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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROUNAE 

22.1 (1981) 

INDEPENDENT BASIS FOR THE IDENTITIES OF ENTROPIC 
GROUPOIDS 

G. POLLAK. A. SZENDREI 

Abstract: The variety E of erttropic groupoids, which 
is generated by any of the algebras t$r « <R;°> where E 

is the set of real numbers, r,seR are algebraically inde­
pendent and x«y « rx+sy, is known to be not finitely based 
113. Here we give an independent basis for the identities 
of E . 

Key words and phrases: variety, identity, equational 
theory, basis (of identities), independent basis, entropic 
groupoid. 

Classification: Primary 08B05 
Secondary 20L05 

In [11 Jezek and Kepka describe the equational theory 

of entropic groupoids. In particular it follows that the al­

gebra Cft-s (A;°) defined on the free commutative ring A 

with free generators a ,a, by x°y « a x+a-.y, generates 

the variety E of entropic groupoids. They also show that 

the equational theory of E (and hence of •(%) is not fi­

nitely based. Here we construct an independent basis for the 

equational theory of E . These investigations concern also 

a question of Pajtlowicz and Mycielski[2l asking whether the 
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groupoids ljr « <R;°> defined on the set R of real 

numbers by x©y • rx+sy have finite bases for their ident­

ities. Clearly, if r and s are algebraically independent 

then dl generates the variety E, hence its equational 

theory is not finitely based. 

We use the terminology and notations of [3]. Since all 

algebras occurring are groupoids, we omit all references to 

the type. In particular, for any cardinal $ , pU ' stands 

for the set of polynomial symbols of type <2> with vari­

ables {x : ?T<M- Clearly, fi^ - < P ^ ; °> is the free 

groupoid on f> generators. For p fp€P ' , p * p means 

that p and p coincide. 

Let R, A and M denote the free unitary ring, free 

unitary commutative ring and free monoid with free gener­

ators a ,a-, , respectively. (We consider M to be a subset 

of R.) The length of a word w € M is denoted by |w|. De­

fine the entropic groupoids cK =. <R;°) and #t « <A;°> by 
x ° v * a

0
x"**aiv* ^et ex: R -*A be the natural ring homomorph-

ism with a .ex * a. (i< 2). Clearly, ex is also a groupoid 

homomorphism $L -*{K . For any i<co let cp.: fc -* <R be 

the natural homomorphism with x.cp. * 1 and x.?cp. * 0 if 

j^i. Further, set cp « } _ , cp. . It is not hard to show that 

for any p,q GP^ , 

(») p * q iff for every i<co, pcpi « qcp̂  ; 

(MK) p and q have the same parenthesis structure, i.e. 

p(xQ,...,x0) s q(x0,...,x0), iff pep m qcp . 

To see this, and also to make it easier to follow the 

rest of the paper, it is worth noting what the homomorphisms 
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cp. mean pictorially. There is a natural way to represent a 
(co) 

polynomial symbol in Pv by a binary tree as follows: to 

x^ (i<(o) we assign the one-point tree 

x"i 

and to any polynomial symbol p<>q we assign the tree 

arising from / \ by attaching to its left and right branches 

the trees corresponding to p and q, respectively. Now, 
lO)) 

consider the tree of a polynomial symbol p C P v , and label 

all branches going to the left by a and all branches go­

ing to the right by a-.. In this manner, the paths of the 

tree of p can be labelled by words from M and every ver­

tex is uniquely characterized by the word corresponding to 

the path going downwards to it. This word will be called the 

weight of the vertex. Since the subterms of p are in a 

natural one-to-one correspondence with the vertices of the 

tree of p, we can also speak about the weight of a subterm 

of p. In particular, the variables are also subterms of p. 

Now it is easy to see that for any i<co, pep. is nothing 

else than the sum of the weights of all occurrences of the 

variable x.. 

Example. For P5(x0°(x0»(x1«»x1)))«((xoo(x2«x2))
e(x,oxJ) 

Wo * ao * ao a l ao * a l a o * 

p<Pi " ao a l ao + ao a l • 
a l Pcp2 - a1aoa1a0 + a ^ a * , 

& 1 **3 m a l a o * a l • 

xV pcpn - 0 (n * 4) 

Figure 1 
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Clearly, for any pGP'w' a variable xi occurs in 

p iff pcp.̂  + 0. Put -p(p) * |i<co: pcpif-0} . For any mapping 

y: "v(p)-*ii: i<o>] we denote hy p* the polynomial symbol 

arising from p by substituting x. for xi for all i€ 

e v( P). 

Proposition 1. For any p tqGP'
W\ the identity p»q 

is in Id(E) if and only if p̂ a.qcp̂ oc holds for all i<60, 

Proof: The statement follows from the fact that for 

any p C P ^ ° , p ^ * ZJ (pq>.o<)x.. . The proof i s s t r a i g h t -tt i<o) x x 

forward by induction. 

Example. Figure 2 shows the tree of a polynomial sym­

bol q for which p*q belongs to Id(E) (p is the poly­

nomial symbol in Figure l). 

Figure 2 

Let f denote the set of all pGfw) in which every 

XJL (i<a>) occurs at most once; i.e. pep iff pep'w' 

and pq^cM for every icv(p). Denote ̂ y p t n e subset 

of f consisting of all p€P such th^ ^(p) „ j^. i< n} 

for some n<oJ, and for every ifj€v(p)^ ± > j j_ff either 
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IP9il<'PcPi' o r I P9il * lP9j 1 and P<P-| precedes pcp.̂  in 

the lexicographic order. Pictorially, this means that a poly­

nomial symbol belongs to P iff in its tree the variables 

x .x-fXp,... are attached to the branches sequentially by 

levels, starting from the bottom, and within one level from 

the left to the right (see Figure 3). 

Figure 3 

Obviously, for every p€f there is a (unique) one-to-

one mapping -*: v(p)-*|i: i<oo} such that p eP. Making 

use of (M) and (aw) it is not hard to see that every poly­

nomial symbol pGP is uniquely determined by pep . 

Proposition 2. If p*q (p,q€P^) is in Id(E) then 

there exist pGP and qef1 such that p«q is also in 

Id(E) and p'-q' •- p«q . 

Example. Let p and q be the polynomial symbols in 

Figures 1 and 2, respectively. Then p*q is in Id(E) and 

the polynomial symbol p* in Figure 3 is the unique one in 

P such that pep -pep . Figure 4 shows two possible choices 

for q1 satisfying the requirements of Proposition 2. 
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Figure 4 

Proof: Let p G P be the u n i q u e polynomial symbol such 

that p'cp =pcp and choose q € f so that for any i<v(p), 

if p,cpi is an addend in pep. then q1 cpi be an addend in 

qq>, such that q1 cpjO.-p'cp.jOC (Proposition 1 ensures the ex­

istence of such a q1 ). Then, clearly, p'-q1 is in Id(E) 

and p=-q arises from p «-q' by substituting new (not necess­

arily distinct) variables. 

Let us introduce the following notations: if w€M, 

say w » a. ...a. , and k--n, put 
xo xn-l 

ł i„» ( w ) k - a i _ •ai • v ( w ) = ai • 

(1) 

Lk * xo xk-l A xk V l ' 
n 

IwL « (w), , a, . and w* * w + £] (wK . 
K K-l l-l k - 1 k s s l K 

It is easy to see that for the polynomial symbols s[w]€P 

( W G M ) defined by s[l] « x and for n=l by s[w] s 

55 sL(w)]»x or x os[1(w)] according to whether io=0 or 

1, we have s[w]cp « w*. 

Let u,v€M, | u | « n, }v| =- m. Clearly, there exists 

a polynomial symbol q such that qcp = a u + a-,v (e.g., 
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s [u ]os [v ] i s one) . Denote by t [ a 0 u , a 1 v ] the unique p e ? 

with p<f * a o u M + a i v i l * Observe t h a t these polynomial sym­

bo l s have exac t ly 2 subterms of the form x i o X j ( i » 0 < ( ° ) . 

0 o 
Example. Figure 5 shows the t r e e of • t [ a

0
a i a

0
a i t a i a Q ] « 

Figure 5 

C lea r l y , i f u^ -. « a., and v_ n * a . then n - i l * m-i 3 

t t a o u » a i v 3 c F i " a
0

u a n d tf aou» a lv^ cf-j+2 = a l v * 

Denote by <r(a ufa-,v) the i d e n t i t y t [ a u , a , v ] » 

« t* , J + [a u,a-.v] where (i,;j+2) i s a t r a n s p o s i t i o n . Put 

2Q - jcr(u,v): u,vGM, u 0 »a 0 , vQ - a-^ u<x «v«} . 

Obviously, for Cf(u,v) € Z Q we have |u|»|v|. This number 

will be called the depth of CT(u,v). 

Lemma 1. If p€f* and k,Uv(p) such that pfk« » 

• P^c* then we have c(u,v) t- p«p^ » ' for some cr(u,v) e 

e Z Q of depth « Ipffcl. 

Proof: Let |p<pkl = Ipc^j * n, „.»-,( P<fk) •
 a

x
 and 

n-l(P
cf£) * a-i- W e proceed by induction on the rank of p. 

Our claim being trivial if p is a variable, we can suppose 
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that it holds for all polynomial symbols of rank smaller 

than that of p. We can also assume that ~k.M$ whence 

p<pk 4 P<fy. if ( P ^ O * (p<Mo tnen xk and xi occur in 

the same subterm of pf so the lemma follows from the in­

duction hypothesis. Suppose now that they occur in differ­

ent subterms, say (p<fk)0 "
 ao and ^P^t^o s al* T n e n i* 

is not hard to show that 

P 5 t[pcpkfp9t] (p0,plf...) with p.iSxk and P^2*
x » 

whence the lemma follows. 

Proposition 3. I Q is a basis of Id(E). 

Proof; By Proposition 2 it suffices to show that for 

any identity p«q in Id(E) with pe¥ f qGf f we have 

Z0*~p-«q. We proceed by induction. In view of (M) we shall 

be done if we prove the following statement: if p<f>. £ qcp, 

and for all J > k we have pcpi » qcp. then there exists a 

q1 G f such that Z i- q-q1 and pep. » q'ep-j for all i « k. 

Let d • lpfkl. Since pGP, by assumption we have 

pep. m qcp. whenever |pcp^|<d. Therefore there exists a 

polynomial symbol r €P
( a ) ) s u c h t h a t 

P • rb 0,P 1*..-»P m,x k + l f...) f 

and |r<p0l • • . . » | rq> | » d. Since pcpk ^ q<pkt we may suppose 

without lo s s of g e n e r a l i t y t h a t P 0
s x k and q 1

s x k . On the 

o ther handf p»q belongs to Id(E) f so t h a t by P ropo s i t ion 1 

we have P^k« * <l<f)-:(X » i » e - rro oc « rcp̂ oc . Then, by Lemma l f 
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^i-r-r'0'1', whence for 

q s r(qlfqQfq2f...fqmfxk+lf...) 

we have --L^q^q • Clearly, q1 also satisfies the other 

requirement. 

Lemma 2. Let u€Mf |ul • nf and let tf(ufv) e Z be 

such that for some 0 < k < n we have (u) k -, « ^
v^k+l • ̂ n e n 

0^ufv) can be derived from identities of depths < n in T . 

Proof: Let u « a.. . . . a . f v • a. ...a. and put 
xo xn-l 3o 3n-l 

"^^n-l' ^"^n-1* Since ucx = vex f necessarily k<n-l. It 

is not hard to check that 

ttufv] 5 tt(u)k+lf(v)k+1](Pof...fP3fX2n.2k+2f...fX2n.1)* 

S t^u;k+l^v^k+l^po»' *" ,p3 ,x2n-2k+2» • • * ,x2n-l^ 

and the variables x,f
 x-;+2 occur in p. f p. +2, respect­

ively. Let q be the polynomial symbol arising from ttufv] 

by interchanging p., . and p. .Q. Clearly, i-ik 3k+<-

a(Vu7^f(v)k+1) - ttufv]»qf t ^ ' ^ W - W 1 ' 3 * 2 * # 

Therefore it remains to show that the identity q=-q* ,*J+ 

can be derived from an identity of depth <n in Z . How­

ever, this follows from Lemma 1 since by construction 

q<fi - ttu.v]^ and q<p .+2 . W ^ p ^ C f . ^ ) f 

implying by k>0 that ( q ^ ^ • (q?j+2^l'
 T n e P*00* i s 

complete. 

Let 
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Z * ^tf(u,v) G IQ: u-u'w., v=vw, ( u ) k a ^ ( v)ko< fo r 0 < k < 

< | u ' | , and i f ( a i ( u ) k ) a = ( a 1 - i ( v ) k ) o c f o r 

some i < 2 , k < | u I t h e n ukr*vk 1 • 

Proposition 4. Z-, is a basis of Id(E). 

Proof: In virtue of Proposition 3 it suffices to prove 

that Z-> »- 2 0 . Provisionally, denote by 'Y the set of 

all identities in Z_ that can be derived from Z-. Obvi­

ously, XT = 'Y = .Z0- Suppose that, contrary to our claim, 

'Y ̂  5_ and choose a c(u,v) G Z - T of minimum depth. Let 

m be the smallest positive integer such that (u) ex - ("̂ m0^ 

and put ( u ) - - u , ( v) m
 = v • Further, let u = u uM , 

v = v'v" . Since c(u,v) ̂  Z-, , either u" ̂  v" or there ex­

ist k and i (k<m, i<2) such that (a.(u),)c* = 

= (a, .(v), )<> a n d uk ~ vk * W e s n o w that i n both cases 

cr(u,v) satisfies the hypotheses of Lemma 2, so that it can 

be derived from identities of depths <|u| in _Z , which 

by the minimum property of cr(u,v) implies that Z,»- cr(u,v), 

contradicting our choice. 

Indeed, if u" J vM, say u1^ ^ v[ (t<|uM|) and t is 

minimal with respect to this property then 

'^n+l+l0 = ((u)n+e
V")C< = ̂ W f ' 

If, in turn, (ai(u)k^a = ^al-i^v^k^a a n d u k = Vk f o r 

some k < m, i < 2 t h e n by symmetry we can assume u k ~ v k = 

(u)k+1o< = ( ( v ^ a ^ c x = \TT^O< , 

concluding the proof. 
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Let 

J_ = .>af(u,v)€ 1-̂ : at least one of u,v ends with &Ql. 

Now we are ready to state our main theorem. 

Theorem. ]E is an independent basis of Id(E). 

Corollary. E has no finite basis for its identities. 

The crucial part of the proof of the Theorem will be 

formulated in a separate lemma below. Denote by X the set 

of all pairs (u,v) such that C ( U , V ) G Z . Let (u,v)GX 

and u a a. ...a. , v =- a. ...a. . Clearly, by the 
1o xn-l °o 3n-l 

definition of Z we have 

(i) ucx -B va ; 

(ii) io-0, j0.l; 

( i i i ) for a l l 0<k<n, i f (^ ) k « - ("^k0* t n e n ^ ^ k ' 

( iv ) if t he re e x i s t i<2, 0^k<n such t h a t ((u)- fea i)«s. 

= ((v)ka1- jL)o< then i k ^ 3 k • 

Lemma 5. Let ( u , v ) € X and p € P ^ ° ' such t h a t pq>oc -

- t [ u , v ] c p . Then pep - t[u,v]q> . 

Proof: Prom the d e f i n i t i o n of t [ u , v ] i t follows im­

mediately t h a t 

n n 

T m t[u,v]co =- u + Z^tuT^ + v + Y2\v) . . 
3=2 3 j=2 d 

Thus, for 2 = j < n , the only words of lengths 3 entering 

the sum are \u) ' and (v) . . Now let pepoe » Toe . We have 

to show that every addend of T occurs in pcp» too. We pro­

ceed by induction on the lengths of the words. From (ii) and 

- 81 



(iv) it follows that either \ u ) 2 *=
 a
0
ai» \v)o • ^1*0 o r 

\ u ) 2 * %» \y)2 m al* S i n c e P ^ " T(X a n d t h e addends of 

pep are distinct, in both cases \u^ 2 and (vJT must oc­

cur in pep . 

Suppose now that \u) . and \ v ) . enter pep for some 
j J 

2 « j<n. First we show that any addend w of length 3+1 

in pep is of the form (u) .a. or (v).a, for some i < 2 . 
J X J X 

Indeed, as \ u ) . and \v) . occur in pep, p must have two 
subterms with weights (u) . and (v) ., respectively. If 

J J 

either one of these subterms were the product of two terms 

of lengths « 2, then p would have more than two subterms 

of lengths 2. However, if x,-x. is a subterm of p then 
r+l s r s*.*T 

pep, a s- a a, , pcp»cx * a a, , but pepex contains only two 

pairs of members of this kind, namely u, \ u ) n and v, \ v ) . 

Thus pep must contain two words of the form (u) .a., and 
J -** 

(v) .a .» , r e s p e c t i v e l y , i f j < n - l and the four words u , 

(uj , v , \ v ) n i f j - n - 1 . Since peptx « Ta , pep has no 

other addend of length j+1. 

Now we are ready to complete the induction step. If j* 

-sn-1 then, as we proved in the previous paragraph, every 

addend of length j+l-sn of T must occur in pep . Suppose 

now that j< n-1 and \ u ) . , doesn't enter pep . Since 

pepex » Tot , pep has an addend w such that wa « \ u ) J .-i oc . 

By the above statement w equals (u) .a. or (v).a, for 
J **• J --

some i < 2 . Assume the first. Then, obviously, u. « a. be­

cause else we would have \u) . , - (u) ,a, « w, contrary to 

the assumption. Hence \uj .Set «- ((u) .a-, .)cx 4 wcx, which is 

not the case. Thus w « (vj.a,. We can assume that w £ 

4 \v) . ̂  whence (v),ai • l
v)-s+-,t

 v-- * a^- However, then eг -



(u) . ,<x • (v)i+r
0(» which contradicts (iii) or (iv) depending 

on whether u. and v. (i.e., the last letters of (u)-j+i 

and (v) . ,) are distinct or not. This completes the proof 

of the lemma. 

Let peP, i,jev(p). We shall say that the variables 

x. and x. are linked in p if x . o x . or x . ° x i is a 

subterm of p. Equivalently, x. and x. are linked iff 

pep, and pep. are of the same length and differ in their 

last letters only. For example, in the polynomial symbol 

"t[u»v] (u,v€M, )ul-=lvl), x ,x-. and x2,x-j are linked 

with each other, and they are the only variables which are 

linked with another one. 

Proof of the Theorem: To show that Z is a basis of 

Id(E), by Proposition 4 it suffices to note that if lul » 

• |v| » n and u , » vn_i *
 ai then cr(u,v) can be derived 

from Z as follows: 

<r((u)n-lao'^)n-lao) *" t[u'v] " *(0'2)tu,v] 

o-tt^n-l^^n-^ "- *(0'2)[u,v] = t^'^tu.v]. 

and 

Next we prove that Z is independent. By way of con­

tradiction suppose that for cr(u,v)eZ, £ «Z -5<T(U,V)^ 

we have Z v-a(u,v). Choose the permutations ff,P on ̂ i: 

i< 2n} so that the shortest derivation of the identity 

(***) t [u,v] -= t [u,v] 

from Z be of minimum length among all those of form (M*X) 
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for which there exists a variable which is linked with dif­

ferent variables on the two sides. Clearly, such an identity 

is not contained in X . (Observe that when we replaced X-, 

by X , we omitted exactly those identities from Z-, which 

would have violated this.) 

We will arrive at a contradiction by proving that the 

last step of the shortest derivation of (XXH) cannot be the 

application of any one of rules (l)-(5) in [3; p. 381]. 

This is obvious for (l). By the minimality condition it fol­

lows immediately for (2) and (3)f too, noticing that if for 

some reP^ we have 5.Vt [u,v]=r (and hence t [u,v]=-

=r belongs to Id(E)) then by Lemma 3 and Proposition 1 

there exists a permutation x on ^i: i< 2n} such that 

r = t Lu,vJ. 

If t*[u,v] s p0«plt t?[u,v] s r ^ ^ and ZVpo«rof 

pl"rl "tnen clearly p «r , P1«r1 belong to Id(E), so by 

the construction of t[u,v] one easily infers that p sr 

and p-, sr,, Therefore ?r=-p, contradicting our choice. This 

settles case (4). 

Finally, suppose in the last step of the derivation of 

(XXK) rule (5) is applied and, say, the polynomial symbols 

r. (i<m) are substituted for the variables x. (i<m). By 

the .minimality condition at least one of the r.'s is not 

a variable and hence contains a pair of l̂ .iked variables, 
•x p 

which are l inked in t [u,v] and t [ u , v ] , too . On the 

other hand, from the definition of t[u,v] it follows that 

t [u,v] and t [u,v] have exact ly two l inked p a i r s of 

variables. Therefore the relation "linkedness" of the vari-
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^r 1 9r -

ables in t Lu,vJ and t Lu,vJ coincide, contradicting our 

assumption. The proof of the Theorem is complete. 

Remark. Along the same lines one can easily construct 

an (infinite) independent basis for the identities of al­

gebras ^Kjf) where f is an n-ary (n = 2) operation 

r ( xo "n-i* - £ r A 
i<n 

whose coefficients r. ( i < n ) are algebraically independent. 

We are grateful to G, Czedli for his helpful sugges­

tions to make some parts of this paper more readable. 
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