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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

21,4 (1980)

ON LIOUVILLE- THEOREMS, CONTINUITY AND HOLDER
CONTINUITY OF WEAK SOLUTIONS TO SOME QUASILINEAR
ELLIPTIC SYSTEMS '
B. KAWOHL

(dedicated to Jindfich Ne¥as on the occasion of his 50th birthday)

Abstract: We prove that every bounded weak solution of a
quasilinear elliptic system (0,1) is Hdlder continuoug in Q. if
and only if the system has a Liouville-type property L(R™ ).
%hg proofs are based on recent results of M. Giaquinta and J.

elas.

Key words: Regularity, weak solution, quasilinear ellip-
tic system, Liouville s property, blow up technique, Sobolev spa-
ce,

Classification: 35J60

§ O. Introduction. Let Q< iRn, n z2, be a bounded domain.

We consider the quasilinear elliptic system

ou_ 99 Bu
rs r ] rs I
(0.1) [ Laj5(x,u) B; % * % (x,w) 5%, b lax

= [ L&} i};—t + & ¢,1ax, b e D@IT,
where r,8=1,2,.,..,m; i,j=1,2,ee0,n; U = (ul,uz,...,um)e[wl'z(_(),)n
A LP(Q)]™ and where the summation convention is used for r,s,i,j
throughout the paper. The coefficients agg(x,u) and az:s(x,u) are
continuous functions on 0 x Rm, ggeLp(_Q), gre 1P/2((1), p>n,
and the system (0.l1) is strongly elliptic, i.e. there exists a

w> 0 such that

(0.2) agg(x,u)gi gg 2wl €12 holds for every x € L , fe rR™=
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M“e“lo

As e.g. H. Frehse pointed out in [ 5], "the experience in
the theory of elliptic equations suggests that regularity theo-
rems hold for those types of equations, for which a Liouville-
theorem is true”. We are going to show that for systems of type
(0.1),(0.2) regularity theorems are equivalent to Liouville~
theorems. To be more precise, the properties (’ﬁ) and T(R?) ae-
fined below are equivalent to each other. As a byproduct we pro-
ve that bounded continuous solutions of system (0.1),(02) are
automatically Holdercontinuous.

'k’p(ﬂ.) denotes as usual the Sobolev space of those func-
tions, whose derivatives of order up to k belong to the Lebesgue
space IP(Q). D(Q) is the space of smooth testfunctions with com-
pact support in O, and C%(0) consists of those continuous func-
tions on £, which are locally cw~HUldercontinuous. For conve-
nience we shall write WS'P(Q), IP(0), 2(0) and C*(Q) from now
on also for vectorvalued functions.

Let us point out that we assume the boundedness of weak so~
lutions throughout the paper. According to [18] it is natural
to start from L% -solutions. Nevertheless it should be interest-
ing to investigate conditioms under which the assumption ue L®(f))
can be dropped. One step in that direction was recently done by
E. Giusti and G. Modica in [15).

In order to presemt our main result in a concise form let
us introduce a few more notations and definitions:

[M) denotes the family of those solutions veWr2(Q) A L%(Q) to
system (0.1),(0,2), whose L® -norm is less than or equal to M,
LG] Aaenotes the family of functions s?el? (), gfe !Plz(ﬁ.)
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(§=1,2,...,n; r=1,2,...,m; p>n) satisfying

NG, ENE ., 2o,

[MG] is the union of those two sets, i.e. [MG]) = [ M1 UIGI,
A = A(M) is the following constant defined by the ccefficients
of the system (0,1)

I3 re .
A: K’&:'.‘ [i,fk,h ’js(‘ e+ 2 | a (x,g)l]
x6

Definition of L(R™): wWe say that the system (0.1) has

Liouville’s property L(R®) if and only if for every x°¢ &
any solution vell’z( R®)n I R®) of the system

(0.3) fn,,,alj(z R)] ﬁf 5’- ax =0, & ¢ D(RD),
has’ to be a constant.

Definition of (®): We say that the system (0.1),(0.2) has
property L’C_:)_ if and only if every bounded weak solution
ue W2(0)A I%0) of (0.1) is locally continuous in 0 and if
the modulus of continuity is uniform with respect to [Ml.

Definitiom of (R): We say that the system (0.1),(0.2) has
property ,@_ if and only if every bounded weak solutiom
uew2(0)n L™Q) of (0.1) is H¥ldercontinuous in L with H¥l-
der exponent ot = min{%, l - 9}, and if the following a priori

estimate holds for every 0’ ¢ Q3
Hul  _ &c(M,6,A, 0,0, aist(Q’, 20))
CUT) sFgly My ’ ’ ’

where the constant ¢ is uniform with respect to [GM].
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Main result: Under the general assumptions on Q and the

system (0.1),(0,2) (cf. the first paragraph of this introduc-

tion) the properties fg an, _@‘)_ and _(_E)_ are equivalent to each
other

Let us make a few remarks about the history of the regu-
larity~-problem for quasilinear systems, which goes all the way
back to Hilbert‘s 19th problem (sce e.g. [22, 18, 61), It was
already known that (R) holds for n=2, i.e, for twodimensional
domains (cf. [21, 22, 251) or for m=l, i.e. for the case of a
single equation (cf. [3, 181). H¥ldercontinuity, however with
undetermined H81d erexponent o~ , was also shown for systems
with principle part in diagonal form (cf. e.g. [19], but also
[27, 16, their case a=01). Aa will be seen in § 2, Liouville’s
property holds in all these cases. Hence we obtain new proofs
for already known theorems.

Nevertheles properties (E),(ﬁ) and T(R™) do not always
hold. In fact, based on an example by E. DeGiorgi [41, E. Giu-
sti and M, Miranda [14] gave a counterexample of a quasilinear
system with discontinuous solution u(x) = -1%1— for nZz3. Ob-
serve that due to our main result the regularity-problem for
solutions to system (0.1),(0.2) reduces to the equivalent, but
simpler looking problem of verifying Liouville’s property un-
der suitable assumptions. In this context the important ques-
tion arises: Which additional assumptions on the principal
part of (0.1) are sufficient to provide T(R®)? As we mention-
ed above, we give a few positive answers in § 2,

There are many wellknown results concerning H8lder conti-~
nuity almost everywhere in Q. , These are the so-called partial
regularity results (cf. L23, 13, 10, 11, 8, 9, 61). To be more

- 682 -



explicit, let us recall the commonly used notation
- A (x)dx
x°,R  meas By(x®) “B(x*)
for the mean value of u in the ball Bn(xo) with center x° and
radius R and
0 py.= R0 - 2
U(x°,R):= R j%‘w,)lu(x) uo R\
]
as a measure for the mean deviation from u u » The partial re-
gularity result states essentially (cf. § 1) "that a bounded

ax

weak solution u of system (0.1),(0,2) is H¥ldercontinuous in
every point x° € fL for which the following condition (0.4)
holds:

(0.4) 1lim inf U(x°,R) = O,
R+0

Consequently, a bounded weak solution.of system (0.1),(0.2) is
H8ldercontinuous everywhere in £ , if (0.4) is satisfied for
every x°¢ fL . If we denote the set of points x € S , in which
(0.4) is violated, with S (standing for sjngular points) one is
led to the question: When is S empty? To answer this question,
additional a-priori-knowledge about the solution u of system
(0.1),(0,2) seems to be needed. It is however desirable to have
a replacement for (0,4) available that does not depend on the
solution u of (0.1),(0.2). Property D(R™) has precisely this
advantage. Gererally speaking we may say that Liouville ‘s pro-
perty enables us to close the gap between partial and global
regularity.

The following diagram may illustrate how we proceed in the
following paragraphs.



trivial

§3 ﬁ §1
i(nn)=)33¢
§ 2

As the reader will notice the main effort is hidden in
§ 1, especially in Lemma 1.5. We should also mention that (C)
implies S = @ directly. The proof is left as an exercise to
the reader.

_Recent results [5,7,17,20,29,30,31) strongly suggest that
results similar to the ones presented in this contribution
ought to be expected for quasilinear systems “"with quadratic
growth”, i.e. e.g. of type D“(&'ﬂ(x,u,w)nﬂui(x)) = fi(x,u,Vu)',
with f(x,u,p)< a‘p\z + b X

Many of the ideas in this paper, easpecially the "hard
part” § 1, are along the lines of M. Giaquinta and J. Nelas
[8, 9, 26] who derived related results for ‘the gradient of
'1"" -solutions to nonlinear systems. In fact the equivalence
of L(R") and (R) was conjectured by J. Nefas. The author is
deeply indebted td him for numerous stimulating discussions
and advise.

This paper was written while the author enjoyed the hos-
piiality of (harles University in Prague, where he participa-
ted in J. Nelas ‘seminar. Support was provided by Charles Uni-
vers.:lty, the Tecfmical University of Darmstadt and the DAAD,
Finally the author acknowledges H. Grabmiiller’s and M. Grii-

t;er's helpful comments on the manuscript.

§ 1. A partial regularity result. Results of this type

were shown before, however under slightly stronger assumptions.
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The following proposition is due to M. Giaquinta and J. Nelas,
who used essentially the same method as E., Giusti et al, in
their former papers. A proof of the local Holder continuity can
be found in [81,{9). J. NeZas sketched the proof of the unito;'n
a-priori-estimate in [26] and gave it more elaborately in his.
seminar-talks in October 1979. ”

»

Proposition 1,1. Let uc([M] be a bounded weak solution
of system (0.1),(0.2). For every point x°e Q such that
(1.1) 11%*%:: u(x°,R) = 0
holds, there exists a ball (x°) cc & with Ry < % aist (x°,a0)
such that ue C“(?l;;lTo)) with « = min{%,l - %5 and such that

the a-priori-estimate

(1.2 ful % c(M,G,A )
) c‘m ciN,G, v(")kl

holds uniformly with respect to the class [MG].

Corollary 1,2. Let uelM] be a bounded weak solution of
system (0.1),(0.2). Suppose that for every 1’ c L property
(1.1) holds uniformly with respect to x°e¢ N . Then u e
€ C™N) with x = min-(%,l - 1%} and the a-priori-estimate

(1.3) nulc"‘m )s c(M,G,A, y,.ﬂ.’,dis‘t‘n’, an))

holds uniformly with respect to the class [MG].

Remark: It can te shown that the set S:= {xell| mLigxf U
(x,R) > 0)%of singular points is small in the following sense.
Let 1 ™2 genote the (n-2)-dimensional Hausdorff-measure. S is
a nullset with respect to this measure, i.e. H™2(s) = 0. We
refer to [9] or [12] for details.

Now Proposition 1.1 -ill be derived in a number of steps,
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following M. Giaquinta and J. NeZas [8, 9, 261,

lemmg 1.3: Let b’;’;(r,m,z,...,m; i,§=1,2,...,n) be con-
stant coefficients, Let ue“hg(Bl(O))n LZ(BI(O)) be a weak
aolution to the strongly elliptic system

j;"m 1,{; -;-:f-;:% ax =0, ¢e D(B(0)),
with the ellipticity constant » > 0, i.e. bﬁn;n;z »lq |2
for every 7 € R™. Then the inequality
(1.4) u(0,p) £K @2 U(0,1)
holde for @ 6 (0,1), where XK is a constant depending only on
» and max bﬁ.

The original proof of this Lemma is apparently due to S.
Campanato [21, a shorter proof was given in [8, 9],

Before we proceed to the next Lemmata we have to introdu-
ce a decomposition (1.8) of the solution u to the quasilinear
system (0.1),(0,2), If uclM] is such a solution, there exists
an %>0 depending on A and M (but otherwise not on u) such that
for every x°c 2  and for every R4 R,, with

(1.5)  Ry:= min {8(A,),aiet(x%,80)1 = R,(A,M,dist(x°,20)),

the following linear elliptic system (1.6) (with L®-coefficients)
for the unknown function wR is uniquely solvable in '%'2(31‘(x°)):

X awlag mr
(1,6) JBR(x") [aﬁ(x,u) ﬁfﬁ': + ai"(x,u) 5'!"1: ¢‘de
= [ L”% +g ¢ Jax d € D(BL(x))
BR()(“) 8j rf? r ? R .

In fact, due to the elliptieity of the system and due to Fried-

rich’s inequality
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Rj2 2 Ry2 R
.7 f%&u‘)]w |“ax4c R fs,{w)”" 1“ax for w' &

e wH3(BL(x°))
is the bilinear form a(wR, ¢ ) defined by the left hand side of
system (1.6) is strictly coercive on "g'z(BR(x")) as long as
N(A,M) is sufficiently small. Let us stress the point that R,
(defined by (1.5)) is independent of the class [GM) and depends
on x° only via dist (x%,30). Since (1.6) is uniquely solvable
for Rﬁﬂz we may decompose any solution u of the quasilinear

system (0.1),(0.2) in the following manner:

(1.8) u=vl+ wR, where w'e lg’z(Béa?)) solves system (1.6),

Now we investigate vRand wR as R ~—> 0,
')

Llemmg 1.,4: Let wR be defined as above with R<R,. There
exists a constant c depending on G,A,« and R, such that the
following holds uniformly with respect to x%c 0’cc 0 and uni-

formly with respect to the class [GM]:

(1.9)  WR(x®,R) < c(G,4, «,R,) RZ-2VP,

Proof: Since ﬂ)(BR(xE)) = Wg'?‘(BR(xo)) we may set ¢ = wh
in (1.6). The strict coerciveness of a(w ,w ), inequality (1.7)

and H¥lder’s inequality imply

kvwRi? 4¢(6,a,wR,) B/20/P
Riape®) e T

and hence (1,9) holds.
Unfortunately the function vR from the decomposition (1.8)
has not the same "nice" behaviour. Nevertheless we have at least

the following result (cf. (1.4)).

Lemma 1.5. Let uelM] be a bounded weak solution of sys-
tem (0.,1),(0.2) and let <« € (0,1) be fixed. Then there ex-
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|
ists g, =¢ (7, ,M)>0 and B, = R (7 ,M) such that for every

x° € L  and for every Ri{RO(u,l),dist(x",&(l)@ the implica-
tion
VBx%,R) < e2 = V2%, e Ry 4 & 22 VRO, R)

holds, where K = K(M,A) is the constant form (1.4) for the fa-
nily of coefficients -{5(x°, £) Len, 1§l <M,
This lemma is a modification of the analogous "main Lem-
mas” in [23,13,10,12], A detailed proof was given in [8, 9].
Now we are able to prove Proposition 1'.1.’ Recalling (1.5)
we choose Rl<% R,. In order to derive (1.2) it suffices to
show (cf.[11)

(1.10) U(x,pl2cp 2% or every "x'aBRIZxo) and for every p> 0

in some sufficiently small neighborhood of zero, where the con-
stant c(Rl,l,G,A,@.) is independent of X and @ .

So choose X€B, (x°) and R _<R,. Then By (X)cB (x°).
By x x R '
Recalling (1.8) yields
R_ R_ R_
v X(%,R)<2 U(X,R) + 2 W *(X,R )42 B(x°,2R)) + 2 ¥ *(X,R).
X x X X

By assumption (1.1) U(x%2R))—> 0 as R;—> 0, and the last
term converges to zero uniformly with respect to X¢B (xu).

This follows from Lemma 1.4. Hence after a possible change of
R1 (which may depend on x° unless (1.1) holds uniformly)

(1.11) for every c°>0 there exists a sufﬁciently small
R_( eo) e,(O,R.l) (but R_ independent of X) such that ‘
x X

R

v X%,R)<e?
b 4

on

For the remainder of this proof choose < e (O, %) such
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that 4Ke < 4, with K from Lemna 1.5. According to this Lemma

determine ¢,(7 ,M) and due to (1.11) also R_ such that

R_ x <R
x(x,R )<32. We want to find an estimate for V x(x, ‘cR )

in terms of © . To this .ml!t observe thntn

=R, R L
(1.12) Vv *(X,xR)%24V *X,~R) + ¥ X(x, 2R ) + .
x x x

<R_
+v X, zR)}.
X

Due to lemmata 1.4 and 1.5 the first ‘and the last term on the
righi hand side can be extimated by fc'z and 1:‘2'2”/" respecti-
vely , whereas a calculation similar to the proof of Lémma 1.4
yields

¥ X(x, ¥R )< c(0,A,,B)) 22 B - 2n/p,
x P 4

so that (1.12) implies
R R
(1.13)  V X(x, 2R )& 4K t2 Vv X(%, B + 4c(0,4, R4,
b 4 x XX

In order to reiterate (1.13) we have to show that also
cR_
(1.14) v X%, xR )<el.
x
However the choice of ¥ and (1.13) imply

R_
vV X%, TR ) s ei/‘ + ¢ /P,
=X x

hence after a possible change of Bl the second %term involving
R ¢ (0, Rl) is sufficiently small., Recall that €, Was chosen
mdependentl,y of R s 80 (1.14) does not hold and we may reitera-
te (1.13). By inducuon it can be shown that for every positive

integer k we have
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— R—-
VoOXE, 2XR) 2 (4 DX v X(x,R ) + ¢ BBT2VD (g
x X X
(z¥ +«c"‘2"2"/°))
and
'sz_
v OXE, 'CkR_).‘.‘ clz , QO’KvOoA'(“’!Rl) (tk + T',k(2-2n/p))
X

holds with ¢ independent of X and k. Th1s and Lemma 1.4 yiel~
N R +R_

WX, vXR )24V XX, n:“a ) « W Xx, vXR)Y

X x

Ze {‘Uk + ,Bk(2-2n/p))}

with ¢ independent of X and k, and consequently
(1.15)  UE, R )< e v*%, where o= min {3,1 - B1.
x

Recall that we want to prove (1.12). Now choose @ arbitrarily
small and k ¢ N such that t’kﬂ'R__t e< t’kR__. Clearly ¥ <
X x

< @/7R_, and so (1.1) implies the desired inequality (1.10).
x

§ 2, Liouville’s property implies regularity (R), and some

sufficient conditions for L(R™)

-

Theorem 2.1. Let Ue&[M] be a bounded weak solution of sys-
tem (0,1),(0.2). If the system (O,1) has property TR ). then
(R) holds. i.e., u is Holdercontinuous in .O. w1th‘Holder-eXpo-
nent o= min {2-,1 - 5}' and for every 0’ ¢ Q the a priori
estimate (1.3) holds,

Proof: According to Corollary 1.2 we only need to Show
that (1.1) holds uniformly with respect to x°e 2’ ,-let us

assume in the contrary that there exists a sequence {xx;kemc

c & y Xe—> x, and iR }c R*, R,—> O such that
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U(xk'Rk) -~ € . Now consider the following femily of tranefor-

mations {TR&} kel ¥

X=X
(x,u) —(y = —ik-‘é, up () = ulx + Ry)

T
2"

Q% WY2(0) n 19Q) —> op ~ wl/a(nak)a % ag)

Remark 2,2: Observe that ‘QR blows up as R tends to zero
and that ‘QR shrinks as R tends to infinity. Using an analogy
from optical lenses, taking R small amounts to looking at the
neighbourhood of x% with a magnifying glass, and the whole fa-
mily {TR;R>0 acts on (. like a zoom-lense. If one observes &n
optical object through a zoom-lense at different focusses, its
size appears different, but not its colour. The family ‘iTR}R>O
has a similar property: The "size" of QR and \7\:1R varies with
R, but the I”-norm of up stays invarjant. In fact “uﬂl?"(ﬂ) =
= “uR“L“’(QR) for every R>0, If one wants another norm of u to
stay invariant under a similar family of transformations one
has to modify the definition of Tp. This was done in [8, 9, 26]
where i Vull ., otayed invariant. A technique of this type seems
to be known eI;s blow~-up~technique.

We continue the proof of Theorem 2.1. Using the transfor-

mation T, the system (0.1) can be rewritten as

WL, .

clas
ra B

2.1 + up ) —= 3y

( ) J;?_Rhal‘](xk Ry, R, 3y; 9y ;
@ux;2~

h Ca , Ve A
:, . o Rk§ ,llnky ’Uyd ¢ ERKU""

N

v 8% g ) Fidy
+‘£} gjg’.{"gt’:y Re, T
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From the ellipticity of the system we obtain in a standard way

for BZa(o) c ﬂBk

2
dy £ G).
wa(a) lvyuRkl y<cla,d, w,G)

So uRk——> p weakly in '1'2(88(0)). Hence for every a>0 there

: . 2
exists a subsequence iuRk? Rk"’o such that uRk-> pin L (Ba(o))
as well as point-wise a.e. on B_(0)., Since Ty leaves the >~
orm of u invariant, pel®(R™) with lpl< M. If we send R to
zero in (2,1), p solves the system

rs, o _, op 2¢° _ n
‘fn;m.[aij(x 'P) 5’%3—%]@ =0, de DR,

This limiting procedure can be justified using the continuity
of the coefficients and Lebesgue’s dominated convergence theo-
rem, Now Liouville’s property implies that p = const, and us-

ing the fact that unk'-y p strongly in L2(Ba(0)), we obtain

~n 2 _ 2
Ulxy,R )< Ry fBR&(“k)lu(X) - pl¢ ax -j!;1(°) luﬂk(y) - pl® ay—»
— 0 (q.e.d.).

Theorem 2,2. Liouville’s property T(R™) holds for /n=2,
i.e. for plane domains.

Proof: Let vsv%éi ('R%) ~ I?( R?) be a weak solution of
the system (0.3). We have to show that v is constant. Let T>0
be fi\xed and let 7 & D (Byplo)), where 0 £ 9 £1, 7 =1 in

Bplo) and Vgl < %. Furthermore put &, = 1;_2 v_. Using the

8
ellipticity, equation (0.3) and H8lder ‘s inequality we obtain

zA vl o & ln vl
w T KRALY

2
@l Vvl€,
L°(B,p(0))

12(B,p(0))

-{meas B,,(0)}Y22¢ lim Vel
= T 28,0000
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with ¢ independent of T. This estimate works for n=2 only.
T—> o yields VveLz( P\a). But there exists a sequence 1,;“5
e D(R?) with Vy® —>Uv in 122( R%)1%®. Therefore

/ r"(°)av"<?-v—*’<1 = 0 holds, and hence v is con

Raaijx,v 5%, 5% x olds, a ence v is con-
stant.

Theorem 2.3. Liouville’s property L(R") holds for m=),
i.e. for quasilinear equations.

J. Moser proved this theorem in 24, p. 4651 for linear

equations with L®-coefficients. His proof extends without any
changes to our quasilinear equatiom.

Theorem 2.4. Liouville’s property I( R®) holds far sys-
tems with principal part in diagonal form. +)

Proof: System (0,3) takes the (diagonal) form
3v_13¢
r .0 r 'r _ n
(2.2) Rm«Aij(x ’V)Fig-i; dx = 0, be B(RY),

. r _ rs
with Al.)' = Jre aij.

equations for each component A of v. Hence Theorem 2.3 applies,

But system (2.2) is a system of m single

§ 3. Continuity ('52 implies Liouville’s property. In con-

trast to [26]1 we do not make use of a maximum principle for pro-

. a 4 : 9 n
ving that already (C) and not only (R) implies L(R™).

Theorem 3.1. Suppose that system (0.3) has property (?2'),
i.e, every bounded weak solution u of system (0.3) is continu-~
ous in f. and the modulus of continuity of u depends on M but

- o o s o

+) For nondiagonal systems see [28, 29, 301,
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otherwise not on u. Then Liouville’s property E(Rn) holds.
Proof: Let x°e Q. be fixed and ve Wi22(R™)a I R™)
be a solution of system (0.3). We intend to show that v(x) =
=v(x°) for any x e R™. To this end we choose a number a such
that Ba(xo) c L and xxiyi}\n. Then there exists a sufficiently
large R, such that y:= —-R:-QeBa(o) for every R>R . We define
valy) = v(x® + Ry). For every R>0 the functiom vy is again a
solution of (0,3). By assumption, its solutions are continuous,

Hence for ye B, (o) we have
(3.1) Iva(y) = vglo)|—> 0 a8 y —> O uniformly w.r.t. R> R .

Observe that it is important to assume & uniform modulus
of continuity in (6“). For fixed x € L and for R tending to in-
finity, y converges to zero. Writing (3.1) in the x-ccordinates
we obtain

lv(x) - v(x°) | = 0, which completes the proof.

Remark 3,2: In the proof of Theorem 3.1 we use again the
blow-up~technique from § 2 [cf, Remark 2.27, however with R—>
—> @ . Here we applied Tp to the solution v of system (0.3)
anl used it to let R™® shrink inside L , whereas in § 2 we ap-
plied it to the solution u of system (0.1),(0.2) in order to
spread 0. out over the whole R®. Essentially the same tech-
nique was used (in a different setting) by J. Frehse with his

"friend” in L51.
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