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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

22,1 (1981) 

SOLVABILITY OF THE SUPERLINEAR ELLIPTIC BOUNDARY 
VALUE PROBLEM 

Pavel DRABEK 

Abs t r ac t : We prove the ex i s t ence and the m u l t i p l i c i t y 
of the weak so lu t i ons of the boundary value problem 

;J lu - A u + g (x ,u ) = f i n < a , J J t u - A u + g(x,u) = f m i l , 
i Bu = 0 on3il, 

where Jt is the differential operator, Si > Oi. (the first eigen­
value of A ) and g is superlinear. 

Keywords: Higher order equations, boundary value prob­
lems, "^alerking approximations, Brouwer degree. 

Classification: 35J40 

«-•• Assumptions. Let us suppose that SI is a bounded open 

subset of 1RN with the boundary ail . Let g : H ~ IR —> IR be a 

function satisfying Carath^odory 's conditions and 

(1) g(x,z) is bounded for z £ (-oo,0> uniformly with i jspect to 

almost all x & £l and g(x,z) is bounded below for z e R uni­

formly with respect to almost all x e il j 

(2) lim fiiXfS-2. = + co , uniformly with respect to almost all 
Z-+ + CO z 

x e £1 . 

We shall seek the weak solution of the boundary value pro­

blem 
. A u - Xu + g(x,u) = f in ii- } 

(3) I Bu - 0 on 3--1 , 

where B denotes Dirichlet or Neumann boundary conditions and 
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Oi > X we suppose that 

JL = S (-D l cCl D ^ U (X)D^) 
lcGUI(?,U>fc ^f3 

and 
2m 

% - V c " L " ( A ) . 3 r - * ^ ^ > 

V§ e IRN-

Let V = W^>2(il), resp. V = Wk»2(il) if B denotes the Dirich-

let, resp. the Neumann boundary conditions. Let us denote 

a(u,v) = / S n a,. D^uD^v. 

Then Ji , jointly with the boundary condition Bu = 0, defines 

by the position 

(Au,v)v = a(u,v) 

a linear bounded self-adjoint operator of V in V with infini­

tely many eigenvalues 0 ^X^ *-= X 4=. #. # Let us suppose that 

cpe V is the only eigenfunction corresponding to ^-, <p € 

&L a 3(il) and II 9 II 0 = 1. 
T IT 

Definition. Let feL 1(il). We call uQe.V the weak solu­

tion of (3) iff 

(a) g(x,u0(x))eL
1(il), 

(b) for all v e E it is a(uQ,v) - <^(uQ,v) 2 + (g(x,u0),v) 2 = 
L L 

= (f,v) 2, where E = C^(il), resp. E = Q°°(JL) if B denotes 
L 

the Dirichlet, resp. the Neumann boundary conditions. 

Adding constants on both sides of the equation, we may as­

sume in future without loss of generality that 

(4) g(x,z)>0 

for a l l z € IR and almost a l l x s i l • 
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2 
The space L (XI) admits the orthogonal decomposition 

(5) L2(il) = N © H, 

where N i s generated by <p . For u s e ^ + w, e e R , weHnV* 

we set 

II ully = a(w,w) + I ef . 

Let c > 0 be such a constant that for all u e V it is Hull *> ̂  
IT 

4 c Hull™. 

2. Main result 

Theorem 1. Let us suppose (1),(2). Then to each h 6 H the­

re exist real numbers T-^CM^Tpdi) and a closed set Mc^T-pTp^ 

such that T2<£ M and the problem (3) has for f = t<p + h 

(i) at least two distinct weak solutions for t>T«, 

(ii) at least one weak solution for teM, 

(iii) no weak solution for t<T^. 

Proof. In the proof of Theorem 1 we use the Ljapunov-

Schmidt method, the Galerkin method and the Brower fixed point 

theorem. 

For each u e V w e have according to (5)- u = s<p + w, B e 

e IR , 9 e V, w s H n V , At first we shall seek, for fixed s e 

e R , such a w e H n V that 

(a') g(x,s9?(x) + w0(x))e L
1 ( a ) , 

(b') for all v e E n H it is 

a(wQ,v) - A (wQ,v) + (g(x,sg? + wQ),v) = (f,v). 

Lemma 1. Let 

W = \ weHnV; II wllv = l,a(w,w) ^ {% + l ) (w,w)} . Then there ex i s t s 

do € (0,1) such that II w II 0 £ oo , for a l l weW (where w de-
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notes the positive part of w ) . 

Proof of Lemma 1. Let us suppose to the contrary that 

there exists {w.J^. . . , c Wf lim II w_ II 0 = 0. Then after possib-n n-x YI,^ co n jf 

ly passing to the subsequences we can suppose w - — ^ w eHr-V 

in V and wn~~> w Q in I?"(SI). On the other hand /lwnll 2 > 

^ const. > 0 . Then w Q 4= 0 and w Q ^ 0 a.e. in Jl . This is a 

contradiction with the fact (<p , w 0 ) = 0. 

Let us remark that from (1),(2) we obtain the existence 

of a constant /3 > 0f such that 

(6) g(xfz) > -£-4- 2 - ft , 
OCT 

for all z e IR and for almost all x e Si . 

Lemma 2, Let I c 1R be a bounded interval. Then there ex­

ists a constant r > 0 such that for w c V n H , HwlL^r, s e l and 

g(xtacp + w) e L (Si) it is 

b(wfw^ = a(w,w) - &(w,w) + (g(x,sy + w),w) - (f fw)>0. 

Proof of Lemma 2. Let us suppose to the contrary that 

there exiat { w n ^ = 1 c H n V , s ne I, g(x,sn9 + w n) e L ( 1 L ) , 

II wnll Y —> + co and 

(7) b(w n,w n)^0, 

for a l l n e IN . Put wn -- wn/II wnii v . Prom (7) we obtain 

x llhll 2 

(8) a(wn>wn) - ^.(wn,wn) + — — ( g ( x , s n 9 + ^ ,w n )^ — ^ c . 
V v "V? 

Because of (1), y e L ^ d l ) and the boundedness of If there 

exists a constant c-p* 0 such that 

(9) (g(x,sn9 + wn),wn)> (g(xfSn9 + wn)wn) - c r 

From (8) and (9) we obtain that for w n ^ W it is 
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~ a(Wn'v + « ч л (вíx'8n<ř + v ' v " «vГ 
ІҺ|| 2 

,i wnii y 

Because of li wnll v ~~> + co , the l a s t inequality imp l ies the e-

xistence of such nQ € IN that wn£ W for n £ n Q . Using (6) and 

(9) we can write (8) as follows 

C , l h l i
T2 1 , , 2 

(8') - - - > a(w„,w„) - .Uw,,,w„) + I •----(»„<V 
IIWnllv

 n n n n ll«nllv
 A * Z n ^ 

• llwnlivwn)w> - J L ^ (i -£ dx - -JJ}- 2 a(wn,wn) -

- a(wn,wn) + ^ 2 - - J - > a(wn,wn) - -*? -Hwnllv
 n ' n llw^lly 

where c 2 > 0 i s some constant independent of n s IN . But (8 ' ) 

i s in contrad iction with Kwnlly = 1 . 

Lemma 3* Let I c IR be a bounded interval . Then there e-

x i s t s r > 0 such that for each s e l there ex i s t s wQe VoH sa ­

t is fy ing ( a ' ) , ( b ' ) and l iwj ly^r . 

Proof of Lemma 3t Let s & I be f ixed . We sha l l construct 

the solution wQ using the Galerkin's approximations. We choo­

se a sequence "^w
n5n=lc c ° ° ^ )^H, such that for every w e 

e C0 D( i l)r\H there i s a subsequence i w
n ^ = i °* ^ ^ ^ = 1 w n ^ c n 

converges to w in the norm of V. A function u e V » span 4w-, , 

w 2 , . . . , w \ i s cal led a Galerkin solution of ( a ' ) , ( b ' ) in V i f 

(10) b(un,w) a 0 for a l l W6VR, 

Define Tn:Vn—•> V^ by the relation 
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<T n u,v> v =- b (u ,v) fo r a l l u , v e V n 
n 

( < . , . / y deno tes the d u a l i t y between V and V ' ) . 

According to Lemma 2 the re e x i s t s r > 0 (depending only 

on I cIR ) such t h a t 

(11) < T n w , w > v > 0 fo r l lwll vZr. 

n 

The existence of u follows, now, from (11) and from the Bro-

uwer fixed point theorem (see e.g. C33). Using the compact im-
2 

bedding V ^ ^ L (XI), we obtain the existence of such w e Vn H 
that after possibly passing to the subsequences û —=-- w in 

2 V u —^ w^ in L (XL) and \i„—> w„ a . e . in SL , From (10) we * n • o ii o 
obta in 

4 lunS (*>-3> + V'^^H'v + llhll
L2 l lun"v^c4' 

where c-», c , a re cons tan ts independent of n . Because of u n g(x , 

Bc? + u n ^ — * W
0 S^ X > 8 9 > + wo^ a « G - "-11 •& » the Fa tou ' s lemma im­

p l i e s w g ( x , « y + w 0 ) £ L 1 ( i l ) . Let e > 0 . There e x i s t s cT.> 0 

such tha t fo r each Sl/ c SL ,meas SL/ < of i t i s 

f I g(x,s<p + a . ) | < e / 2 a n d r / k g ( x , 8 ( p + u )|<-

i t 

< e / 2 . 

Then 

+ 4 г i + è , / u^gU^sçp + u ^ ) ! ^ e 

Because of g ( x , s y + uJ l)—> g ( x , s y + wQ) a . e . in i l , the Vi-

t a l i ' s theorem implies g ( x , s 9 + wQ)s L ( J l ) and g(x,s<p + u^) 

—-> g ( x , s y + wQ) i n IriSL). So we *^ave 
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b(wQ,u) = 0 for all u e^U^ Vn. 

For we C°°(SL)nE we select therefore a subsequence *wn*n:=]> 

wn G V , w —> w in V and get 

b(w_,w) = l im b(w f t,wy.) = 0 , 
O fYL-±4cOO V " 

which proves Lemma 3. 

We shall continue in the proof of Theorem 1. Let us de­

note 

S = 4(s,w) e Rx(HnV); w satisfies (a'),(b')$, 

S~ =i(s,w) <s l ^ ( H n V ) ; w is a Galerkin solution of (a'),(b')i, n 7 n * w 

Then the weak solutions of (3) are such u = Sep + w that 

(s,w)e S and 

(12) (^ - X )s + (g(x,s9 +w),^>) = t. 

Let us define F:Su( M» S >—> (R by the relation 

+ 00 

F(s,w) = (̂ l1 - X )s + (g(x,sj? + w),9?) for (s,w)e S<̂  ( U Sn). 

Using (1),(2) it is possible to prove by the same way as in 
oo 

£4, p.13] that F is a continuous function on Su( U. S ) boun­
cy 

ded below on Su( Lf S^) and 

(13) lim F(s,w) = + oo 
A* -> tco 

CO 

uniformly with respect to w, such that (s,w) e S u ( \J, S_). 

Let us denote T0 = , sup F(Otw). According to Lem-2 (Oy^r^eSuCUSj 
ma 3 it is Tp< + oo . Suppose t>Tp, there exists s e R such 

+ CD 

that for all (s,w)e Su( U S) it is , , inf s /4_ NF(s,w)̂ > t 

(see (13)). Slightly modifying Lemma (1.2) from Cll (see also 

[4, p. 14J) we obtain for each n e IN connected subset S C S 

such that P̂ ojj- S -3<-s ,s >. Then we obtain the existence of 
(sn-wn)£§n, (sn'wn)6§n» "3o< s n < ° < a n < ao> " wn(lV ̂ r (where 
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r depends only on sQ) and F(s£fw*) » t, 1=1,2, for each » e 

e IN . After possibly passing to subsequences we can suppose 

that a*—> s1, »£""* e2 in B and w*—-~ w1 in VnH. By the sa­

me procedure as in the proof of Lemma 3 using the Fatou's lem­

ma and the Vitali'a theorem (see also £5, p. 2611) we prove 
1 1 2 2 2 that u-jS-sy + w , u * s g> + w are the weak solutions of 

(3) and Un + Ug (because of t>Tg). Let us denote T, = 

* , inf _ F(s.w). If t<T.. then according to the definition of 
W>,'H/)£ & -*• 

the set S there is no weak solution of (3). 

Let ^^m=l c < Tl > T2 >> tm~~> %o in R and the P r o b l e m <3> 

with the right hand side f.̂  =- tm<$ +h has at least one weak so­

lution u_ = s m9 + wm. According to (13) and Lemma 2 we can sup­

pose that s —> s in IR and w m — ^ w in VnH. Using the Fatou's 

lemma and the Vitali's theorem we prove that uQ « 8 9 + wQ is 

the weak solution of (3) with the right hand side f = t 9 + h. 

This proves that the set M is closed. If we take J0*1-, c 
r m m-l 

c <T2>+oo ), t — > T^f we prove analogously that T^eM and the 

proof gf Theorem 1 is completed. 

Let us suppose that A is an elliptic differential operator 

of order 2m with smooth coefficients defined on SI , dSl is sup­

posed to be also of class C00 . Using Theorems (1.4.25) and 

(1.4.27) from C21 and the bootstrapping procedure (see £2, p. 

50-51J) we obtain 

Theorem 2, Let te C0*00 (XL) f g satisfies for N> 2m the 

growth condition 

lg(x,s)l £ const.(1 + |*|* ) t for 1 < <6 < g + ** f 

for 1 zl sufficiently large and all x e Si . Let g be a Lipschitz 

continuous function of x and z. Then the weak solutions obtained 
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in Theorem 1 are in C2m*°° (&). 

3* Remarks. This paper extends the results obtained in 

C43 and C53, where the authors consider differential opera­

tors of second order, reap, the case .A = A,. 

Our Theorem 1 is an attempt to anawer the question con­

cerning the solvability of (3) if A is an eigenvalue of (4) 

and % 4- &x (see [5, p. 255]). 
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