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REMARKS TO A MODIFICATION OF RAMSEY-TYPE THEOREMS
Martin GAVALEC, Peter VOITAS

Abstract: A typical result in the paper: if ¢ is a re-
gular cardinal, then in any graph G of power Zx there is s
subgraph H of power Z,¢ such that every vertex of G is adja-
cent to precisely, none, one or Z2¢ many of vertices of H.
Similar theorems are presented for s¢ singular and for graphs
describing comparability in posets and trees. ’
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1. The well-known Ramsey theorem [3] claims: "Every in-
finite graph contains an infinite subgraph in which either e-
very two vertices are adjacent or no two vertices are adjacemnt".
Recently, I. Rival and B. Sands in [4] offered a new approach
to the problem: "while Ramsey s result completely describes
the adjacency structure of the distinguished subgraph, it pro-
vides no information about those edges which join vertices in-
side the subgraph to vertices external to it". The main results
in [4] are the following theorems RS 1, RS 2,

(RS 1) Every infinite graph G contains an infinite sub-
graph H such that every vertex of G is adjacent to precisely,

none, one, or infinitely many of the vertices of H, Moreover,
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every vertex of H is adjace-t to none or infinitely many, of
the vertices of H.

In [4] an example is given which shows that, in general,
the distinguished subgraph H cannot be chosen so that it is
either comple te or totally disconnected. However, for graphs
describing the comparsbility in posets, Rival and Sands proved
a stronger result which is closer to the Ramsey theorem.

(RS 2) Every infinite poset P of finite width contains
an infinite chain C such that every element of P is comparab-
le with none,or infinitely many, of the elements of C, Moreo~
ver, if P is countable, then C can be so choéen that every ele =
ment of F is comparable with none of the elements of C or eve-
ry element of a cofinite subset of C,

In this paper we consider generalizations of the above
theorems for all cardinalities. Ramsey theorem with the expres-
sion "of cardinality at least 3 " instead of "infinite" holds
for weakly compact cardinals ¢ only. Such uncountable cardi-
nals are rather large and their existence is not provable from
the axioms of Zermelo-Fraenkel set theory. In contrast to this
fact &e show that the theorem RS 1 can be generalized, in fact,
for all cardinals,

For brevity, we call a ncn-empty subgraph H of a graph G
& (0,1, )-subgraph if every vertex of G is adjacent to preci-
sely, none, one, or at least 3 many, of the vertices of H.
Atulogously ~ with comparability - for the notion of (O, )=

chkinin in posets.

Theorem 1. If G is a graph of power 2 2 , 3¢ infinite

regular cardinal, then there is a (0,1,7¢ )-subgraph H of G of
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power = 2¢ . Moreover, every vertex of H is adjacent to none,
or at least & many, of the vertices of H.

If the cardinality of the graph G is a regular cardinal,
then Theorem 1 gives the best possible result. For graphs of
singular cardinality the situation is described by the follow-

ing theorem.

Theorem 2, If G is a graph of power 2 , 3¢ infinite sin-
gular cardinal, then for every « < ¢ there is a (0,1,o )~sub-
graph H of G of power ¢ . Moreover, every vertex of H is adja-
cent to none, or at least o« many of the verticea of H.

The result of Theorem 2 is the best pocssibie. It is casy
to find an example of a graph G of singular power 2¢ which does
not contain any (0,1, 3 )-subgraph of power 3z¢ .

In Theorems 1,2, as well as in RS 1, the distinguished sub-
graph need not be complete nor totally disconnected. Even a we-
aker condition with the almost-completeness and almost-discon-
nectedness need not be satisfied (a graph H of cardinality ze
is almost-complete if any vertex of H is adjacent to all but
< 3¢ vertices of H, an almost-disconnected graph is defined
analogously). This follows by a "translation" of the correspon-
ding example given in [4): Let %¢ be an infinite cardinal num-
ber and A ={a j v €23, B ={b; xei, C=4c o 62
be disjoint sets of power 9%¢ . The vertices of G we choose to
be AuBUC. For edges of G we choose (%c’bﬁ)'(boc’cp)'(cxva,s)’
where «, 3 ¢ ¢ and o < (3 . Each (0,1,2¢)~subgraph of G of
power 3¢ is not almost-comple te mor almost-disconnected.

For graphs describing the comparability in posets a com-
plete subgraph corresponds to a chain. Here we get closer to

Ramsey, in generalizetions of Theorem RS 2 for higher cardina-

- T29 -



lities. By the width w(P) of a poset P we mean the 41eaat cardi-
nal number oc such that there is no antichain of cardinality oc
in P. A poset P is called a tree if for any ae P, the set of
all elements lesser than a is well-ordered.

The well known Ko6nig lemma [ 2] implies that any infinite
tree of countable width contains an infinite chain., Kdnig’'s
methods allow also to find a chain of regular cardinality in
any poset of cardinality s¢ and of ccuntable width or in any
tree of cardinality 9¢ and of width A <3¢ under the assumption
that 2g< 2¢ holds for al » < A . These are not the best re-
sults, e.g. the regularity of 9¢ is not necessary for trees, it
suffices 2”< cf(ag) for all » < A ).

The following theorems are connected with the generaliza-

tions of Kénig lemma as well.

Theorem J. If P is a poset of cardinality 2 , s infini-
te regular cardinal, w(P) < c> , then there is a (0,2 )-chain
in P,

Theorem 4. If s¢ is a singular cardinal, then there is a
poset P of cardinality +¢ , w(P) = 3 such that there is no
(0,2¢ )-chain in P,

Thus, Theorem RS 2 cannot be géneralized to singular car-
dinalities. The generalization to regular cardinalities invol-
ves the condition w(P) « w which cannot be weakened even to
w(P) £ @ . However, for a tree T the condition w(T) < ¢ suf-
fices. Further weakening to w(T) £ 2¢ depends on Suslin’s hypo-
thesis (in fact, it is equivalent to it), which itself is an in-

dependent statement of Zermelo Fraenkel set theory ([11,[61,05]),

Theorem 5. If 2¢ is an infinite regular cardinal, then
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there is a poset P of cardinality e , w(P) = w , such that

there is no (0,3¢)-chain in P,

Theorem 6., If T is a tree of cardinality a2 , g infinite
regular cardinal, w(T) = A < 3¢ s.t. 2~ 2 holds for any

» <« A . Then there is a (0,9¢)-chain in T,

Theorem 7. If s is an infinite regular cardinal, then the
existence of a tree T of cardinality ge , w(T) =2 with no
(0,% )~chain in T is equivalent to the existence of a Suslin’s
3¢ -tree, i.e, a tree S of cardinality g¢ , w(S) = with fo
chain of cardinality 2¢ in S.

The condition concerning regularity of 9¢ in Theorem 6 is
substantial. A trivial construction gives an example of a tree
T of singular cardinality 2¢ , w(T) < 3¢ with no (0,3 )-chain

in T.,

2. In this section we give proofs of Theorems 1 - 7. We
want to stress here that, what Theorem 1 concerns, the substan-
tial work has been. done in [4]. Our proof of Theorem 1 is a mo-
dification of the one in [ 4]. However, for the reader’s conve-
nience, we bring her.e the complete proof.

Let us start with some definitions. The graphs are assumed
to be ordered pairs G = (V,E) where edges form a binary, non-
reflexive, symmetric relation E on the set of vertices V. For
Hec V we speak about a subgraph H of G meaning the structure
(H,EnE?),

The neighborhood of a vertex ac V is the set N(a) ={x €
e Vi(x,a)c E}u {a},for Ac V we set N(A) =U {N(a);ac A}. Let

Q. be a set of cardinals, we say that BE V is an (-subgraph
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of G if for any vertex xé V either

(1) IMx)nH|eQ@ or

(2) [N(x)~nHi>supQ holds true.

If (1) holds true for all xe V, we say that H is a strictly
Q -subgraph of G.

Proof of Theorem 1, Let G = (V,E) be a graph with |Vi2
Z 2¢ . Denote

P={xeV;IN(x)I< 2}

T =4ixcV;iN(x)n Fl< 2}

The proof splits into three cases,

Cese I. let [Fl < 2¢ ., Put H = V - N(F). By regularity of
2t , H is a (0,7¢)-subgraph of G of cardinality = 7€ .

Case II. Let (Fl= 3¢ and for any xe F let N(x)c T. The
set H =4 Xei € € ¢ we choose by induction in such a way that
xﬁe‘r ~U{B(N(xp))jq e §} for any fese . ThenH is a
strictly (0,1)-subgraph of G, Note that in this case it is pos-
sible to take H of the same power as F,

Case III, Let |Fl| > g¢ and assume that there is an ele-
ment x e F with N(x)¢ T. By transfinite induction through « € %
we' choose n increasing sequence of ordinals { v, ; < € s f
and a set of vertices of F 'l'xg; § e» } as follows.

Take x ¢ F such that N(x )¢ T and put » = 1.

For ot ¢ o¢ assume that{v, ;y ¢ o }and -ixg; §< supiv,;

w €% 3} are already chosen. Put v = sup{vp; 7 < =}
A,‘,"{yéﬂ -T; (Age»t )((y,xg)é E)}
By =4N(y)nF; ye A 3.
Take Y= »% + |B.| and a numbering of B,
Bw={c§5 » = £ < Vo §

For § such that »Z % § < », take x; such that x.c Ce and
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xg¢ v {I(N(xﬂ)n‘r)nr; C=n<g¢. Then H =-Cx§; fes

o« & 2e}is a strictly (0,1,2¢ )-subgraph of G. (Hint: if a ver-
tex e is adjacent to Xey Xyy M < § <o , then ec A for some
« & %¢ . Then N(e)n FeB_ for cofinally many < € %€ .)

Proof of Theorem 2. Assume cf{3t) =A and let -{;e§;

? A% be an increasing sequence of regular cardinals .‘.eater
than o such that ¢e = sup -facf; §eAfand (Vg 6 )(%§>
> sup {ae,,L; N <§3%) hold true.

For ¢ e A denote

Ff ={aeV;IN(a)f=< oeg}

Te ={acV;INa)nF < xif

Case I, Assume l!‘i | < aeg for some { € A , then
v - N(FEH =% and V - N(F;) is & (0, < )-subgraph of @.

Case II. Assume 'Ffl z ac? for any f‘s A and let
N(Fg)g T? hold for any g belonging to a cofinal subset LcA .
For any g € L there is H.c FF’ IHFI = ac? such that Hf is a
strictly (0,1)-subgraph of G and K,,Zs Hg holds true for 7 £ §
(use the proof of Theorem 1, case II)., Then H =U{ Hf; fe L
is a strictly (0,1)-subgraph of G with card (H) = %€ .

Case III. Assume IFF‘ = e for any £ ¢ 4 and let
N(F§)$ T¢ hold for any § belonging to a cofinal subset e A,
For any ? 6 L* there is a H’;S FE of cardinality % which
is a (O,I,xg)-aubgraph of G. Moreover, for any c ¢T., N(c)n H.F
is of cardinality O or aef (use the proa® of Theorem 2, case
11I).,

Put Hg = H - NON(U {H,; ne§n L¥¢ )nl‘g Jak ,H=
= u{'Hg; ge L* 3, If we denote by Q the closure (in the ordi-
nal topology on 2¢ ) of the set {0,1, “’E ife L*$ then H is

strictly Q. -subgraph of G with [El = 3¢ .
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Proof of Theorem 3. Let P be a poset of regular cardina-
iity 2¢ and of finite width n. By KSnig-typ;e argument it is
possible to show that P cor;tains a chain C of cardinality »e.
In what follows we proceed by contradiction and assume that
there are no (0, 3¢)-chains in P,

For x¢ P denote (x> ={yePjy<x}

{x) ={yeP;x4y} and put

C, =ixeC;lCnlxdl< 21

¢, =ixec;lcnix)| <90}

The assumption icou Cli < o¢ implies that C - (C_uC,) is
a (0,2¢)-chain in P, Thus, without loss of generality, we may
suppose that lCol = 3¢ and, moreover, that the ordinal type of
C, is 2¢ . Then a chain K in P ard a regalar cardinal A , O<
< A < 3¢ can be found such that

(i) the ordinal type of K is A x 2¢

(ii) there is no chain H in P of the ordinal type % such
that (VxeH)(VyeK)(x>y)

Claim. There exists a sequence (Ksji @ @ ) of chains im
P such that each K; fulfils (i),(ii) with the same A and

(111) (Vie o )(VxeK; ) (Kn<x) = §)

(iv) the function f defined for xeK;,, W f(x) =
= min (K; -(x>) is en order isomorphism of K;,, into K;. (The-
refore, by (i), f(K,,,) is cofinal in Kg.)

From the claim, Theorem 3 follows. We come to contradic-
tiop by constructing an antichain x € K, X1€ K ,.00,0 €K 5.
The element X1 v choose arbitrarily, X1 in such a way that
x; 14 Xy e00yX,_ 3+ By (i), (iv), this choice is always possible.
By (iii) and by the cofinality mentioned in (iv) we have

:i_l *- xi g ,xn_lc



It remains to prove the claim. We set K =K and show how
to construct K;,, from K;. By inductional assumption the ordi-
nal type of K; is A <2 . For § €A denote by k(®) the sub-
chain of K, that corresponds to {§} < 2¢ in A > 28

Further, denote M; ={xePjK;n<{x) = F&K:*K,n (x>% X
and for x€M; put £(x) = min (K; - (x> ). The nonexistence of
(0,2¢)-chains in P implies that M; is non-empty and f(M;) is co~
final in K;. Moreover, f(M;) must be cofinal in k‘§) for any
§ € 2 . Thus, the ordinal type of f£(M;) is A x s . The sa-
me ordinal type has any subset of Ki which is cofinal in K(g)
for all f,‘ belonging to a cofinal subset .of A . Such subsets
of Ki we shall call doubly cofinal in Ki.

By the axiom of choice it is easy to construct M M; such
that £IM is a bijection of M onto £(M) = £(M;)}. Then fIM is &
bijection order homomorphism, but not an isomorphism, because
M need not be a chain. Then we accomplish the last step of the

proof in

Lenma, In any subset M<M such that £(M) is doubly cofi-~
nal in K;,
Proof of the lemma goes by induction on w(M), For w(i) =

there is a subchain K<l of ordinal type A < 9¢ .

=2, M itself is a chain. Purther we assume that the lemma
holds for subsets of the width <k = w(M).

By aeaun'lption, £(M) is doubly cofinal in K;, so there is
a cofinal subset L € A such that £(M) is cofinal in K(¥) for
any § ¢ L. Thus, for § < L, the set M'E) = #2x($)) ¥ 14
of cardinality 2 and, by a Ramsey-type reasoning, M‘f) con-
tains a chain of cardinality a¢ . Withoulloss of generality
we may assume that u‘ﬁ) itself is a chain for g‘ € Lan I(f)"
= @ for f ¢ L.

- T35 -



For A finite, i.e. for A = i, the lemma is proved. Assu-
me that A is infinite. Then the cofinality of A =< 2¢ is equal
to A . One can find a chain X in M and a regular cardinal Z ,
0 < A < 2¢ such that

(I) the ordinal type of K is A > o

(i) there is no chain H in M of the ordinal type a¢ such
that (VxeH)(VYyeK)(x2y).

If A = A , the lemma is proved. Assume A < A , then £(K)
is not doubly cofinal in Ki' Denote by L the set of all upper
bounds in L of the set i e L; £(K) is cofinal in k(€ )§, then,
by (I) we have £®)n K'§) = § for any el

Further denote P = U {N'f); €e Li. For xeX, zeP we ha-
ve either xll 2 or x<3z, but by (ii), no zeP can fulfil x<z
for all xe K. Thus, denoting P, ={zec Pjxl z{ we get P=uir;
xe E}. Por x,ycK, x<y we have Pyc Py‘

If there is x< K such that f£(P,) is doubly cofinal in K,
then, in view of w(P,) < k, the inductional hypothesis gives a
chain of t;ype A >~ a¢ in P,

If £(P,) is not doubly cofinal in K;, denote by §, the
least ordinal such that f(P ) is not cofinal in k§) for any

€ z § 4. For x,yeK, x£y we have § < £ye

Case I, If A is infinite, then the cofinality of K is
A < A . So there exists ? € 1 such that £(P,) is not cofinal
in k§) for any x<K, e L, §2 € . Then £(P) = ULif(P); xc
¢ X} is not corinal in K(§) for §el, §=z¢ aswell. This
leads to a contradiction with double cofinality of £(P) in K;e

Case II. If A =1, then the cofinality of K is 2 > X1 .
Again there exists { ¢ L such that £(P.) is not cofinal in

k§) for any xcK, §e L, f 2§ . Ry the repeated Kénig-
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type reasoning we can find elements x <x;<... in X, infi-
nite subsets R 2R 2... of Ln <f ) and chains {Zasel(g);
§e Bl meow such that x < 'mg’ Xpaq I z“E for any me @ ,

g ¢ Ry. Then for § < §1<...<§, 1€ R _, the elements
z'_l’?o; zn_z’glg...; ‘°’§n-1; form an antichain contradict-
ing w(P) = n. The proof of the lemma is complete. N

Proof of Theorem 4. Assume 3¢ is a singular cardinal of
cofinality 4 , let {2, ; § ¢ A 3 be a sequence of lesser
cardinals converging to 2¢ . Define a partial order on P =
={(g,x), §eAr ko€ aef§ as follows: ( §,cr_,)—<(§’,«,') if
either £ = §'%x Z «” or § < § &(cch@ ve'= @), There is
m (0,2¢)-chain in (P,<) and w(P) = 3.

Proof of Theorem 5. For (P, <) we take the cartesian pro-
duct 2¢ < @ with coordinate-wise orderding. It is evident that
w(P) = « and that there is no (0,2¢)-chain in P, if a¢ is re-
gular,

Proof of Ilneorem 6. Assume T is an infinite tree of re-
gulr cardinality 2¢ and of width A < 3¢ such that 2”< 2¢ holds
for any ¥ <4 . Then any chain in T contains < 1 splitting
points. By the K¥nig-type argument we can prove that there is
a chain C of cardinality 2¢ in T. The splitting points are not
cofinal in C, so leaving out an initial interval from C we get
a chain of cardinality s which is the (0,3 )-chain in T,

Proof of Theorem 7 is essentially the same as the previ-

ous proof.
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