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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

22,1 (1981)

SOLVABILITY OF THE SUPERLINEAR ELLIPTIC BOUNDARY
VALUE PROBLEM
Pavel DRABEK

Abstract: We prove the existence and the multiplicity
of the weak solutions of the boundary value problem
Au -2Au + g(x,u) = £ in Q,
Bu =0 on3i,
where /. is the differential operator, A > A, (the first eigen-
value of A ) and g is superlinear.

Key words: Higher order equations, boundary value prob-
lems, §aierEmg approximations, Brouwer degree.

Classification: 35J40

1. Assumptions. Let us suppose that & is a bounded open
subset of RY with the boundary 8 . Let g:OxR—>R bea
function satisfying Carathéodory ‘s conditions and
(1) g(x,2z) is bounded for z & (- ,0) uniformly with 1 :spect to
almost all x € . and g(x,z) is bounded below for z ¢ R uni-
formly with respect to almost all x ¢ £ ;

(2) x_];%‘_mm 5(—;‘-’5)- = 4+ , uniformly with respect to almost all
xe ).

We shall seek the weak solution of the boundary value pro-

blem

fin—o-’
Oon o,

Au - 2Adu + g(x,u)
f

Bu

where B denotes Dirichlet or Neumann boundary conditions and
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A > ﬁ'l' We suppose that
A= = (-1 p*

(a  (x)p)
|a(:l=|f5|=k a“’ x

p

and

= > N: «LefB | '2m
ad{_x— aﬂcceL"O(_Q),ﬂf L lccl=2:£p|=,&,a°¢(5§ P> ylgl™

N
vEe R
Let V = W2(Q), resp. V= W2(Q) if B denotes the Dirich-

let, resp. the Neumann boundary conditions. Let us denote

a(u,v) =f DX ubP v,

0 lac|=zlpsl=lk, fp
Then A , jointly with the boundary condition Bu = O, defines
by the position

(Au,v)v = a(u,v)
a linear bounded self-adjoint operator of V in V with infini-
tely many eigenvalues O 5&1 = ~7L2 <,.. . Let us suppose that
¢ € V is the only eigenfunction corresponding to ‘%1’ @ €
eL®(N) and g 1|L2 = 1.

Definition. Let fe Ll(.Q_). We call uje V the weak solu-
tion of (3) iff
(a) g(x,uo(x)) € Ll(I).),
(b) for all veE it is a(ugy,v) - ‘1(“0"')1'2 + (g(x,uo),v)L2 =
= (£,v) 5, where E = C°(0), resp. E = C®(f) if B denotes

L

the Dirichlet, resp. the Neumann boundary conditions.

Adding constants on both sides of the equation, we may as-
sume in future without loss of generality that
(4) g(x,z)=0

for all z ¢ R and almost all x ¢ {1 .
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The space LZ(Q) admits the orthogonal decomposition
(5) ’(0) =NO@H,

where N is generated by ¢ . For u =egp +w, e € R , weHNV
we set

I ulls = a(w,w) + lel2.
Let ¢ >0 be such a constant that for all ueV it is Hulle <

e llull.

2. Main result

Theorem 1, Let us suppose (1),(2). Then to each hé H the-
re exist real numbers T,(h)£T,(h) and a closed set Mc(Tl,T2>
such that T,€ M and the problem (3) has for £ = te + h
(i) at least two distinct weak solutions for t>T,,

(ii) at least one weak solution for teM,
(iii) no weak solution for t<T.

Proof. In the proof of Theorem 1 we use the Ljapunov-
Schmidt method, the Galerkin method and the Brower fixed point
theorem.

For each ue V we have according to (5), u =s¢p +w, 8¢
eR , e V, weHNnV, At first we shall seek, for fixed 8 €
€ R, such a we HnV that
(a”) glx,s@(x) + wo(x))e Ll(.O.),

(b) for all ve EnH it is

alwy,v) = A (w,,v) + (g(x,89 +w,),v) = (f,v),

Lemma 1. Let
W=f{weHnV;llwly = 1,a(w,w) 2 (A+ 1)(w,w)}. Then there exists

& € (0,1) such that |l w+llL2 > o , for all weW (where w' de-
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rotes the positive part of w).

Proof of Lemma 1. Let us suppose to the contrary that
there exists {w/ L 304 n=1c ¥, 1_i.m I w ] 2 = 0, Then after possib-
ly passing to the subsequences we can suppose wy —> W ¢€ HnV

in V and w,—> w, in 17(). On the other hand fwl , >
z

z const.>0. Then w,+ 0  and W £0 a.e. in £ . This is a
contradiction with the fact (@ ,w,) =0
Let us remark that from (1),(2) we obtain the existence

of a constant (3 > O, such that

2
(6) glx,z2) z =5-z - 3,

for all z € R and for almost all x ¢

Lemma 2. ILet I ¢ R be a bounded interval. Then there ex~
ists a constant r >0 such that for we VnH, llwl, zr, seI and
g(x,sqp + w)e M) it is
b(w,w) = a(w,w) - A(w,w) + (g(x,s¢p + w),w) - (f,w)>0.

Proof of Lemma 2. Let us suppose to the contrary that
there exist { W37 n=1C HOV, s eI, g(x,8,9 +W )¢ it (),

Ilw, UV—> + o and
(7 b(W,,%,) <0,

for allnelN . Putw, = w /N llv. From (7) we obtain
Inl

2
~ L

(8) a("n""n) = Ulwpy,wp) + — (g(x,sn@ + wn),wn).é—;——— c.
I '!1“ v ”'n" v

Because of (1), ¢ € LY () and the boundedness of I, there

exists a constant cy> 0 such that
(9) (8(x,8,0 +W,),w) 2 (8(x,5,9 + W)wr) - cq.

From (8) and (9) we obtain that for w ¢W it is
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8('ny'n) + \1_-— (g(x 8 @ + W ),'+) - _c_l.'.-_ <

~ *®n n’»"n ~ =
A+l Ve Iy I,y
iFhj

£ L C.
)lwnilv

Because of |l 7n||v—-> + 0 , the last inequality implies the e-

xistence of such n e N that w,€ W for n2ng

. Using (6) and
(9) we can write (8) as follows
¢ Inll ,

®") TWTL_ > alwg,w) = Alw ,w) +
nv

2
%(an +

I L "V

c
f[?’w+dx-——1—25(w W) -

~ +
+ wn“vwn)wndx - m—

n ! n ) n'"n
n'v “'n"V
2 %2 2
- l(wn,wn) + A€ - o 2 a(wn,wn) - F»— ,
¥n'y ¥n'y

where ¢, >0 is some constant independent of n € IN . But 87%)

is in contradiction with llwnllv =1,

Lemma 3. Let I c R be a bounded interval. Then there e-
xists r>0 such that for each se I there exists w e VnH sa-
tisfying (a”),(b") and lwly<r.

Proof of Lemma 3, Let secI be fixed. We shall construct
the solution L/ using the Galerkin’s approximations., We choo-
se a sequence {wn}":=1c C(N)nH, such that for every w €
€ CP(L)NH there is a subsequence {;’In}::l of {wn3°:=1 which
converges to w in the norm of V., A function u € Vn = span -ivl,

Woyeee,W % is called a Galerkim solution of (a’),(d°) in v, if
(10) b(un,w) =0 for all weV,.

Def'ine Tn:Vn——> V"l by the relation
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(Tnu,v>vn = b(u,v) for all u,veV,

(<.,.7 y denotes the duality between V_ and V).
n n n

According to Lemma 2 there exists r>0 (depending only

on I ¢ R ) such that

(11) <an,w>vn>o for lwlyzr.

The existence of u, follows, now, from (11) and from the Bro-
uwer fixed point theorem (see e.g. [3]). Using the compact im-
bedding V & & ?(a ), we obtain the existence of such w e VnH

that after possibly passing to the subsequences W, —> W, in

V,u —>w_ in 12(Q) and u,—> w, a.e. in 0 ., From (10) we

n
obtain

o

) 2 .
'{Q lu g(x,89 + u)l< cy llunllv + “h"LZ "u.n“véc‘,',
where ¢y, C4 are constants independent of n. Because of u,ng(x,
sy +u)—> welx,sp +w) a.e. in 1 , the Fatou’s lemma im-
plies wog(x,sg; + wo) eI}(Q). Let e> O. There exists o > O
such that for each 0 c £l ,meas Q' < o it is

S/ lglx,89 +u)|<e/2 and % / Iung(x,sso + u)le
q

Qi k) Q'nlu, >3
< g /2.

Then

¢ .
fa’ lelx,89 + ug)l a’nc{%em\ glx,s¢ + )|

1

Because of g(x,8¢ + w,)—> glx,sp + w,) a.e. in Q , the Vi-
tali’s theorem implies g(x,sq + wy)e }Q) and glx,sqp + w)
—> g(x,8p + wo) in Ll(_Q_). So we have
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+0

b(wo,u) =0 for all u e,nL:J,, Vn'

For we C®(Q.)NH we select therefore a subsequence {wn :;1,

W, € Vn' w,—> w in V and get

b(w,,w) =”L};u+naob(w°,wn) = 0,
which proves Lemma 3.
We shall continue in the proof of Theorem 1., Let us de~
note
S =4(s,w) e Rx(HAV); w satisfies (a”),(b")},
S, =i(s,w) @ R>< (HAV,); w is a Galerkin solution of (a”),(67)f.
Then the weak solutions of (3) are such u = sg + w that

(s,w)e S and

(12) (A = A)s + (glx,89 +w),p) = t.

[=7)
Let us define F:Su( \J, 5 ) —> R by the relation

+a
F(s,w) = (A, - A )s + (glx,8p + w),p) for (s,w)e Su(mL=J4 S,
Using (1),(2) it is possible to prove by the same way as in

o0
[4, p.13] that F is a continuous function on Sv( U, S/ ) boun-

(=2
ded below on Su( U, S ) and
m=1"n

(13) lim F(s,w) = + ©
/o —> Yoo

(2]
uniformly with respect to w, such that (s,w)e S u(m_kg,f Sn).

Let us denote T, = F(O,w). According to Lem-~

8
(0,00 ) €50(US )

m
ma 3 it is T,<+ c . Suppose t>T,, there exists s_ € R such

+oo
that for all (s,w)e Su (nk=)1 S,) it is ,*M)F(s,w)> t

P el B podulh,
(see (13)). Slightly modifying Lemma (1.2) from [1] (see also
[4, p. 14]) we obtain for each n e IN connected subset §nc Sn
such that proj,R §n:> <—so,s°>. Then we obtain the existence of
1 2

(531'“’n)" §n, (sﬁ,wn)e §n’ -8 < s <0<s <s , | W;;"v<!‘ (where
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r depends only on s ) and F(s;,':) = t, i=1,2, for each n ¢

e N . After possibly passing to subsequences we can suppose

that 'rlx"’ sl, aﬁ——> 82 in R and w;—=- w

1 in vnH, By the sa-

me procedure as in the proof of Lemma 3 using the Fatou’s lem-
ma and the Vitali’s theorem (see also [5, p. 2611) we prove

1

that u, = sl? +w, u2 = 929> + 12 are the weak solutions of

(3) and u;+u, (because of t>T,). Let us demte T, =

= i F(s,w). If t<T, then according to the definition of
h,wie S 1
the set S there is no weak solution of (3).
Let -\tm}‘;;;lc (Tl,T2>, ty—> t, in R and the problem (3)
with the right hand side £ = t;% +h has at least one weak so-
lution u, = s; @ + w,. According to (13) and Lemma 2 we can sup-

pose that s’ — 8 in R and w,— w, in Vo H. Using the Fatou’s

o o
lemma and the Vitali ‘s theorem we prove that u, = 8,9 + W, is
the weak solution of (3) with the right hand side fo = ty@ +he
This proves that the set M is closed. If we take {tm}‘::l c

c ('1‘2,4-00 ), t,—> T,, we prove analogously that T,eM and the
proof Cf Theorem 1 is completed.

Let us suppose that A is an elliptic differential operator
of order 2m with smooth coefficients defined on Q) , 3Q is sup-
posed to be also of class C%® ., Using Theorems (1.4.25) and
(1.4.27) from [2] and the bootstrapping procedure (see [2, p.
50-51]) we obtain

Theorem 2. Let fe C%»°°(0), g satisfies for N>2m the

growth condition

N + 2m
N -2m'

for | z| sufficiently large and all x ¢ Q . Let g be a Lipachitz

lg(x,8)| «const.(1 +12l¥ ), for 1 < & <

continuous function of x and z. Then the weak solutions obtained
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in Theorem 1 are in CZM™ (Q ),

3. Remarks. This paper extends the results obtained in
[4] and [ 5], where the authors consider differential opera-

tors of second order, resp. the case A = 21.

Our Theorem 1 is an attempt to answer the question con-
cerning the solvability of (3) if A is an eigenvalue of (4)

and A * ]Ll (see [5, p. 255]).
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