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A COMPACT FRECHET SPACE WHOSE SQUARE IS NOT FRECHET
Petr SIMON

Abstract: We shall prove in ZFC only that there: exist
two compact Hausdorff Fréchet spaces xl, such that X.lx 12

is not Fréchet.
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- In 1977, E. Michael raised the question whether there ex-
isted two spaces X,, X5, both compact Hausdorff and Fréchet,
the product of which was not Fréchet (LMil, Problem 3). A to-
pological space X is Fréchet if for each non-void M&X and for
each xeM there is a sequence {xn:n € w3} < M converging to x.
Assuming various set-theoretical axioms, V.I. Malychin [Mal,
R.C, Olson [0O], T.K. Boehmeand M. Rosenfeld [BR] gave examples
of such spaces.All those examples are twin brothers - they are
Franklin compacta (the definition is given below) constructed
from some suitable almost disjoint family on N; our example is
yet anothér one of the same nature. The heart and soul of all
the constructions mentioned lies in the existence of a "well-
behaving" maximal almost disjoint system. We shall show that
the MAD family needed really exists.

Let us recollect some necessary notions and facts. N will
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denote the set of all natural numbers (and, if considered as
a topological space, its topology is discrete). An almost dis-
joint family (abbr. AD) on a set X is a collection P& [x1®
such that PnP” is finite for any two distinct members P,P‘c
¢ P . A meximal almost disjoint family (abbr. MAD) on X is
an AD family on X properly contained in no AD family on X.

Let © be AD on N, let X<LN1®, Denote Xan ® = {PnX:
:Pe® and |IPAX|=w}, Let J(P) ={X€INI®:X m P is fi-
nite}, JN®) = [N1® = J(P) = {X€[NI1® :X an P is infini-
te}, M(P) = {XeIN1® :X nnPis MAD on X3.

For Ac N, denote as usual A* = clA - A, where the closure
of A is taken in (N, the Cech-Stone compactification of inte-
gers. Then for Xe[NJw, P AD on N, the set X belongs to M(P)
if and only if X*cclU{P*P e PJ .

Let 3 be AD family on N, The Franklin compact & (J?) is
a topological space whose underlying set is Nu Puiwian
whose topology is given as follows: N is a set of isolated
points, a basic open neighborhood of a point P ¢ & is {P} U
v cofinite subset of P, 0 is a point distinct from all neN
and all P € ® | which coupactifies the space N v ® , Equiva-
lently, #(4°) is a quotient space of (3N modulo the equiva-
lence x~x’ iff x,x’¢ N* and either i{x,x?SP* for some P& P
or {x,x3InP* = @ for all Pe P . Clearly F () is a compact
Hausdorff space.

The crucial properties of Franklin compacta were stated
by V.I. Malychin in [Mal:

(a) #(P) is a Fréchet space iff N* - U{P*:P & P 7 is
a regular closed set in N*, equivalently, iff M(P) e TJ(P).
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(b) If P= Pyu P, is ADon N and P) N P, = ¢, then
the product F(Pq) = F( 4’2) is not Fréchet iff N* - U{P*;
:P & 3} is not regular closed in N*, equivalently, iff
Mm®)n IR+ 0.

(¢e) In particular, M(P) n IYN(P)+P if P is an infi-

nite MAD system on N, hence it suffices to show the following:

Theorem. There ’ia a MAD family 3 on N and its partition
Pouv Py = P such that M(P;) e J(P;) for i =0,1.

Indeed, Y (a), F(T,) as well as F( ®;) is Fréchet, but
by (b) and (e), F(F ) = F(P;) fails to be.

Before giving a proof, let us state and prove a lemma, due

to J. Dolkdlkova:

Lemma [D]. Let J° be an infinite MAD family on N, {X 2
2x2 2...1 a countable subset of JY(P). Then there is a
set Ye J¥(P) such that for eachn e @ » ¥ = X, is finite.

Proof. (hoose y(O,n)e X, for each n20, y(0,n+1)>y(0,n).
The set Y(0) = {y(O,n):n=0}% is infinite and P is MAD, hence
there is some P e P with P nY(0) infinite. Set XQ1), =X, -
- P,. Since X € I*(P), the set X(1),, belongs to 3*¥(®), too.

Choose y(1,n)e X(1), for each nZ1, y(1,n+l)>y(1,n). The
set Y(1) =<{y(1l,n):n>1% is infinite and $ is MAD, hence the~
re is some P, ¢ P with PN ¥(1) infinite. Clearly P,+P, be-
cause P n X(1), = # for all n. Proceeding by an induction
(y(kx,n) € X(k),, are chosen for nZk only), we obtain the set

Y =U{Y¥(k)nP k ¢ @} , which has the desired properties. U

Proof of the theorem. Suppose the theorem to be false,

i.e.

(%) for each MAD family J° on a countably infinite set ani
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for each partition P u Py = & there is an i¢{0,1f and &
set X, « IT(F) N M),

Let 3 be a MAD family of sige continuum on N. Enumera-
te P as P={P:ire“2. Let Pn,ic {Pp:f(n) = i} for n e

e @ , ie40,1}. Clearly for eachne <« , P v P . =7,
O n,l

n
Pn, 0" Pn,y = 9
- Induction. n = 0: By (x), there is some i e 10,1} and a

+ +
set X ¢ J (CPo’io) n m( .’F‘O,io). Thus X & J (P).

n=1: X An P is a MAD family on X, and {X An Py o,
’
XoAA 5’1,1} is its partition. By (k), there is some i, € {0,1{
+
and a set X, & J (XOM fpl,il) N m(lﬁ,\,\ fpl,il)' Clearly

X € T (P).

n=2: X% AP is a MAD family on X, and {X; An 7’2’0 ,
Xy AA 5‘2,’1} is its partition. By (%), there is some ize-io,l?
and ... it is obvious how to proceed further on.

.At the end we obtain a sequence xoa xla XZQ «ss and a se-

Ll
Jn,i )n

n
A MUPy 5 ). Let £e“{0,1} be defined by £(n) = iy, let Y&
n

quence {i,:n ¢ ©} of zeros and ones such that X e 7 ¥

€ J'(P) be the set the existence of which is guaranteed by
the lemm: Y - X is finite for each n € @ . Since Ye CME DN
we pave 1Y Pgl = @ for infinitely many g’s from “40,1}, pick
one such g distinct from f. For some n € @ , f(n)4g(n), fix
this n.

From |Y - X 1< @ and |¥nP, | = @ followe that I Xpn Pl=
= w.NowP ¢ g’n,f(n)’ hence IPBnP‘< @ for each Pe fpn,f(n)
and X N l’8 is infinite, yet X AA ?n’f(n) is MAD on X - & con-
tradiction. O
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Remark., A more detailed examination of the proof just
given shows that a bit more is valid, namely:

For each infinite MAD family 4 on N there is some X ¢
€ J'(p) such that XAn P is a MAD family on X having the

property stated in Theorem.

References

[BR] T.K. BOEHME, M, ROSENFELD: An example of two compact
Fréchet Hausdorff spaces, whose product is not
Fréchet, J. London Math. Soc. 8(1974), 339-344.

[D1 J. DOCKAIKOVA: Almost disjoint refinement of families of
subsets of natural and real numbers (in Czech),
Rigorosni préce, CKD Praha, z4vod Polovodile,
Praha 1980.

[Mal V.I. MALYCHIN: O sekvencial nych i FreSe-Urysona bikom-
paktach, Vestnik Moskov. Univ. 5(1976), 42-47.

(Mil E. MICHAEL: A quintuple quotient quest, Gen. Top. and
Appl. 2(1972), 91-138.

(Mt} A.R.D. MATHIAS: Happy families, Ann. Math. Logic 12(1977)
59-111.

£ol R.C. OLSON: Bi-quotient maps, countable bi-sequential
spaces and related topics, Gen. Top. and Appl.
4(1974), 1-28.

Matematicky Ustav
Universita Karlova
Sokolovskéd 83, 18600 Praha 8

Ceskoslovensko

(Oblatum 15.9. 1980)

- 753 -



		webmaster@dml.cz
	2012-04-28T06:23:24+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




