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COMMENTATIONES MATHEMATICAE UNIVERSITAT1S CAROLINAE 

21,3(1980) 

CARTESIAN CLOSED FUNCTOR-STRUCTURED CATEGORIES 
J. ADÁMEK, V. KOUBEK 

Abstract: We characterize set functors F such that the 
functor-structured category S(F) (of pairs (A, co) where A 
is a set and OG C FA) is cartesian closed. This is so iff F 
covers pullbacks. 

Key words: Cartesian closed category, functor-structu­
red category, pullback preservation. 

Classification: 18D15 

Introduction. Functor-structured categories, introdu­

ced in [K],CHPT3, are concrete categories S(F) over an arbi­

trary base category X , defined via a functor F: 1C—> Set. 

The objects of S(F) are pairs (A,o6), where A is an object 

of X and oc c FA. The morphisms f:(A,o6) —>(B,^3) are those 

morphisms in X for which a 6 cC implies Ff (a) e- (I . The­

se categories have a number of important properties: they 

are "universal" initially complete and fibre-small catego­

ries; see [AHS]. 

In the present paper we exhibit a necessary and suffi­

cient condition on F in order that S(F) be cartesian closed 

(assuming that 3C is). The condition is in terms of the co­

vering of pullbacks; a pullback is said to be covered by a 

functor if this functor maps it on a square, through which 
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all commuting squares factorize but not neces9arily unique­

ly. A number of examplea and counterexamplee ia presented. 

The paper is a part of a broader program of a study of 

concrete carteaian cloaed categories; see [AK-̂  *>!• 

1. Recall that a category X is cartesian cloaed if it 

has finite products and, for each object K, the induced 

functor 

Kx- : # - * X 

is a left adjoint. As3uming that & ia cocomplete and co-

well-powered and has a generator then (by the dual to the 

special adjoint functor theorem) % is cartesian closed iff 

the functor3 Kx- prederve coproduct3 and coequalizers. The 

last two conditions can be reformulated as follows: 

(i) % ia a diatributive category, which meana that, 

given objecta K and 1^, teT, then the natural morphism 

fSVT^V-^'vifr-t 
is an isomorphism,* 

( i i ) % haa productive quotients, whicji meana that, 

given an object K and a regular epi e:L—-> h* then also 

L x e : K x L —>Kxl/ i8 a regular ep i . 

2. Examplea. ( i ) The category of graphs Cor binary 

relationa (A,oc), where ©o c Ax A3 and compatible maps i s 

carteaian closed. Defining a "cartesian square functor" 

Q: Set—* Set 

by 

QX * X*X and Qf * t»t 
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the category of graphs is the functor-structured category 

S(Q). 

(ii) More generally, categories of relational struc­

tures are cartesian closed functor-structured categories. 

(iii) The category of hypergraphs [i.e., pairs (A,o6) 

where oc S. exp A] and compatible maps lf:(k,oc)—>(B,/3) 

subject to f(T) e £ for each T eoc] is cartesian closed. 

This is the functor-structured category S(P) where P:Set—> 

—> Set is the "power-set functor " defined by 

PX = exp X; Pf = exp f ;T *—• f(T). 

3. Hypotheses. Throughout the present paper we assume 

that a (base) category X is given such that 

(i) 36 is cocomplete, finitely complete and co-well-

powered ; 

(ii) 3E has a generator; 

(iii) & is cartesian closed, i.e., is distributive 

and has productive quotients. 

We shall investigate functors F: 9S —> Set with respect 

to the cartesian closedness of the category S(F). 

While the conditions (i) and (ii) above are completely 

natural, the last condition excludes a number of important 

base-categories. Nevertheless, in case 3C fails to be car­

tesian closed then so do functor-structured categories over 

% . (Since each category S(F) contains a full copy of X : 

the discrete objects (A,0); this copy is closed under limits 

and colimits in S(F), moreover a limit of a diagram contain­

ing a discrete object is discrete and thus a "hom-object" of 

discrete objects is discrete.) 
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4. Limits and colimits in categories S(F) are natural­

ly lifted from the base-category X . E.g., given objects 

A, B in 36 with a product A^B (under projections -ft̂t ̂ Q ) 

then for arbitrary oo £ FA and [I & FB we have, in S(F), 

(A,oC )x (B, (h ) = (A^B, oO m ft ) 

where 

oG IS1 ft = -tte F(AxB); F^A(t)e cc and FsrB(t) € £ ? , 

under the same projections ^Ai^g- Analogously, if A+B is 

a coproduct (under injections iA, iB) then, in S(F), 

(A,oO + (B,(i) = (A+B, cc @3 A > 

where 

oo ffl (?> = -tteF(A+B); t eFiA(o6 ) or t e FiQ( /3 )$. 

Furthermore, if G is a generator of 3£ then (G,0) is 

clearly a generator of S(F). Thus, the above conditions (i), 

(ii) on the base-category X are shared by all functor-struc­

tured categories over X • The question of cartesian closed-

ness thus hangs on the distributivity and the productivity 

of quotients in S(F). 

Finally, let us remark that a morphism f :(A,oo ) —> 

—> (B, p,) in S(F) is a regular epi iff (i) f is a regular 

epi in 3£ and (ii) [3= Ff(oo). 

->• Projections are used abstractly below: a morphism 

f:A-—>B is a projection if there exists an object B' such 

that A = BxB' under projections f :A—? B (and f ':A—>B'). 

Dual notion: injections. 
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6* Lemma. The pullback of a projection along an arbit­

rary morphism is a projection. I.e., given a projection # : 

:AxB—> B and a morphism f :C—> B, the square 

sr 
AxC - ^ C 

i A ~ f 

AxB 
Jť 

-*- B 

is a pullback (where if is a projection). 

Proof. Given a commuting square 3r .p = f .q: 

• - . , ' . > c 

** ... ^ ^» 
X-^A^C 

Aï~B *• B 

define r:D—>Ax.C by 

jf'.r = tf'.p and 5 .r = q, 

where rt :AxB—> A and 5r':AxC—>A are p r o j e c t i o n s . Then 

p = ( l x f ) . r because 

V . p = 3F'.r = or'. l ( l x f ) . r 3 

as we l l as 

sr.p = f . q = f . s r . r = or . C ( l x f ) . r 3 . 

Clearly, r is uniquely determined by p = (lxf).r and q = 

= Jp .r. 

7* Remark. Particularly, if f is an injection f:C —> 

— > C + C' = B then we obtain a pullback of a projection 

and an injection: 
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A*C projection .,, Q 

1.x injection injection 

m projection 
A>c(C + C ) ** C + C' 

8. A functor F: X >3C is said to cover the pullback 

A' &1 >B' 

g 

if for an arbitrary commuting square in & , Ff.t = Ff'.t'; 

Fg • + * 
FB' 

FB' 

*^FA' 
F £ ^ ' 

Ff 

Ff' 

-> ғc 

there exists a morphism s:T—>FA, not necessarily unique, 

with t = Fg.s and t' = Fg'.s. 

In case «6 = Set this means that for arbitrary points 

beFB and b'e FB' subject to Ff(b) = Ff'(b') there exists a 

point aeFA withb = Fg(a) and b' = Fgta'). 

9« Proposition. The category S(F) is distributive iff 

F covers each pullback of a projection and an injection. 

Proof. I) Necessity. 

Given a pullback as in 7; 
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A~C - *- C 

f T 

Ax(C + C') ~ * C + C' 

and given points 

xeF(Ax(C + C')); y e PC 

with Fsf(x) « Fi(y), 

we are to exhibit a point z<sF(AxC) subject to 

F(l^xi)(z) s x and F$F(z) » y. 

Consider objects (A,FA); (C,4yl) and (C',0) in S(F). Clear­

ly 

(1) (A,FA)xC(C,-iy*) + (C',0)J =- (AxLC + Cj,oo) 

where 

<* = FA KCty l - S 0 3 = U e F U x C C + C' j ) ; Far(t) = Fi(y)J . 

Thus, x e oc . Furthermore, 

(2) C(A,FA)~(C,*y})1 + L(A,FA) x (C' ,0)3 =» (tAxCH + 

+ f A x C ' l , / * ) 

where, denoting by j : A x C —>£ A x C l + [AxC*]the i n j e c t i o n , 

fi= (FA® *yj ) B (FA« 0) = lFj(z) , -z € F(Ax C) and FSr(z) » 

= y l . 

By hypothesis, the isomorphism £ (see l(i)) is an iso­

morphism in S(F) from the object (2) to the object (1). Hen­

ce, x © ©o implies F£ (x) € (I .In other words, there 

exists zeF(AxC) with FaF(z) « y and Fj(z) * Ff (x). Sin­

ce, by the definition of f , we have f • j * l^x i, the 

latter implies x * (Ff ).Fj(z) • FU A*i)(s). 

II. Sufficiency. For arbitrary objects (Bt,/Jt)f teT, 

and (Afoc) in S(F) we shall prove that 

f - 1 : ^ * ) x t^ T(B t > A t > — ^ t J i T U f ^ ) x ( B t f /5t) 
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i s a morphism in S(F)# Then £ i s an isomorphism, s ince i t 

i s always a (natural) morphism. Let us denote projec t ions 

by 

яr :A Ч-УтV A anđ -зt :A x . Jl^ B. - љ 
and injections by 

i :B -
8 8 

.Jl—B . and j
в
:AxB -

-t eT t 8 S V^т^V 
(for s e T). Then 

(A,c6) x_
fc
±l

T
(B

t
,/l

t
) = ( A x

i
^

T
B

t
,

T
> 

where a point xeF(A x i - U . T B t ) fulfils 

x e y iff Ftfr-(x) «s oc and Fj?(x) = Fi
fl
(y) 

for some s e T, y e fiB* 

Given such a point x we shall verify that the point 

F^"'
1
(x) fulfils F£-1(x) a Fos(z) for some z e oc (3 Pa-

Then, of course, £ ~ is a morphism in S(F). 

Put 

B' 11 в * i ieT-U} t» 

then we can use the covering of the pullback 

AxB я -> B. 

XA~ ^s 

A x ( B 8 + B') в 8 + B xM-rB+ 

-t є T t 
where ar i s the projection* Since 

F3r(x) = F i 8 ( y ) , 

there e x i s t s z e F ( A x B 8 ) with 

F ( l A x i s ) ( z ) = x and F 5 r s ( z ) = y e (lQ. 

The pro ject ion Jr a-AxB — > A f u l f i l s 
8 - 8 

JГ~ = j ť / d A x i a ) , 
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hence F srrs(z) =- F.?r (x) e cC as well as Fars(z) € fiQ. Hence, 

Zeo6L3 (lQ. 

And, by definition of £ , we have f«js ^ ^ ^sJ therefo-

re 
F^""1(x) = F^"1.F(lAxis)(z) = Fjs(z). 

This concludes the proof that £ " is a morphism. 

10. Proposition. The category S(F) has productive quo­

tients iff F covers each pullback of a projection and a re­

gular epi. 

Proof. I) Necessity. Given a pullback as in 6: 

зr 

AxC *- C 
l

A
xf f 

AҳB 3-- в 

with f a regular ep i and given po ints 

x e F ( A x B ) and ye FC 

with 

F * (x) = F f ( y ) , 

we are to exhibit a point z€F(AxC) subject to 

F(lA?<f)(z) = x and FJT(Z) = y. 

The morphism f :(C,£y?)—> (B,{Ff(y)J ) is a regular epi-

morphism in S(F) (see 4.), hence so is 

1A:~ f :(A,FA) ~. (C,{yl) > (A,FA) x. (B,iFf (y)J ). 

This means that 

FA6SUFf(y)? = F(1A>* f )(FA13 i y } ) . 

Since Far (x) = F f ( y ) , we have 

x e F A J 3 { F f ( y H . 

- 581 -



Hence, there exi9ts z € FA 0 iyl with FQ^xfHz) = x> and, 

of course, F5f(z) = y. 

II) Sufficiency. For each regular epi in S(F)> f: 

:(C,y ) — > (B, (I) and each object (A,oo) we are to verify 

that 

lAxf:(A,o6)x (C, r>~> Ufoc ) * (B,/S ) 

is a regular epi. In other words, that oc® /S « Fd^x f) 

(oc- ® T O * Denote projections by 

& :Ax B — > B and jr':Ax B — > A; 

5? :Ax C -^ C and irr' :AxC — * A. 

For every point xeF(AxB) with x e co ts (I , i.e., 

Far (x) € /I and Far'(x) e <£ 

we shall find z e oc m f with x = F(l^xf )(z). 

Since f is a regular epi, (I = Ff(x)» thus, there ex­

ists ye FC with 

F*r(x) = Ff(y). 

We use the covering of the following pullback 

AxC >- C 

lAxf f 
ŰГ 

A*B ~ *- в 
There exists zcF(Ax-C) subject to F(l.?<.f)(z) = x and 

F3f(z) = y. Since 3r' = ^ ' . ( l ^ f ) , we have 

F*r'(z) = F ̂ r'(x) e oc and Fj?(z) = y e (I > 

hence z e 06 S t2 . 

1 1
• Corollary. The category S(F) is cartesian closed 

iff F covers each pullback of a projection and a map, com­

posed ty injections and regular epis. 

- 582 -



I2• Examples. Every hom-functor covers (indeed, preser­

ves) pullbacks. A product or coproduct of functors covering 

certain pullbacks also covers them. (On the other hand, this 

is not true about subfunctors or quotient functors as we shall 

show below.) 

--3. Definition. A category 3E? is connected if hom(A,B)4i 

4* 0 for arbitrary objects A, B such that B is not initial. 

14. Theorem. Let 9£ be a connected category in which 

each split mono is a coproduct injection. Hie following con­

ditions are equivalent for each functor F:96 — > Set, preser­

ving finite intersections of split subobjects: 

(i) S(F) is cartesian closed; 

(ii) F covers pullbacks. 

Proof. Assuming that F covers all pullbacks mentioned 

in 11., we shall prove that, in fact, F covers all pullbacks. 

For each morphism f:A—> B we denote by f* :A—> Ax-B the 

split mono defined by 

jrA#f* = 1^ and jrB.f* = f. 

And for each pair of morphisms f :A—>B and g:A—>C we deno­

te by f x g : A — > BxC the morphism ,def ined by 

^ • ( f ^ g ) = f and 0T c . ( f>:g) = g. 

(Thus f* = l A * f . ) 

Given a pu l lback 
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each of the following four squares is a pullback, too: 

&1* g 2 

A^xAз 

«l
x S
2 ++ , 

f
l

x l
A , 

•**-l
x
V 

X
A, 

~> An ?c B x A
2 

projection 

"̂  A 

projection Y 

projection 

A
2
>< B 

projection 

projection 

projection 

x B ^ B 

It is clear that if F covers each of these four pullbacks 

then F covers the pullback of f-, and f
2
. Since f ^ 1. and 

l̂ x- f
2
 are split monos, F preserves their pullback (= inter­

section) by hypothesis. And F covers the two adjacent pull-

backs since S(F) is a distributive category and f£, f2 are 

split monos, hence injections. Thus, it remains to prove that 

F covers the pullback of two projections down to the right. 

(a) Let there exist a morphism from B to A-, or Ap. Say, 

p:B —> A,. 

Then the projection srB:AxB—>B is a split epi, since we 

have ^Q.(P^I-J) = In. Since S(F) has productive quotients, 

F covers the pullback in question. 

(b) Let there be no morphism from B to A-̂  nor A2. Then 

both A-ĵ  and A2 are initial objects and, moreover, for each 

non-initial object X we have hom(X,A-.) = 0 = hom(X,A2). (In­

deed, since 3£ is connected, we have hom(B,X) 4-0 for each 

non-initial X I) Thus, in the original pullback of f-, and f2, 

both gj and g2 are isomorphisms, hence the pullback is covered-
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15• Corollary. A set-functor 

F:Set-—-»Set 

has the property that S(F) is cartesian closed iff F covers 

non-empty pullbacks. 

Proof. The category % = Set is connected, every split 

mono is a coproduct injection and the iypotheses 3. above hold. 

For each functor F there exists a functor F', which preser­

ves finite intersections and coincides with F on all non-

void sets (and maps). See LT-̂ 3 . It is easy to see that S(F) 

is cartesian closed iff so is S(F'). 

16* Examples of set functors. 

(a) All horn-functors, the power set functor (see 2(iii)) 

and all compositions, products arri coproducts of these, cover 

pullbacks. 

(b) The first example of S(F) not cartesian closed is 

due to Jifi Vinarek. Here F is the following quotient functor 

of the cartesian square functor Q (see 2(i)): 

FX = X K X / A / 

where 

(x-^Xg)/^ (x^x^) iff either (x-^Xg) = (x-^xp 

or x-j = x2 and x-, = x2. 

On maps f:X—> Y, denoting by I J the equivalence classes: 

FfC(xlfx2)3 = Cf(x1),f(x2)]. 

Then S(F) can be viewed as the full subcategory of the cate­

gory S(Q) of graphs over all reflexive and all antireflexive 

graphs (i.e. graphs (A,oc ) such that, if one loop (a,a) is 

in 06 , then all loops are). 
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This category i s not d i s t r i b u t i v e . Consider graphs 

(B l , p^s ^ (B 2 , /3 2 ) : £ 2 (A.oc): • - a 2 

Then (A,oi> )>* t (B- ,̂ /$.,) + (B 2 , /3 2 ) ] i s the fo l lowing g?aph 

(aг.b^) I (a2»V 

( a 1 , b 1 ) » • ( a l f b 2 ) 

while [ ( A , o c ) x ( B 1 , /3-^J + [ ( A , ^ ) * (B 2 , /32)3 i s the f o l ­

lowing graph 

( a 2 , b 1 ) • • ( a 2 , b 2 ) 

(a^Ъ^)* • ( a l f b 2 ) 

(c) Example of a subfunctor Q
2
 -* of the horn-functor 

hom(A,-) with card A = 3 such that Q
2 3
 does not cover pull-

backs : 

Q^
3
X = {(x,y,z)6X>cXyXj card 4x,y,z^2?; 

Q
2 3
f(x,y,z) = (f(x),f(y),f(z)). 

Consider the pullback 

P>cR 
projection 

The points (
Pl
,P

lf
P

2
) e Q

2 > 3
P and (r^.r.,) e Q

2 3
R fulfil 

Q
2,3

f ( p
l'

P
l'V = «2,

3
S

( r
l.

r

2
.

r

2
>. 

yet there exists no (x,y,z)
6
 Q

2 > 3
(P* R) which

 t h e
 projections 
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would map to the given points. 

(d) S(F) need not be cartesian closed even if it is 

distributive. Let F be the set functor, obtained by merging 

two copies of P in the singleton-set subfunctor: on objects 

FX = (exp X -{{ x\; x e X,)x{l,2 } u U x { ; xeX? ; 

on morphisms f:X—>-T \ 

Ff(T,i) = (f(T),i) for i=l,2 and Te X with card f(T)4,l,-

Ff(T,i) = f(T) if card f(T) = 1 

WUx\) = {f (x)l. 

Then F is easily seen to preserve preimages (pullbacks of a 

morphism and a mono), hence S(F) is a distributive category 

(see 9.). Yet, F does not cover the pullback of (c): for the 

points 

P x U I e F P and R M 2 } e F R 

there exists no corresponding point in F(P>cR). 

(e) S(F) need not be cartesian closed even if it has 

productive quotients. The following example is due to V. Trn-

kov6. 

Let us define a quotient functor F of the power-set func­

tor P: 

FX = (exp X)/^ 

where A^B means that the symmetric difference (A-B) u (B-A) 

is finite; 

Ff [A3 s [f(A)3 for each map f:X—>X and each Ac X. 

This functor covers pullbacks of surjections. Indeed, 

consider such a pullback: 
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f ' 
T — i> R 

8 1 g 

p ^ S 
f 

Let Ac P and Bc f i be subsets with 

Ff [ A ] = Fg LBJ; 

then the symmetric difference of f(A) and g(B) is finite. 

For each point sef(A) - g(B) choose a point b_ e R with 
s 

gCbg) = S 

and put 

B1 = BuibQ; s e f ( A ) - g (B )$ . 

Then 

B ^ B a n d g(B1) = f ( A ) u g ( B ) . 

Analogously we f ind a s e t A-̂ c P sub ject to 

A-j^A and f (A 1 ) = f ( A ) u g ( B ) . 

Since f(A.,) = g(B-,), there c lear ly e x i s t s a s e t CcT with 

f ' (C) = B-ĵ  and g'(C) = A-,. Then the point [CJcFT f u l f i l s 

Ff'LCJ = CB^ = LBJ; Fg'LC] = [ A ^ = LA J. 

On the other hand, F f a i l s to cover e . g . the pullback 

of the c h a r a c t e r i s t i c funct ion f; coQ—-» 4 0,13 of the s e t 

of a l l even numbers, and the inc lus ion map g: iO}—>iO,r$. 

(f) Let F be a super - f in i tary functor, i . e . , there ex­

i s t s a f i n i t e s e t M such that for each se t Xwe have 

F X s r K1^ v » ( » > • T: M ~*X 

Then F covers pullbacks iff F is isomorphic to a finite co-

product of functors 

-hom(A,-)/G 
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where A is a finite set, G is a permutation group on A and 

hom(A,-)/G is the quotient functor of hom(A,-), where two 

maps f,g€hom(A,X) are identified iff 

f = g . jr for some permutation r̂"e G . 

See [T2]. 

R e f e r e n c e s 

[AHS] J. ADXMEK, H. HERHLICH, G.S. STRECKER: The structure 

of initial completions, Cahiers Top. Geom. Dif­

fer. 20(1979), 333-352. 

[AK1] J. ADiMEK, V. KOUBEK: Cartesian closed initial comple­

tions, Topology and Appl. 11(1980), 1-16. 

[AKg] J. ADXMEK, V. KOUBEK: Concretely cartesian closed ca­

tegories, to appear. 

[HPT] Z. HEDRLfN, A. PULTR, V. TRNKOVA: Concerning a catego-

rial approach to topological and algebraic ca­

tegories, Proc. Second Prague Topological Symp., 

Academia Praha 1966, 176-181. 

[K] M. KATSTOV: Allgemeine Stetigkeitsstrukturen, Proc. 

International Congress of Mathem., Stockholm 

1962, 473-479. 

[ T.̂ ] V. TRNKOVi: Some properties of set functors, Comment. 

Math. Univ. Carolinae 10(1969), 323-352. 

[T2] V. TRNKOVif: Relational automata in a category and their 

languages, Lect. Notes Comp. Science 56 (Pro­

ceedings FCT '77) Springer 1977, 340-355. 

[V] J. VINXREK: A note on direct-product decompositions, 

Comment. Math. Univ. Carolinae 18(1977), 

563-567. 

- 589 



Faculty of Electrical Faculty of Mathematics 

Engineering and Physics 

Technical University Charles University 

Suchbatarova 2, 16627 Praha 6 Malostran. nam.25, 

11800 Praha 1 

Czechoslovakia 

(Oblátům 6.3. 1980) 

- 590 -


		webmaster@dml.cz
	2012-04-28T06:10:32+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




