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CARTESIAN CLOSED FUNCTOR-STRUCTURED CATEGORIES
J. ADAMEK, V. KOUBEK

Abstract: We characterize set functors F such that the
functor-structured category S(F) (of pairs (A, o) where A
is a set and ¢ ¢ FA) is cartesian closed. This is so iff F
covers pullbacks.

Key words: Cartesian closed category, functor-structu-
red category, pullback preservation.

Classification: 18D15

Introduction. Functor-structured categories, introdu-
ced in [K],{HPT), are concrete categories S(F) over an arbi-
trary base category X , defined via a functor F: ¥ —> Set.
The objects of S(F) are pairs (A, ), where A is an object
of ¥ and o c FA. The morphisms f:(A,«) —>(B, 3) are those
morphisms in X for which a € o¢ implies Ff(a) € # . The-
se categories have a number of important properties: they
are "universal" initially complete and fibre-~small catego-
ries; see [AHS].

In the present paper we exhibit a necessary and suffi-
cient condition on F in order that S(F) be cartesian closed
(assuming that X is). The condition is in terms of the co-~
vering of pullbacks; a pullback is said to be covered by a

functor if this functor maps it on a square, through which
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all commuting squares ractorize but not necessarily unique-
ly. A number of examples and counterexamples is presented.
The paper is a part of a broader program of a study of

concrete cartesian closed categories; see [Alt:L 2].
’

1. Recall that a category X is cartesian closed if it

has finite products and, for each object K, the induced

functor
Kx-: X— X

is a left adjoint. Assuming that ¥ is cocomplete and co-
well-powered and has a generator then (by the dual to the
special adjoint functor theorem) ¥ is cartesian closed iff
the functors Kx - preserve coproducts and éoequalizers. The
last two conditions can be reformulated as follows:

(i) % is a distributive category, which means that,
given objects K and L., teT, then the natural morphism

'g‘ ‘f";lT (Kth) —K "b“élT L
is an isomorphism,;

(ii) ¥ has productive guotients, which means 'that,
given an object K amd a regular epi e:L—> L’ then also

lgxe:KxL —>»KxL’ is a regular epi.

2, Examples. (i) The category of graphs [or binary
relations (A,ec), where oc ¢ AxA] and compatible maps is
cartesian closed. Defining a "cartesian square functor"

Q: Set—» Set

by
QX = XxX and Qf = T
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the category of graphs is the functor-structured category
S(Q).

(ii) More generally, categories of relational struc-
tures are cartesian closed functor-structured categories.

(iii) The category of hypergraphs [i.e., pairs (4,oc)
where oc & exp A] and compatible maps [f:(A,0c) —= (B, 3)
subject to £(T) « # for each T € ] is cartesian closed.
This is the functor-structured category S(P) where P:Set —»
—> Set is the "power-set functor " defined by

PX = exp X; Pf = exp £:T +—> £(T).

3. Hypotheses. Throughout the present paper we assume
that a (base) category % is given such that

(i) % 1is cocomplete, finitely complete and co-well-
powered;

(ii) X has a generator;

(iii) X 1is cartesian closed, i.e., is distributive
and has productive quotients.

We shall investigate functors F: € —> Set with respect
to the cartesian closedness of the category S(F).

While the conditions (i) and (ii) above are completely
natural, the last condition excludes a number of important
base-categories. Nevertheless, in case & fails to be car-
tesian closed then so do functor-structured categories over
® . (Since each category S(F) contains a full copy of X :
the discrete objects (A,0); this copy is closed umder limits
and colimits in S(F), moreover a limit of a diagram contain-
ing a discrete object is discrete and thus a "hom-object" of

discrete objects is discrete.)
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4, Limits and colimits in categories S(F) are natural-
ly lifted from the base-category ¥ . E.g., given objects
A, B in ¥ with a product AxB (under projections J,,¥g)
then for arbitrary o« < FA and [} < FB we have, in S(F),

) (Ayet }< (B, 3) = (A=B, s ® [3)
where
o« BB ={teF(AxB); Fa,(t)e « and Fag(t)e p§ ,

under the same projections dys X ge Analogously, if A+B is

a coproduct (under injections i,, ip) then, in S(F),

(Aye¢) + (B,3) = (A+B, ¢ [ (3 )
where
o @ 3 ={teF(A+B); teFi,(c¢) or te Fig(B)}.

Furthermore, if G is a generator of & then (G,d) is
clearly a generator of S(F). Thus, the above conditions (i),
(ii) on the base-category & are shared by all functor-struc-
tured categories over X . The question of cartesian closed-
ness thus hangs on the distributivity and the productivity
of quotients in S(F).

Finally, let us remark that a morphism f:(A,c0c ) —>
—> (B, ) in S(F) is a regular epi iff (i) f is a regular
epi in ¥ and (ii) 3= Ff().

5. Projections are used abstractly below: a morphism
f:A—>B is a projection if there exists an object B’ such
that A4 = BxB’ under projections f:A—> B (and £ :A—>B").

Dual notion: injections.
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6. lemma. The pullback of a projection along an arbit-
rary morphism is a projection. I.e., given a projection ar :

tA<B—> B and a morphism f:C—> B, the square

x
A»xC —mm—
lef l lf
a
AxB — > B
is a pullback (where @ is a projection).

Proof. Given a commuting square o .p = f.q:

D

q
4

R c
\\I‘ 5

P A AXC f
A‘f x

AxB ———> B
define r:D —>Ax C by

F.r = a'.p and F.r = q,

where ar":AxB—> A and F’:AxC —> A are projections. Then
p = (1< f).r because

#p = Fr = o’ [(1x<f).r)
as well as

.p=Ff.q =L.Tr = gr.[(1ef).r].

Clearly, r is uniquely determined by p = (1xf).r and q =
= .r,.

7. Remark. Particularly, if f is an injection f£:C —
—> C + C” = B then we obtain a pullback of a projection

and an injection:
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AxC projection c

1A" injection injection

projectiom c
Ax(C + C)—0———— > C +

8., A functor F: I —>U 1is said to cover the pullback

. 5' Bo
|

—f s

if for an arbitrary commuting square in & , Ff.t = Ff'.t":

T t —> FB’
~\\8\ Fg-’
t S FA” Fe’
Fg .-
B L4 > FC

there exists a morphism s8:T—>FA, not necessarily unique,
with t = Fg.s and t° = Fg’.s.

In case £ = Set this means that for arbitrary points
be FB and b’e FB® subject to Ff(b) = F£'(b’) there exists a
point & e FA withb = Fg(a) and b’ = Fgla’).

9. Proposition. The category S(F) is distributive iff

F covers each pullback of a projection and an injection.

Proof. I) Necessity.

Given a pullback as in 7:



U

AxC > C
lei l li
Ax(C + C’ )—-——————)C

and given points
xeF(Ax(C +C")); yeFC
with Far (x) = Fi(y),
we are to exhibit a point z e« F(A<C) subject to
F(1,=1i)(z) = x and F7(z) =

Consider objects (A,FA); (C,iy3}) and (C’,8) in S(F). Clear-
1y
(1) (A,FA) = [(C,{y}) + (C",0)] = (A=[C + C“],x)
where

d=FAR[ylBPI={teF(A=IC+ C71); Par(t) = Fi(y)}.
Thus, x € « . Furthermore,
(2) [(A,FA) > (C,iy})] + L(A,FA) = (C’,#)] = ([AxC] +

+ [AxC’1,B)

where, denoting by j:AxC-—>[AxCl+ [AxC’lthe injection,
fp=(FAB® iy}) B (FAW @) = {Fj(z);2€ F(AxC) and F& (z) =
= yi.

By hypothesis, the isomorphism § (see 1(i)) is an iso-
morphism in S(F) from the object (2) to the object (1). Hen-
ce, X e < implies Ff “l(x) e @ . In other words, there
exists 5 & F(AxC) with F#(z) = y and Fj(z) = F§ “2(x). Sin-
ce, by the definition of g , wWe have f.:j = l‘x i, the
latter implies x = (F§ ).Fj(z) = F(l‘x i)(z).

II. Sufficiency. For arbitrary objects (B, f,), teT,
and (A,ec) in S(F) we shall prove that

§-1:(A,oc) xt_l‘.l_‘; (Byy By) '—"t"i"'ru’"")"(at' Be)
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is a morphism in S(F). Then f is an isomorphism, since it
is always a (natural) morphism. Let us denote projections
by

o cA x{;'lél‘rst'_’ A and T :A xtlel_‘_ Bt-—>t1él_r B,
and injections by

ig:Bg—r U By and j :Ax Bs_>t"gl1' (Ax Bt)
(for 8€ T). Then

(A,00) x LI (By, Ry) = (Ax L By,y)
where a point xeF(A "t‘g‘r Bt) fulfils

X ey iff Fa(x)e « and FF(x) = Fig(y)

for some seT, y e f34-

Given such a point x we shall verify that the point
F?'l(x) fulfils F¢ Lx) = Fjg(z) for some zeo = [g-
Then, of course, g-l

Put

is a morphism in S(F).

.

B B

={eT{_-l{n} ti

then we can use the covering of the pullback

8
A><Bs BS
lA,xis J.a
. x — ‘= Bl
A)Q(Bs"'B ) BB+B -‘tSTBt

where o, is the projection., Since
F&(x) = Fi (y),
there exists z ¢ F(Ax<Bg) with
F(1,=ig)(z) = x and FF4(2z) =y e 5.
The projection a giAx Bs-—-—>A fulfils

J’I’s = -"’-.(leis),
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hence F o7, (z) = Far(x) e « as well as F#@ (z) € 3. Hence,

zeoct B .
And, by definition of § , we have g.js = 1,% is’ therefo-
re

F¢ “Lx) = Fg -1.F(1A>< ig)(z) = Fj (z).

This concludes the proof that g-l is a morphism.

10. Propcsition. The categdéry S(F) has productive quo-
tients iff F covers each pullback of a prcjection and a re-
gular epi.

Proof. I) Necessity. Given a pullback as in 6:

AxC——-L—-—>C

1A><f \l/ b g
ar

AxB —> B

with £ a regular epi and given points

xe F(A=B) and ye FC

with
Fa (x) = F£(y),

we are to exhibit a point z ¢ F(A=<C) subject to
F(1,= £)(2z) = x and F7(z) = y.
The morphism f:(C,{y§)—> (B,{Ff(y)}) is a regular epi-
morphism in S(F) (see 4.), hence so is
1, > £:(4,FA) = (C,iy}) —> (A,FA) = (B,1Ff(y)}).
This means that
FAR {Ff(y)} = F(1,= £)(FAR 1 y1).
Since For (x) = Ff(y), we have

xeFAR{FP(y)}.
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Hence, there exists z ¢ FAHE {y} with F(le £)(z) = X, and,
of course, FF(z) = y.

II) Sufficiency. For each regular epi in S(F)s f:
:(Cyy) —> (B, ) and each.object (A, ) we are to verify
that

1,=f:(A,00) = (Cy ) —> (A,0c )= (B, 3)
is a regular epi. In other words, that o« & ( = F(1,>< 1)
(< & 7). Denote projections by

g :A=<B—>B and a":A<B-—>A4;

5 A=< C—>C and &’:A>C—> A,
For every point xeF(A=B) with xeoc B 3, i,.e.,

For(x) e # and Fa'(x) e <

F(1,=f)(z).

we shall find z e « ® 9 with x
Since f is a regular epi, (3 = Ff(4y), thus, there ex-
ists ye FC with
Fa(x) = Ff(y).
We use the covering of the following pullback

2
A<xC —>

le.f l £
ar
AxB =

There exists z € F(A= C) subject to F(le £)(z) = x and
F#(z) = y. Since # = &’.(1,= ), we have
Fx’(z) = Fo’(x) e and F7(z) =ye f3,

hence z e « & f3 .

11, Corollary. The category S(F) is cartesian closed
iff F covers each pullback of a projection and a map, com-

posed by injectioms and regular epis.
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12. Examples. Every hom-functor covers (indeed, preser-
ves) pullbacks. A product or coproduct of functors covering
certain pullbacks also covers them. (On the other hand, this
is not true about subfunctors or quotient functors as we shall

show below.)

13. Definition. A category ¥ is connected if hom(A,B)#
% ¢ for arbitrary objects A, B such that B is not initial.

14. Theorem. Let £ be a connected category in which
each split mono is a coproduct injection. The following con-
ditions are equivalent for each functor F: % —> Set, preser-
ving finite intersectioms of split subobjects:

(i) S(F) is cartesian closed;

(ii) F covers pullbacks.

Proof. Assuming that F covers all pullbacks mentioned
in 11., we shall prove that, in fact, F covers all pullbacks.
For each morphism f:A —> B we denote by £* :A —» AxB the
split mono defined by

; * = ® =
.TTA.f = 1A and arB.f f.
And for each pair of morphisms f:A—>B and g:A—> C we deno-
te by £X% g:A—> B=C the morphism ,defined by
mrB.(f>‘<g) = f and arc.(fk g) = g.
(Thus £%*=1,%¢.)

Given a pullback

g2
c > A
2
£
1
A B



each of the following four squares is a pullback, too:

gl>'< &> projection
C —> Aq < A2 A2
g% 8 1, < f X
1772 prxa, A2 2
2 projectiom ¥
A-lez————————-aAlx B><A2 A2><B
projection projection projection
£t
\ 1 s
pwoaect:.on)

It is clear that if F covers each of these four pullbacks

then F covers the pullback of £, and f,. Since £} 1, end
2
lAlx f; are split monos, F preserves their pullback (= inter-

section) by hypothesis, And F covers the two adjacent pull-~
backs since S(F) is a distributive category and f;f, f; are
split monos, hence injections. Thus, it remains to prove that
F covers the pullback of two projections down to the right.
(a) Let there exist a morphism from B to A, or A,. Say,
p:E-—-)Al.
Then the projection arB:AxB——)B is a split epi, since we
have g (px 15) = 1lg. Since S(F) has productive quotients,
F covers the pullback in question.

(b) Let there be no morphism from B to Al nor A2. Then
both A, and A, are initial objects and, moreover, for each
non-initial object X we have hom(X,A;) = § = hom(X,4,). (In-
deed, since ¥ is connected, we have hom(B,X) +0 for each
non-initial X !) Thus, in the original pullback of fl and f2,

both g, and 8 are isomorphisms, hence the pullback is covered.
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15. Corollary. A set-functor
F:Set —»> Set
has the property that S(F) is cartesian closed iff F covers

non-empty pullbacks.

Proof. The category % = Set is connected, every split
mono is a coproduct injection and the hypotheses 3. above hold.
For each functor F there exists a functor F’, which preser-
ves finite intersections and coincides with F on all non-
void sets (and maps). See [Ty]1. It is easy to see that S(F)

is cartesian closed iff so is S(F°').

16. Examples of set functors.

(a) All hom-functors, the power set functor (see 2(iii))
and all compositions, products amd coproducts of these, cover
pullbacks.

(b) The first example of S(F) not cartesian closed is
due to Ji¥{ Vindrek. Here F is the following quotient functor
of the cartesian square functor Q (see 2(i)):

FX = X=X/~

where

(xl,xz)fv(xi,xz') iff either (x;,X,) = (xi,xz')

orxl=xzandxi=xé.
On maps f:X—> Y, denoting by [ ] the equivalence classes:
FEL(xy,%5)] = [£(xy),f(x5)].

Then S(F) can be viewed as the full subcategory of the cate-
gory S(Q) of graphs over all reflexive and all antireflexive
graphs (i.e. graphs (A, ) such that, if one loop (a,a) is

in o , then all loops are).
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This category is not distributive. Consider graphs

(Blv Pl): i’l (BZ’ [52): %2 (A,OO): ’a;——? 52

Then (A,oo)*[(Bl, [51) + (By, [52)3 is the following gaph

(az,bl) . T (a5,b,)
(al’bl) [ 4 L (al'bz)
while [(A,c0)x (By, #1)) + [(Ayec)= (By, f35)) is the fol-
lowing graph

(az,bl) L4 ® (ay,b,)

(a),b;)e e (ay,b,)

(¢) Example of a subfunctor Q2’3 of the hom-functor
hom(A,~) with card A = 3 such that Q2’3 does not cover pull-
backs:

02,3}( = {(x,y,2) € X=X X; card {x,y,z}42};
Q2’3f(x,y,z) = (£(x),f(y),f(2)).
Consider the pullback

projecti
P=<R Jection ST R
e T
1 2
projection
£ g
Py 4
P .

s S

Py

The points (py,Py,P,) eQ2’3P and (ry,r,,r,) e Q2’3R fulfil
£ =
Q2’3 (plipljpz) Q2’3g(r1,r2’r2),

yet there exists no (x,y,2)eQ, 3(P=R) which the projections
’
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would map to the given points.

(d) S(F) need not be cartesian closed even if it is
distributive. Let F be the set functor, obtained by merging
two copies of P in the singleton-set subfunctor: on objects

FX = (exp X -{{x}; xeX})=x{1l,2tu{{x}; xeX?;,
on morphisms £:X —>Y 3

Ff(T,i) = (£(T),i) for i=1,2 and Te X with card £(T)#1;
F£(T,i) = £(T) if card £(T) = 1
Fe({x}) = {£(x)i.

Then F is easily seen to preserve preimages (pullbacks of a
morphism and a mono), hence S(F) is a distributive category
(see 9.). Yet, F does not cover the pullback of (c): for the
points

Px{1t1ecFP and Rx{2}eFR
there exists no corresponding point in F(Px<R).

(e) S(F) need not be cartesian closed even if it has
productive quotients. The following example is due to V. Trn-
kova.

Let us define a quotient functor F of the power-set func-
tor P:

FX = (exp X)/~
where A~B means that the symmetric difference (A-B)u (B-A)
is finite;
FP[A] = [£(A)] for each map £:X—> Y and each Ac X.
This functor covers pullbacks of surjectiona. Indeed,

consider such a pullbacki
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I

f

R
| e
S

4]
~
e 3

—_—_—
R —
f
Iet Ac P and BCR be subsets with
FPILA] = Fg[Bl;
then the symmetric difference of f£(A) and g(B) is finite.
For each point s e f(A) - g(B) choose a point bge R with
g(bs) =8
and put
B, = Buibg; sef(A) - g(B)%.
Then
B,~ B and g(B,) = f£(A)ug(B).
Analogously we find a set A cC P subject to
A~V A and £(4,) = f(A)ug(B).
Since f(Al) = g(Bl), there clearly exists a set Cc T with
£°(C) = B, and g“(C) = A;. Then the point [Cle FT fulfils
F£’[C] =[B)] =[B]); Fg'[C] =[A;] =[AL

On the other hand, F fails to cover e.g. the pullback
of the characteristic function f: <« —> {0,1} of the set
of all even numbers, and the inclusion map g: 103 —{0,13.

(f) Let F be a super-finitary functor, i.e., there ex-

ists a finite set M such that for each set X we have

= U o
Fx f: M =X Fe(F)

Then F covers pullbacks iff F is isomorphic to a finite co-
product of functors

~hom(A,-}/G
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where A is a finite set, G is a permutation group on A and

hom(4,-)/G is the quotient functor of hom(4,-), where two

maps f,g¢ hom(A,X) are identified iff

&e[Tﬂ.
[aHS] J.
[AKl] J.

[4K,)

[HPT]

(K]

f = g.ov for some permutation T'e G .
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