. For pﬁ(xon(xoo(xl-xl)))°((x°»(x2ox2))°(xBexS))

we have

= a‘ + +
P4, o * 85313, + 3,2

2 3
P¢; = ajaja  + ajaj ,
a,a1a, + a;
+

i

2 2
(¢]

a ai ’

Py, = a o
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Clearly, for any pcP(“’) a variable Xx; occurs in
P iff pg; # 0. Put v(p) = {i<w: p(pi,‘o}. For any mapping
v: »(p) —>{i: icw} we denote by p' the polynomial symbol
arising from p by substituyting xi'y for Xy for all i€

€ v(p) .

Proposition 1. For any p,qep(“’), the identity p=q
is in I4(E) if and only if pe,x=qg;x holds for all i<w.

Proof: The statement follows from the fact that for
(w) .
any peP™’, p, = %(Wiu)xi . The proof is straight-
forward by induction.
Example. Figure 2 shows the tree of a polynomial sym-

bol gq for which p=q belongs to Id(E) (p is the poly-

nomial symbol in Figure 1).

X X3 X X
Figure 2

Let F denote the set of all pe p(w) in which every
x; (i<w) occurs at most once; i.e. DP€P jiff peP(w)
and pg, €M for every i€ »(p). Denote by P the subset
of F consisting of all PE€F such thay ~(p) = §i: i<n}

for some n<w, and for every i.j€”(P), i>j iff either
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lp¢i|<lp¢3| or Ipqil-|p¢jl and qu precedes PPy in

the lexicographic order. Pictorially, this means that a poly-
nomial symbol belongs to P iff in its tree the variables
Xg1Xy9Xpyees are attached to the branches sequentially by
levels, starting from the bottom, and within one level from

the left to the right (see Figure 3).

X Xl x2 X}

Figure 3

Obviously, for every p€P there is a (unique) one-to-
one mapping 7t w(p) —{i: i<w} such that p €P. Making
use of (%) and (%%) it is not hard to see that every poly-

nomial symbol pe:f is uniquely determined by p¢ .

Proposition 2. If p=q (p,qi:PGu)) is in I4(E) +then
there exist p‘e'f" and q'eP such that p'-q' is also in

1a(E) and p'=q + p=q .

Example. Let p and q be the polynomial symbols in
Figures 1 and 2, respectively. Then p=q 1is in Id(E) ana
the polynomial symbol p' in Figure 3 is the unique one in
P such that pb =p¢ . Figure 4 shows two possible choices

for d satisfying the requirements of Proposition 2.
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Figure 4

Proof: Let p € P Dbe the unique polynomial symbol such
that pkp:p@ and choose q € F so that for any i<(p),
if p‘q;i is an addend in pgy then gq'¢; be an addend in
aQ; such that q'@ia=p‘qia (Proposition 1 ensures the ex-
istence of such a q'). Then, clearly, p'=ql is in Id(E)
and p=q arises from p'=q' by substituting new (not necess-

arily distinct) variables.

Let us introduce the following notations: if w€EM,

say W = a. ...a. , and k§n, put
i i
) n-1

Wi =3y, (w)k = a; ...a

(w) = a, ...a,
X i, k-1" K ’

1y h-1
n
T—TJ * T—TJ
whe = (w)k-lal-ik_l and W = w + 2;; wie .

It ié easy to see that for the polynomial symbols s[w]e:P(l)
(weM) defined by s[1] = x, and for n2l by s[w] =

= s[l(w)]vxo or xo°s[1(W)] according to whether i =0 or

1, we have s[wlp = we,

Let u,veM, Ju]l =mn, |v] = m. Clearly, there exists

*

a polynomial symbol q such that gq¢ = aju- + alvx (e.g.,



s[u]es[v] 1is one). Denote by t[aou,alv] the unique PE?P

with pP = aoux + alvx. Observe that these polynomial sym=-

bols have exactly 2 subterms of the form XjoXy (i,j<w),

2
Example. Figure 5 shows the tree of t[aoalaoal,aia;].

X, X Xy X3
Figure 5

Clearly, if u =a, and v

n-1 i = ay then

m=1
tlaju,a,vlg; = au and t[aou,alv]qj+2 = av.

Denote by U(aou,alv) the identity t[aou,alv] =

= t(i’j’Z)[aou,alv] where (i, j+2) is a transposition. Put

Zo = {olu,v): u,veM, ug=a , Vo= a;, ux =vx } .

Obviously, for O(u,v) € zo we have |ul=|v|. This number

will be called the depth of O(u,v).

Lemma 1. If p€¥F and k,Le»(p) such that PP, =

(x,2)

= Py then we have o(u,v) - p=p for some of(u,v)e

<
€Z  of depth £ |pgyl.

Proof: Let |p@yl = Ip®| =n, n_1(pq»k) =a; and
n_1(pq>!) = aj. We proceed by induction on the rank of p.

Our claim being trivial if p is a variable, we can supnose
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that it holds for all polynomial symbols of rank smaller
than that of p. We can also assume that k#{, whence

PPy # Pqy . If (pq)k)o = (pqwe)o then Xy and xe occur in
the same subterm of p, so the lemma follows from the in-
duction hypothesis. Suppose now that they occur in differ-
ent subterms, say (pcpk)0 =a  and (pq)t)o = a;. Then it
is not hard to show that

P = tlpesp@ 1(pyspysere) with pySx, and py,,3x,

whence the lemma follows.

Proposition 3. X  is a basis of Id(E).

Proof: By Proposition 2 it suffices to show that for
any identity p=q in Id(E) with pe3B, qeP, we have
2, P=q. We proceed by induction. In view of (%) we shall
be done if we prove the following statement: if po, # Py
and for all j>k we have PPy = a9y then there exists a
o' € F such that Z g=q¢ and P9; = q'q>i for all i 2 k.

Let d = Ipq;kl. Since p€?P, by assumption we have
p(pj = qcp‘,l whenever lptpjl < d. Therefore there exists a

polynomial sympbol rcp@) such that

P ®r(p ,PyseeesProXy,1seee)y

q = I‘(qo,ql....,qm,xkﬂ,...)
and |re,l =...= |rq, | = d. Since pg, # q@y, We may suppose
without loss of generality that p,=x, and q,Zx,. On the

other hand, p=q belongs to I4(E), so that by Proposition 1

we have PPy = QY™ i,e. QX = TP o Then, by Lemma 1,
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(0'1), whence for

20» =T
! o
qQ = r(qquotq2v~-°1qmvxk*1o---)

we have I rgq =q . Clearly, q also satisfies the other

requirement.

Lemma 2. Let u€M, |ul=n, andlet o(u,v) € I, ve
such that for some O0<k<n we have (“’k¢1 = (v)k+1 . Then

olu,v) can be derived from identities of depths < n in Zo'

Proof: Let u = a

s o8 VvV =a, ...a and put
io in-l. jo jn-l

1=1n_1, jsjn_l. Since ua = vx , necessarily k<n-l, It

is not hard to check that

t[u,v]

t[(“)k+1'(v)k+1](po"’"p5’x2n-2k+2’"”x2n-1);

t[{u:k+1’(V)k+1)(po""'pi’x2n-2k+2"'"x2n-1)

and the variables Xy X occur in pik, Pi o9 respect-

Jt
ively. Let q be the polynomial symbol arising from t[u,v]

j+2

by interchanging py_; ~and Py ,p. Clearly,
C( v k*l’(v)lu-l) - t[“n"]'q, t(i'3+2)[u,v].q(ipj+2) .

Therefore it remains to show that the identity q-q(i’j+2)

can be derived from an identity of depth <n in Zo‘ How=-

ever, this follows from Lemma 1 since by construction
ap; = tlu,vle; and  agy,, = (“)k+1(P3k+z?j+2)’

implying by k>0 that (qqi)l = (q?j+2)l' The proof is

complete.,

Let
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Z, = fo(u,v) € 2 : u=uw, v=vw, (u)kg#(V)k? for O<k<
<lu'l, and if (ai(u)k)d=(al_i(v)k)a for

some i<2, k<|u'l then uk#vk} .
Proposition 4. Zl is a basis of Id(E).

Proof: In virtue of Proposition 3 it suffices to prove
that Zl = 3,. Provisionally, denote by Y the set of
all identities in Zb that can be derived from Zi. Obvi-
ously, Zl S W’S 25. Suppose that, contrary to our claim,
"t #5, and choose a o(u,v) € £ =Y of minimum depth. Let
m be the smallest positive integer such that (u)ma = (v)mu,
and put (u)m = u', (v)m =v. Further, let u = u'u",
v =v'v'. Since o(u,v) ¢ Zl’ either u'# v' or there ex-
ist k and i (k<m, i<2) such that (ai(u)k)a =
= (al_i(v)k)a and uy, = v, . We show that in both cases
o(u,v) satisfies the hypotheses of Lemma 2, so that it can

be derived from identities of depths <|u| in > which

O’
by the minimum property of of(u,v) implies that Zlk-c(u,v),
contradicting our choice.

Indeed, if u' #v', say wy # vy (L<lu') and ¢ is

minimal with respect to this property then

W gare = (W, v = (v)

n+f+1 n+8+1(x :

1f, in turn, (ai(u)k)a = (al_i(v)k)a and u = vy for
some k<m, i<2 then by symmetry we can assume Uy = Vi =
=a, ; so

(wypqx = ((V)yay _jloc = T T,

+

concluding the proof.
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Let

2 = go(u,v)E:Zl: at least one of u,v ends with ao}.
Now we are ready to state our main theorem.

Theorem. S is an independent basis of Id(E).

Corollary. E has no finite basis for its identities.

The crucial part of the proof of the Theorem will be
formulated in a separate lemma below. Denote by X the set
of all pairs (u,v) such that o(u,v) €. Let (u,v)eX

and u = a3 eeedy y V = aj ...aj . Clearly, by the

o n-1 o n-1
definition of 2 we have
(1) ux = VA
(ii) 1,20, 3, =13
(1ii) for all O<k<n, if (u)yx = (v), > then i,=j,;
(iv) if there exist i<2, O<k<n such that ((u)kai)a=

=((v)ka1_i)d then i,.#j, .

Lemma 3. Let (u,v)€X and pE:P(w) such that pgx =
= tlu,vlgat . Then p¢ = tlu,vlp .

Proof: From the definition of tfu,v] it follows im-

mediately that

n n
T =tu,vlg =u+ Z‘(T)_.I+v+ Z(V).-
j=2 9 je2 ¥

Thus, for 232 j<n, the only words of lengths j entering
the sum are Iu)i and (v)j . Now let pgx = Tx . We have
to show that every addend of T occurs in p¢, too. We pro-

ceed by induction on the lengths of the words. From (ii) ana
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(1v) it follows that either TuJ, = 2,3, w7 - a,a, or
TET; = ag, ?77; = ai. Since pg% = Tx and the addends of
pyg are distinct, in both cases TET; and T?T; must oc=-
cur in p¢ .

Suppose now that TET; and T?T; enter py for some
28 j<n, First we show that any addend w of length j+1
in py is of the form (u)jai or (v)jai for some i< 2.
Indeed, as %ET? and TVT; occur in p¢, p must have two
subterms with weights (“)j and (v)j, respectively. If
either one of these subterms were the product of two terms
of lengths 2 2, then p would have more than two subterms
of lengths 2, However, if XX, is a subterm of p then
P = ai*lai, PP = a§a§+l, but pyx contains only two
pairs of members of this kind, namely u, TET: and v, T?T:.
Thus p¢ must contain two words of the form (u)jaf and
(v)jai., respectively, if j<n-l and the four words u,
TET:, v, T?T: if Jj=n-1. Since p¢x = Tex, p¢ has no
other addend of length Jj+l.

Now we are ready to complete the induction step. If j=
=n-1 then, as we proved in the previous paragraph, every
addend of length j+l=n of T must occur in p¢ . Suppose
now that j<n~1 and TETT_; doesn’t enter p¢y . Since

J+

pgx = T« , pP has an addend w such that wo = !u)j+1«.

By the above statement w equals (“)jai or (v)jai for
some 1< 2, Assume the first. Then, obviously, uj =ay be-
cause else we would have TET;:; = (“)jai = w, contrary to
the assumption. Hence TﬁT}:;& = ((u)jal_i)u # wo, which is
not the case. Thus w = (v)jai. We can assume that w #

# !V)j¢1 whence (V)Jai = (v)j+1, vyo=ay. However, then
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TET;:;« - (v)j*fu, which contradicts (iii) or (iv) depending
on whether uj and vj (i.e., the last letters of (u)j+l
and (v)j+1) are distinct or not. This completes the proof

of the lemma.

Let p€P, i,je»(p). We shall say that the variables

Xy and x:j are linked in p if xicxj or xjexi is a
subterm of p. Equivalently, Xy and xj are linked iff

pg; and Py are of the same length and differ in their
last letters only. For example, in the polynomial symbol
tlu,v] (u,veM, lul=ivl), Xge%) and x,,xz are linked
with each other, and they are the only variables which are

linked with another one.

Proof of the Theorem: To show that 2 is a basis of
13(E), by Proposition 4 it suffices to note that if |ul=
=|vl=n and Uy = Vpoq = 3 then o(u,v) can be derived
from 2 as.follows:

o((w),_qag, (), 1) = tlu,v) = +(02)[u,v]

o((w),1,(v) 1) + t(O'Z)[u,v] = t(l’s)[u,v].

Next we prove that 2 is independent. By way of con-
tradiction suppose that for of(u,v)€ X, X =2 -$o(u,v)}
we have Z'v—d(u,v). Choose the permutations 7,0 on ii:

i< 2n} so that the shortest derivation of the identity
n
(2e3) t [u,v] = t9[u,vj

i
from 2 be of minimum length among all those of form (%)



for which there exists a variable which is linked with dif-
ferent variables on the two sides. Clearly, such an identity
is not contained in X . (Observe that when we replaced Zl
by X , we omitted exactly those identities from zl which
would have violated this.)

We will arrive at a contradiction by proving that the
last step of the shortest derivation of (#%%) cannot be the
application of any one of rules (1)-(5) in [3; p. 3811].
This is obvious for (1). By the minimality condition it fol-
lows immediately for (2) and (3), too, noticing that if for
some r'eP(w) we have Eﬁktw[u,v]=r (and hence tw[u,v]=
=r belongs to Id(E)) then by Lemma 3 and Proposition 1
there exists a permutation v on {i: i<2n} such that
r = tT[u,v].

If t“[u,v] = p_ep,, t?[u vl = r or, and ETFp =r _,

o -1 ’ o1l o o

p,=r, then clearly p =r, p;=r; belong to 1d(E), so by
the construction of +t[u,v] one easily infers fhat Py BT,
and 121 srl. Therefore =9, contradicting our choice. This
settles case (4).

Finally, suppose in the last step of the derivation of
(%xx) rule (5) is applied and, say, the polynomial symbols
ri (i< m) are substituted for the variables Xy (i< m). By
the minimality condition at least one of the ri's is not
a variable and hence contains a pair of 1l.iked variables,
which are linked in t“[u,v] and t?[u,v], too. On the
other hand, from the definition of t[u,v] it follows that
tw[u,v] and tg[u,v] have exactly two linked pairs of

variables. Therefore the relation "linkedness" of the vari-
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x
ables in t [u,v] and t9[u,v] coincide, contradicting our

assumption. The proof of the Theorem is complete.

Remark. Along the same lines one can easily construct
an (infinite) independent basis for the identities of al-
gebras (R;f) where f is an n-ary (n22) operation

F(X yernyx. 1) = ) T.X
o’ * n-1 < i i

whose coefficients Ty (i<n) are algebraically independent.

We are grateful to G. Czédli for his helpful sugges-

tions to make some parts of this paper more readable.
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