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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROUNAE 

21,4 (1960) 

CORRECTION to .Extensions of the Shannon entropy to 
sefnimetrized measure spaces" 

Miroslav KATETOV 

Classification: 94A17 

(1) The note mentioned in the title (Comment. Math. Univ. 

Carolinae 21(1980), 171-192; quoted as ES in the sequel) con­

tains an error due to which (i) two minor assertions (in ES 

1.16, 3.7) are incorrect, (ii) the definition of a subentropy 

(ES 2.1), although correct, is not adequate (to be precise, it 

is too broad). The error consists in choosing an inappropriate 

equivalence relation on 4WMl. If the relation is replaced as 

in (5) below, all the statements and proofs remain valid with 

the exception of ES 1.16, 3.7, "the correct version of which is 

stated in (10),(11). 

(2) Notation. If <Q,j>f{*c/> is a WM-space, then JMJ?) de­

notes the set of all measures u! on Q such that dom ft* = dom <*£, 

{fe •* (it • 

(3) Def in i t ion. Let P = <Q,f, <o,> , S = <T,»,€T> be WM-

spaces . Let Fa jH(P )x M(S) s a t i s f y the fo l lowing cond i t ions 

(for convenience, we write pf ~J >>' instead of {$L\ V '> e F): 

(a) F(j|t(P)) =J i (S ) , F" 1 ( t ^(S)) = ^ ( P ) ; 

(b) i f <a^ rv l>i , i = l , . . « , n , ^SL ^ - e J t ( P ) , and 

4.1F>f ^ e i l ( S ) , then £ ( ^ ^ 2 . " ^ ; i f ^ /x/ v f a£0, 
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affile ^i(P) , aiYj e ^C(S), then a^o A/a>> ; 

(c) (4, su v ' i f f >>' = p ; pf *v v iff (uJ'& (CL* 

(d) i f £ 4 . 6 *&(P), i = 0 , . . . , n , f i ^ Z ^ ^ , ^ o ^ Vc , 

then there ex i s t V̂  6 -46(S) such that ^ ^ rv i>» , i = l , . . . , n , 

and j j ^ * * = ^ » ^ V . 6 MiS), i = 0 , . . . , n , i>Q = ^ ^ , 

^ /*; T>0 , there e x i s t ^ e U((P) such that (U^rj V. , i = 1, 

. . . , n , and ^ ^ = <% 5 

(e) i f (A'SSJV' , then <*/Q =- y'T; 

( f ) i f ^rj i>^ , then r ( ^ , ^ ) = r (-^ , ^ ) , where 

r((K^ , (U^) (.?(-».- , ^ 2 . ) , r e s p . ) stands for r«Q,tj>, (uSf> ,<Q,£>, 

^JjL> ) ( r « T , # , >?1> jT,^, V 2 > ) , r e s p . ) , as defined i n ES 1 .11 . 

Then <F,P,S> , also denoted by F:P—>S, is called a con­

servative measure-correspondence (from P to S). 

Remark. The definition can be simplified. E.g., (c) can 

be omitted, and (a) can be replaced by (a') < <u. , v > £ F. How­

ever, we prefer a detailed formulation. 

(4) Proposition. Let F:P—> S, GtS—> U be conservative 

measure-correspondences. Let G#F consist of all <(-</., /A'> € 

£ »4t(P)x Ji(U) such that, for some i>' e *4l(S) and some a .>0, we 

have <a (jjtv'> e F, <-j/,aa,'> € G. Then <G*F,P,B>is a con­

servative measure-correspondence. 

Proof. I. Put P =<Q,<p ,<u,> , S =<T,6ff y> , U = <V,y,^>. 

Put § = G*F. It is easy to see that $ c JiCP)x M.(V) satis­

fies (3a) and (3e). Clearly, < <a, X > c $ • Hence, if 

</a,A'>€ $ , then #'V = <aQ = AV, which implies X' - X • 

Thus $ satisfies (3c). 

II. Let <(cĉ  , Xjft e $ , i = l,,..,n; let ^.Z^ ̂  € 

e it(P), .IE. A. e .&(U). Then there exist V. e -4l(S) and 

a.>0 such that <a^ ^ , »^> e F, < V^fajt^> € G, i = 1,... 
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...,n. Choose a > 0 such that a<l, a<a^/n, i = l,...,n. 

Put v^ « (a/a^). v^ . Then <a ̂  , v£ > € F, < v| ,a ̂  > e G, 

1 = l,...,n. Since a<l, .2. v. 6 - ,2L V- , we get 

.siL « ^ e^it(P), . 2 . v' e ^ ( S ) , .fL a A • e iL(U). Hen-

* e , < * 4 ? ^ . J ^ i > P * F, < ^ < . a ^ ^ > • 0 and 

therefore <-S^ /.,^A^>e$ . Thus $ satisfies the first 

part of condition (3b). It is easy to see that the second part 

is satisfied as well. 

III. Let ^e it(P), i = 0,,..,n, <ao = /zL^ ^ , 

< (**-0 , A 0> c $ . Then, for some i>Q e 4t(S) and some a>0, we 

have <a p*0 , v0 > e F, < vo ,a A 0 > e G. Since (3d) holds for 

F, and a <u,0 = ̂-f--̂  a <o^ , there exist V^ 6 ^t(S) such that 

(a ĉ * > >V> 6 F> i = 1>-*«>n> ^Z-^i = vo • since ^ d ) holds 

for G, there exist X'^ c A(U) such that < V^ , X'^ > e G, 

i = l,...,n, -̂f-zf A ^ = a ^ 0 . Now put A ^ = (1/a) • fl/* . ftien 

4^/f •fc-C = (l/a)-a X0 = A ^ , hence (due to XQ e 4t(U)) X^e 

a *Ai(U), i = l,...,n. Since A ^ = a ^ , we have < V. ,a,/l/>e 

e G and therefore, due to < a (UU ,V^»> € F, < ̂u,., A . > 5 $ , 

i = l,2,...,n. Thus $ satisfies (3d). 

IV. Let <^,, fl^> e <$ , i = 1,2. Then there exist "̂  e 

e Jl(S), aJl>0, i = 1,2, such that <a^ <u. , v^> e F, 

< I>J »&; ̂ j ) e G. Since (3f) holds for F and G, we have 

?(A 1 (tc1 , a a ^ 2 ) = f( -̂  , V 2 ) = -M*,,-^! f» 1A 2 )• ̂ i s im­

plies $( (Û  , <u,a ) = r( X^ , A £ ). 

(5) Notation. If there exists a conservative measure-

correspondence F:P—> S, we put P^C/S. 

(6) The relation /x/ is an equivalence relation on iWMf. 

- This follows at once from (4) and from the fact that if F: 

: P — ^ S is a conservative measure-correspondence, then so is 
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(7) Definition. If P * <Q,5>f <t<,> f S»<T f e f f v> *f 

FUt-apacea and f:Q—>T i s a mapping such that ( i ) v t * 

* ^ ( f ^ t ) for every t e T f ( i i ) 3 ( fq f fq ' ) = y>(q,q') for a l l 

q f qVQ f then<f,P fS>, also denoted by f :P-—>. S, i s called a 

conservative mapping. 

(8) Proposition. If there exists a conservative mapping 

f : P - > S, then Prv S. 

Proof. Let S » < T,e; -p > . For any ^ e Jl (P) l e t 1 p/ 

be the measure on T defined as follows: (Fyf)X » ^'(f^CT)). 

Put F * {< ^ ' f F ^/> : <u/ £ ..#(P)$. It i s easy to prove that 

<F,P,S> i s a conservative measure-correspondence. 

(9) Proposition. If P » <Q,§>, <&t> ,S=<T f €T f v> ara 

Pin-spaces and P'v S, then, for some Fill-space U, there exist 

conservative mappings f :tf —» P, f:U—*S. 

Proof. Clearly, we may assume wP>Of wS >0. Since Prt> Sf 

there exists a conservative measure-correspondence F:P—> S. 

For convenience, we shall write y? ^ ->>' instead of <<u/>?>'> e 

6 F. For any qeQ, le t (U,Q denote the measure on Q defined 

as follows: fi*>a(<l) = <̂ (<l)> <%(<*') * 0 i f q'e Qf q '+q . Sin-

ce ĉ -= 2. (M.- , (J, /v v , there exist , by (3d), measures 

y ^ e it(S) such that ^ ~ v ^ f 2 ^ v C ^ * » • 

For any t e T , le t V̂  denote the measure on T defined 

as follows: i>t (t) » v ( t ) , -*>t(t') = 0 i f t ' e I , t ' + t . Cle­

arly, for every qeQ, there are a^t £ 0 such that 

(I) Tp'ifcr ***** * 
Since <u, *v *Ca,) » there exist, by (3d), fu*t e 4t(P) 

such that ( U * ^ a , *t , ̂ T (^ « (̂  f clearly, there 
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exist non-negative numbers b . such that (u?i « b t p, , 

hence 

(II) b^t ̂ ^ / ^ t ^ t for all qeQ, tcT, 

( I I I ) if-T \ t V-i* <** t0T a 1 1 q e Q # 

By (II) and (3e) we get 

(IV) b t (u.(q) * s t v ( t ) for a l l q«Qf t c T . 

Por any qeQ, t£.T f we put 4, < q,t> » b^ t <ci,(q). The 

space U »<Vf g>*fA> i s defined as follows; V * $ < q f t > £ Q x 

* T : A,<q,t>;>Oif p ^ q ^ t ^ f <q 2 , t 2 > ) * ^ (q^q^) , A U ) * 

* I£(A,<q,t>i <q , t>cT) . Por any v * <q,t>£V, we put f(v) « q, 

g(v) * t . 

By (III ) , for any qc Q, ^(q) a^-S^b , <a,(q) » 

-* 2 (&<q f t>: <qft>feV) * ^(g"Xq). If v JS<q-i/,t4> € Vf then 

a>*(\ t\) * P ^fQfl^ * P ^ 1 » ^ > * ^ ^ * i s a conservati­
ve mapping. 

Since v = 2L- v ** , we have, for any t d T , u( t ) -

* * £ « *C*)(t>> > « " . * « > . »<t> - t ^ q 5 ^ a ^ v ^ U ) « 

* ^ A a . v ( t ) and therefore, by (IV), -»(t) » 2.^.3. <qft>= 

- ^ ( g - 1 t ) . 
B>y (3f) and ( I I ) , we have, for any q,xeQ, t , y e T , 

*(V ^ W ^ =?(Vvt '%V* 
hence 

Jt<q,t>^<x,y> p (q,x) =-A<q,t>A,<x,y> tf (t,y). 

Por<q,t>€V, <xfy>eV, this implies p(q,x) =- €T(t,y), hence 

rt>*«q,t>,<x,y>) = €f(t,y). Thus g is conservative. 

(10) The assertion (ES 1.16) that the relation *s (de­

fined in BS 1.15) coincides on *£PIM} with the equivalence re­

lation, also denoted by /\/ , introduced in QE 1.4 (Ql stands 
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for M. KatStov, Quasi-entropy of finite weighted metric spa­

ces, Comment. Math. Univ. Carolinae 17(1976), 797-806) is to 

be replaced by the following one. 

Proposition. The relation AJ coincides on IFWMj with 

the equivalence relation introduced (and denoted by A/ ) in 

QE 1.4. 

Proof: follows at once from (8) and (9). 

(11) The assertion (stated without proof in ES 3.7) that 

C* is not invariant with respect to conservative morphisms 

(introduced in ES 1.13) is to be replaced by the following 

one: the function C* is not invariant with respect to conser­

vative measure-correspondences. 

(12) Ihe definition of a subentropy (ES 2.1) is to be 

changed by substituting ¥ £J P for P •*>/ P • 

Matematiek# ustav fiSAV 

Zitna 25, Praha 1 

Seskoslovensko 

(Oblatum 26.6. 1980) 
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