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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
21,4 (1980)

A NOTE ON THE SPLITTING LENGTH OF A FINITE DIRECT ‘SUM
OF MIXED ABELIAN GROUPS OF RANK ONE .
Ladislav BICAN

. Abstract: The purpose of this note is to show that the
splitting length of a finite direct sum A of mixed abelian
groups of rank one does not depend on the splitting lengths
of the summands provided that the rank of A is greater than 1
and at least one of the summands is non-splitting. More preci-
sely, it is shown that the gplitting length of a direct sum of
mixed abelian groups Al,Az,...,Am of rank one with the splitting

lengths k< k,£... €ky, m22, k= 2, can take an arbitrary va-
lue from the set {k ,k +1,...,0%.

Key words: Splitting length, p-height sequence.
Classification: Primary 20K25

Irwin, Khabbaz and Rayna [8] have studied the splitting
properties of the tensor product of mixed abelian groups. They
defined the splitting length of a mixed grox;p G as the infimum
of the set of all positive integers n such that the n-th tesor
¢" =g @ng-:t:}mgs@c' splits and they constructed a mixed group
of rank one having the splitting length n for every positive in-
teger n. In my previous paper [3] I have characterized the mixed
abelian groups of rank one having the splitting length n and in
[4] I have characterized all pairs A, B of mixed abelian groups
of rank one having the property that the tensor product A® B

splits. In this note we are going to prove the following result.
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Theorem. Let ky,Kp5000,ky, mZ2, be arbitrary positive

integers, not all equal to 1. Then for each £, max{kl,kz,...
eeoskyl £ L £ 00 , there exist abelian groups Aj,A;,...,A; such
that each ‘i has the splitting length ki i=1,2,...,m, and the
direct sum A = 4;® A, ® ... ® Ay has the splitting length L.

Thus, the splitting length of a finite direct sum A of mi-
xed abelian groups of rank one does not depend on the splitting
lengths of the summands provided that the rank of A is at least
2 and at least one of the summands is non-splitting.

By the word "group" we shall always mean an additively
written abelian group. As in [1], we use the notiors “characte-
ristic” and "type" in the broad meaning, i.e.- we deal with the-
se notions in mixed groups. The symbols hg(a), 'tA(a) and
24(a) denote respectively the p-height, the characteristic and
the type of the element a in the group A. & will denote the
set of all primes. If T is a torsion group, then Tp is the p-
primary component of T and similarly, if »’c & then T, is
defined by Tpr = 4»%,1@') Tp. If #’s w and if A is a mixed group
with the torsion part T(4), T(A)_, = O, then for each subset
SSA the symbol (S):, denotes the &r’-pure closure of S in A,
the existence of which is easily seen.

For a mixed group A with the torsion part T(A) we denote
by A the factor-group A/T(A) and for acA, & is the element
a + T(A) of A. The symbol lal means the order of the element
aeA, The rank of a mixed group A is that of A. The set of all
positive integers is denoted by N, N, =X v{0}. Other notation
will be essentially the same as in [5)]..

It has been proved in [1l; Theorem 2] that a mixed group A
of rank one splits if and only if each element a & A\ T(A) has
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a non-zero multiple ma such that 7 ®(ma) = 24(d) anl ma has
a p-sequence whenever hA(E) = o0 (i.e. there exist elements
)

hép = ma, h](_p),... such that pl'x’ﬁg:)L = hép), n=0,1,...). Recall

[ 3], that the p-height sequence of an element ac A is the doub-

le sequence {k;, lii‘;;o of elements of N, u foo} defined in-

ductively in the following way: Put k; =k = ’eo = 0 and 11=

X .

= hg(a). If ki”ei er; dgfined and either hg.(p ia) = 'ei =00,
s 4

or li< 0 and hg(p 1 a) = fei

kiyg = k; and £, 0 = £..If £; <co and there are ke N

+ k for all ke N then put

A ki+k
with hp(p a) > li + k then let k;,, be the smallest posi-

tive integer for which hg(pki"'la) = £i+1 > ii + k0 - k.

For the sake of simplicity we shall use the notation a’ =
a®a®...® acA’, re N, Moreover, the symbols AT® B® and
a' @ b°, reN, will simply denote AT ana ar, respectively.

If ¥’ v and Le N, then we shall say that a torsion-
free group A of rank one is of the type (s;£) if it contains
an element a such that h:(a) =4 for each pe 7" and hg(a) =
= 0 for each p € ¥\ o’ . Further, if ¥’c & and k,£,meXN,
m>k +£ , then we shall say that a mixed group A of rank one
is of the type (ar’;k,£,m) if T(A) .= O and ANT(A) contains
an element a such that for each prime p € ’ the p-height se-~
quence of a in A is {k;, li}c;;o, where k, = k3 =...= k, ll =
=2, £, = »33 =...= m and for each prime p € s\ s’ the p-
height sequence of a in A is ik,, ’ei}:?.:o’ where k =k, = ...
vee = A= A =L =0,

We start our investigations with some preliminary lemmas.

Lemma 1. If y#'caw and Le N, are arbitrary then there

- 741 -



exists a torsionfree group A of rank one and of the type
(ar’;4).

Proof: Let x»’ = {pilie I3, U =<(%> 64?2? { a;> be a free
group and V = {& - pﬁnilie I” be its subgroup. It is an easy
exercise to show that the fdctor-group A = U/V is torsionfree
of rank one and the element a = @ + V has the desired proper-
ties.

lemma 2. Let ¥ 'S & be an arbitrary set of primes., If
k,£2 ,meN, m>k +£ , then there exist a mixed group A of rank
one and of the type (x’;k, £ ,m).

Proof: Let ' =1ipyliel}, U=<%>0.2® (a{h @
® (a,g_z))) be a free group and V = <% - pﬁa:{l), pl;'é - p?ai(z)l
li €I> be its subgroup. Obviously, the factor-group A = U/V is
of rank one and we are going to show that the element a = & + V

has the desired properties.

-

If the equation p®x = p'a is solvable in A then p'& =
= nS(a % (1) (2) v £ (1)
=p A&+ Z, Aja7 + Ty we7) +, T 05(E - piagT) +
+ J.%I Si(pfﬁ - pg_'ai(_z)) (all the sumes have only a finite mumber
of non-zero terms) and consequently

r_ . 8 : k

W v =pA + F s N3 PG

(2) 0=p° A - p’fgoi, ieI,

3) 0=p%w; -p}6,,icl,

If p ¢ o’ then p° Igui, p® |6i, iel, by (2) and (3), hen-
ce p°|pr by (1) and h:(pra) =r,

Assume now that p = p. for some jeI. If re{0,1,...,k-1}
then pgﬁ' = pgdagl) + pg(a' - ﬁgai(_l)) and so hg(pra)zr +4 .

J
If a>r + £ then (2) and (3) vield ;= 0 (mod ps), €;=0
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(mod ps), J+ieI, and Sbjz-o (mog p""l)

_ . Hence, by (1)
p'= pk G’J- (mod p® ’l') and 80 1% ? !

Kep

P 6 (moa ps—l ~T), a con-

L A, 1
. T =
tradiction. Thus hp(p'a) =T + ¢ o oo red0,1,...,k-1%.

Suppose now that rz k. Thep obviously px:,é/ - pn}+r-k‘(_2)+
m (2) A, p J J

BRE ) and 80 hy(p¥a)>m + r -k, If s> m + 1 ~

- k then (2) and (3) yield ;= 0 (mod ), 6, = 0 (mod p’),

jfiel, and @; = 0 (mod p*t

), p¥ g’ = 6’j for a suitable

. r -
integer 6’:5. Hence, by (1), p = p8-m+k6/j (mod p°® £y and so

1= s-m-r+k s-4£ -ry ,

6 (mod p a contradiction. Thus hg(pra)=

=m+ r - k for each r=Xk and the proof is complete.

Lemma 3. Let A be a mixed group of rank one. If w'<s ¥
is infinite and if A is of the type (a’;k-1,1,k+l+m), k=2,
meljo, then A has the splitting length k and for each re{l,Z,
+ee,k=1% the tensor power AT is of the type (o’ jk-r,r,r(m+l)+
+k).

Proof: Obviously, (k-1)(k+l+m-(k=-1))=(k=1) = (k-1)(m+l)>
>0 and A has the splitting length k by [3; Theoreml,

If ae A\ T(A) is an element having the properties stated
in the definition ‘of the group of the type ( ”,k-1,1 k+l+m)
then the assumption 'T(A)ﬁ,\”,= 0 obviously yields h:r(psar) =
= g for each prime pe s\ s’.

Agsume now that p = P; for some jel. It ia easy to see
that for each a’e A the p-heights of the elements a’,a’+ T ipd
in the corresponding groups are the same and from this it ea-
8ily follows that we can restrict ourselves to the case of T(A)
p-primery. If pay = a, pk+l+ma2 = pk'la nd t = pm+1.2 -8
then by [4; Lemma 81 and [3; Lemma 8) the group A decomposes
into A ={t>®@V® <az‘lﬂA\{p5. where {t>@® V = T(A). Moreover,
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r
a= pm+2 a, - pt and so A (%) = r. Finally, pk Tal -

= p (a@ r-l) = pk+1+m(52® r-l) =,, .= p(m+1)r+ka12-’ from

which the assertion follows easily.

Lemma 4. Let ar’€ o be infinite and A, B be mixed
groups of rank one and of the type (' ;k-1,1,k+m+2), (&”;
(m-1)(£-1), £-1,m£L), kZ2, £ = mz3, respectively. Then
2'2® B does not split. The same holds if A is a torsionfree
group of rank one and of the type (ar’;m-1).

£=2

Proof: If £~ 2<k then & is of the type (a ;x-2 +

42, £-2, (£-2)(m-2)+k) by Lemma 3 and if £- 2z Kk then A*~2
splits and its torsionfree direct summand is of the type (o%
(m-1) (£ =2)). In both cases we have (.£-2)(m-2)+k - (k-4 +2) =
- (m-1)(£-1) = (m-1)(£ =2) = (m-1)(£=1) = = (m~1)< O and
2*~2@ B dces not split by [ 4; Theoreml (or [4; Corollary 31).

The rest is similer.

Lemma 5. Let A,,A,,...,A; be mixed abelian grroupe me N.
Then (4; ® 4,@ ... ® Am)Z splits if and only if A11® A22®
r
m s s -
® ... @Ay, splits for all ry,Tp,ee.,rp€ N mmig r; =4.
Proof: The assertion follows easily from the simple fact

that A@® B splits if and only if both A and B are splitting.

Proof of Theorem: With respect to Lemma 5 we can suppose
that klé k2"‘ ...-km< o© . Now we shall divide the proof into
several cases.

I. £ < o0.

1. Let k;>3 and let je10,1,...,m-1} be such that 1 =
=k = kp =...= kj<kyy €00 £k, For each ie€d1,2,...,jf let
A; be a torsionfree group of rank one of the type (:n";km-l),

for each ie{j+l,...,m=1} let A; be a mixed group of rank one
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of the type ( o ;ki-l,l,ki+km-2) and let A, be a mixed group
of rank one of the type ( ;(km-l)(l-l),£-1,km£ ). The
groups A;, i= 1,2,...,m, have the splitting length k; by Lemma
3, the group A 1@ A, does not split by Lem;xa 4,rso that vith
respect to Lemma 5 it remains to show that A ®A22® eee ® ‘m
splits whenever ry,rs,...,r €N and 4‘.%‘:1 r; = £ . By.L1; Theo-
rem 2] it suﬁficee to show that

All'ls Y e r, T, v

hy (@8, "® 0o ® ay ) =L (ke -1) (8),85,...,8y
are the elements having the properties stated in the definition
of the groups of the corresponding types). For each pem we

-1
have p " a{])cai' aél)e Ajy ied1,e2,...,jf, Pail) = a;

1'
k:+k -2 k.-1
p *u 315.2) =pt a4, a{l), 3{2)5 Ay, ie{j+1,...,n-17, and

8 (k -1)(£-1)
l 181511) = am P alsIZ) =p n am’ &n(ll),algz)ﬁ %. Now let
k be the first integer with r > O, If k = m then aﬁ = pl(l-l)

kp -1) k2
(a(lln))l’ p B aéll) =p 0 aéz) and the induction yields df, =

L(L+x_=1)
- K (al?))

(£ -1)(L-k)Z 0. Now if k € {j+1,...,m-1} then p “i, 1 =
| Fitk? @

£ owing to the fact that £(4 -1) - km(f -1)=

, i6dk,k+l,...,m-1y, If we put oc= £+ r (£ -2)
and 3 = o + (km-z)(,e-rm) then v 2 £ Z X, ie€dk,k+1,...,m-1},

b of r !‘
and Qkké .-o83mm=p°°((8£1)) @(%1))

r
p("‘((%Z))k@...@(amz))m1®(aml)) )e For v =0 we
are ready and for r; >0 the 1nequa11ty - Xp(L-1) =

r. - ulk +r _~1)
= (4= Xy)(ry = 1)20 yields ak ® eee ® anm xk’“r

(a2 g .. (2))"m),

® (ay Finally, if k e{1,2 ..., then
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=L +r (L -23"_: (km'Z);,jZlq, rizdz Xk, 1edijrl,...,m-1g,
=+ (g=2) =y riy A=k (L-1) = (£-k )(r -1) and the

assertion follows as in the preceding case.

a) Let £2 3 and let je 40,1,...,m-1% be such that 1 =
=Xy =k, =...= kj< kj+1 =...= kg = 2. For each i€11,2,...,3%
let A; be a torsionfree group of rank one of the type (ur i2),
for each ie {j+l,...,m-1} let A; be a mixed group of rank one
of the type (& ;1,1,3) and let A, Ye a mixed group of rank
one of the type (& ;2(£-1), £ -1, 4(:£ -1)). The groups A,
i=1,2,...,m, have the splitting length k; by Lemma 3 and the
group-'ltﬁ:%@ A, does not split by Lemma 4. The proof of the
splitting of A is similar to that in 1.

b) Let £ =2 and let je40,1,...,m-1§ be such that 1 =
=k =ky =, .= kj< kj+1 Ze.o= kp = 2, For each i€ {1,2,...,3%
let A.1 be a torsionfree group of rank one of the type (x ;1)
and for each ie {j+l,...,m§ let A; be a mixed group of rank
one of the type (#;1,1,3). The groups A;, i=1,2,...,m have
the splitting length ki and the splitting length of A is ob-
viously 2.

II. £ = c0 -

Let p be a prime and j €10,1,...,m-1} be such that 1 =
=X =k, Te.e= k.]"kji-lé"’ékm' For eat'.th i€41,2,..4,3¢
let 4, = Z (the group of integers), for each i e {j+1,...,m-1%
let Ai be a mixed group of rank one of the type (ar\{p?%;
ki-l,l,ki+1) and let A, be the group generated b}(rkttji )gle-
ments a,,87,000- with respect to the relations p m a; =

i
(k-2)i
=p a,. The groups A;, i=1,2,...,m-1, have the split-
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ting length k; by Lemma 3 and the group Am has the splitting
length k; by [3; Example] (see also [8]). However, for each
L > 1 the group Afn:i is p-reduced, no non-zero element from
Am has a p~-sequence and hence the group 4':% ® A. does not
split by [4; Theorem]. Thus the group A is of infinite split-
ting length dnd the proof is complete,
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