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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

21,3 (1980) 

A NOTE O N ASSOCIATIVE TRIPLES OF ELEMENTS 
IN CANCELLATION GROUPOIDS 

Tomas KEPKA 

Abstract: A cancellation groupoid G is a semigroup 
iff x.yz = xy.z for all x,y,zeG, y + x+z. 

Key words: Associative triple of elements, cancella­
tion groupoid. 

Clas3ification: 20N99 

A division groupoid G is a group iff the associative 

law holds for any three distinct elements of G (see Ll] and 

L2J). In the present note, similar results are proved for 

cancellation groupoids. It is shown that a cancellation 

groupoid G is a semigroup iff x.yz = xy.z for all x,y,z€G, 

y4-x4z. On the other hand, an example of a cancellation 

groupoid G is constructed such that G is not associative and 

x.yz = xy.z for all x,y,zeG, x^y + z. 

1. A groupoid G is said to be a cancellation groupoid 

if b = c, whenever b,c£ G and either ab = ac or ba = ca for 

some ae G. A congruence r of a groupoid G is called cancel-

lative if G/r is a cancellation groupoid. 

In the following seven lemmas, let G be a cancellation 
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groupoid such that x.yz = xy.z for all x,y,zsG, x4-y + z 

and x4*z. 

!•!• --̂g-g-Q» --«t a,b,ceG be such that a^.b,c,ab,ba,ac 

and b4*c,ac and c#-ab,ba. Then a.ba = ab.a. 

Proof. We have (a.ba)c = a(ba«.c) = a(b.ac) = ab.ac = 

= (ab.a)c and consequently a.ba = ab.a. 

--•2« Lemma. Suppose that G contains at least seven e-

lements. Let a,beG be such that a^b,ab.ba. Then a.ba = 

= ab.a. 

Proof. According to the hypothesis, there exists ceG 

such that c 4a,b,ab,ba and a4=ac4*b. Then a.ba = ab.a by 1.1. 

--•3« Lemma. Let a = ab for some a,b€G, a4*b. Then b 

is a left unit of G and a.ba = aa = ab.a. 

Proof. If ce G, a+c-^b, then a.be = ab.c = ac and be = 

= c. Assume ba^.a. Since G is a cancellation groupoid and 

be = c for every a + c + b, we must have ba = b and bb = a. 

Hence bb = a = ab,b = a, a contradiction. Thus ba = a, bb = 

= b, b is a left unit and a.ba = aa = ab.a. 

1#4« Lemma. Let a = ba for some a,beG, a4b. 3:hen b 

is a right unit of G and a.ba = aa = ab.a. 

Proof. Dual to that of 1.3. 

*•-*• Lemma. Suppose that G is a quasigroup. Then a.aa = 

= aa.a for every a£G. 

Proof. G is a loop by 1.3 and 1.4. Let acG. If aa = 1 

then a.aa = a = aa. a. If aa = a then a = 1 and a.aa = 1 = 

= aa.a. Assume l-$-aa--i=a. There are b,ce G such that ab = 1 = 

= ca. If b#=c then c = cl = cab = ca.b = lb = b, a contra­

diction. Hence b = c. Put f(x) = a.bx for every X6G. Then 
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f is a permutation and f(d) = a.bd = ab.d = d for d4-a,b. 

Further, f(a) = a.ba = a, and therefore f(b) = b. Thus 

a.bx = x for every xeG. Similarly, b.ax = xa.b = xb.a = 

= x. Now, if aa = b, then a.aa = 1 = aa.a. If aa^b then 

a.aa = ((a.aa)b)a = (a(aa.b))a = aa.a, since aa.b = a. 

!•*>• Lemma. Suppose that G is a quasigroup. Then 

a.ba = ab.a, a.bb = ab.b and bb.a = b.ba for all a,b€ G. 

Proof. With respect to 1.5, we can assume that a#b. 

If ab = a (ab = b) then b(a) is a left unit by 1.3 (1.4). 

Since G is a loop, b(a) is a unit and the result follows 

easily. Assume a4-ab4=-b and put f(x) = ax, g(x) = bx and 

h(x) = g" f~ (ab.x) for every xe G. Then h is a permutati­

on and h(c) = c for every a4=c4-b. If h(a) = a then h(b) = 

= b and a.ba = ab.a, a.bb = ab.b. Let h(a)4=a. Then h(a) = 

= b, h(b) = a, ab.a = a.bb and ab.b = a.ba. If b = bb then 

b is a unit and a = ab, a contradiction. If a = bb then 

ab.a = a.bb = aa yields a = ab, a contradiction. Thus a 4s 

^bb^b and we have (ab.a)b = (a.bb)b = a(bb.b) = a(b.bb) = 

= ab.bb = (ab.b)b = (a.ba)b, ab.a = a.ba and h(a) = a = b, 

a contradiction. We have proved that a.ba = ab.a and a.bb= 

= ab.b. Similarly the rest. 

1.7. Lemma, a.ba = ab.a for all a,beG, a+b. 

Proof. With respect to 1.2, 1.3 and 1.4, we can assu­

me that G contains at most six elements. Then G is a quasi­

group and the result follows from 1.6. 

In the next five lemmas, let G be a cancellation grou-

poid such that x.yz = xy.z for all x,y,zeG with y^x+z. 

1.8. Lemma. Let a,b,ceG be such that a4=b,c,ab,ca and 
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b4-ca and c4-aa,ab. Then a.ab = aa.b. 

Proof. We have c(a.ab) = ca.ab = (ca.a)b = (c.aa)b = 

= c(aa.b) (apply 1.7 if b = c), and so a.ab = aa.b. 

1 .9 . Lemma. Suppose that G contains at l e a s t s i x e l e ­

ments. Let a , b e G be such that a4*b,ab. Then a.ab = aa .b . 

Proof. Use 1 .8 . 

1.10. Lemma. Let a = ab for some a,beG, a=$-b. Then 

a•ab = aa.b. 

Proof. By 1.3, b is a left unit of G. If b#aa then 

(aa.b)a = aa.ba = aa.a and aa.b = aa = a.ab (use 1.7). If 

b = aa then aa.b = bb = b = aa = a.ab. 

1.11. Lemma, a.ab = aa.b for all a,be G, a4=b. 

Proof. This is an easy consequence of 1.9, 1.10 and 

1.6. 

1*12» ~-<emma. a.aa = aa.a for every aeG. 

Proof. According to 1.5, we can assume that G contains 

at least three elements. Then a4=b,ab for some bfeG. If a = 

= aa then a.aa = a = aa.a. If a=l=aa then (a.aa)b = a(aa.b) = 

= a(a.ab) = aa.ab = (aa.a)b (use 1.7, 1.11) and a.aa = aa.a. 

--•--3. Theorem. A cancellation groupoid G is a semigroup, 

provided at least one of the following two conditions is true: 

(i) x.yz = xy.z for all x,y,zeG such that y4=x4-z. 

(ii) x.yz = xy.z for all x,y,zeG such that y-^z+x. 

Proof, (i) Apply 1.7,1.11 and 1.12. 

fii) Dual to (i). 

2. Let W be an absolute ly free groupoid over a non-em­

pty s e t X (elements of W are c a l l e d terms). For every aeW, 
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we define two transformations L and R of W by L (b) = ab 
w a a-

and Ra(b) = ba. 

Let r be a r e f l e x i v e and symmetric r e l a t i o n def ined 

on W. Define three re la t ions o ( r ) , p(r) and q(r) as f o l l ­

ows: ( a , b ) e o(r) i f f there are n .?2 ard a i f - t a
n

€ W such 

that a = a l f b = a^ and ( ^ 1 1 8 2 ) , ( & 2 > a 3 ) > • • • t ( a n - l » a n ) e r » 

( a , b ) e p ( r ) i f f there are n^O, S ( 1 ) , . . . , S ( n ) 6 4L,Ri and 

e 1 , . . . , e n , c , d c W such that ( c , d ) e r and a = S ( 1 ' . . . S * n ) ( c ) , 
1 n 

b = S ( 1 ) . . . S ( n ) ( d ) ; ( a , b ) c q ( r ) i f f there are n > 0 , S ( 1 ) , . . 
1 n 

. . . , S ( n ) € i {L,RJ and c-j, . . . ,cn<£ W such that ( S ( 1 ) . . . S ( n ) ( a ) , 
1 n 

S(1)...S(n)(b))£ r. Put t(r) = rvo(r)0 po(r)u qpo(r) V 
cl cn 
u oqpo(r)u ... . 

2-1» Len-ffla* t(r) is a cancellative congruence of W. 

Proof. Easy. 

Now, suppose that r satisfies the following two condi-

ti ons: 

(1) If (a,b)er then every xtsX has the same number of oc­

currences in both a an! b. 

(2) If (a,b)er and x £X then the term xx has the same num­

ber of occurrences in both a and b. 

2»2* Lemma. o(r), p(r) and q(r) satisfy (1) and (2). 

Proof. Easy. 

2.3. Lemma. t(r) satisfies (1) and (2). 

Proof. This follows from 2.2. 

2-4. Example. Define r as follows: (a,b)er iff either 

a = b or there are c,d,eew such that c+d4=e and 4a,b} = 

= 4 .c .de , cd.ei. Evidently, r is reflexive and symmetric. 
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Moreover, r satisfies (1) and (2). By 2.1 and 2.3, w = t(r) 

is a cancellative congruence satisfying (1) and (2). Put 

G = W/w. One may check easily that G possesses the following 

properties: 

(i) G is a cancellation groupoid. 

(ii) x.yz = xy.z for all x,y,z€G such that either x4=y4=z 

or x = y = z. 

(iii) G is not a semigroup. 

3. For a groupoid G, let A(G) = -C(a,b,c) [ a,b,c €G, 

a.be = ab.ci and B(G) = G3\ A(G). 

3*--« Lemma. Let G be a cancellation groupoid and a,b, 

c,deGsuch that (a,be ,d), (b,c,d), (a,b,cd), (ab,c,d) e A(G). 

Then (a,b,c)£ A(G). 

Proof. We have (a.bc)d = a(bc.d) = a(b.cd) = ab.cd = 

= (afe.c)d, and therefore a.be = ab.c. 

3.2. Proposition. Let G be a non-associative cancel­

lation groupoid containing at least seven elements. Then 

card G^-card B(G). 

Proof. For all a,b,c,deG, let B(a,b,c,d) = «f(a,bc,d), 

(b,c,d),(a,b,cd),(ab,c,d)}. The rest of the proof will be 

divided into four parts. 

(i) Let a,b,c,d,e€G be such that d^e and B(a,b,c,d) n 

A B(a,b,c,e)4=Cf« Then either a = b = c o r a = ab, b = c or 

b = be. 

(ii) Suppose that there is (a,b,c)eB(G) with bc4=b#-c. By 

3.1, B(a,b,c,d)nB(G)=fc-0 for every d e G. Now, taking into 

account (i), we see that card G^card B(G). 
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(iii) Suppose that either y = yz or y = z for all (x,y,z)6 

eB(G). Since G is not a semigroup, B(G) is non-empty. Let 

(a,b,c)eB(G) and deG. With respect to 3.1, at least one 

of the following equalities is true: c = d , b=cd, b c = d , 

c = cd, b.cd = b, be = bc.d. Using this, it is easy to con­

clude that card G^6, a contradiction, 

(ib) By (ii) and (iii), card G== card B(G). 

3-3. Corollary. Let G be an infinite non-associative 

cancellation groupoid. Then card G = card B(G). 

3-4. Example. Let G be an infinite set. Then there is 
2 

an injective mapping f:G — ^ G. The corresponding groupoid 

G s G(f) is a cancellation groupoid and B(G) = G . 

Let Q be a quasigroup. For every aeQ, there exist uni­

quely determined elements e(a) and f(a) such that f(a)a = 

= a = ae(a). We obtain thus two transformations e and f of 

the set Q. 

3-5. Lemma. Let Q be a quasigroup anl a,b,ccQ. Then 

(a,b,c) 6 A(Q), provided at least one of the following con­

ditions is satisfied: 

(i) f(b) = a and e(b) = c. 

(ii) e(ab) = c = e(b). 

(iii) f(be) = a = f(b). 

(iv) e(a) = b = f(c). 

Proof. Obvious. 

3.6. Corollary, card Q^-card A(Q) for any quasigroup 

Q. 

3*7- Corollary. Let Q be an infinite non-associative 
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quasigroup. Then card A(Q) = card Q = card B(Q). 

3.8. Lemma. Let Q be a quasigroup such that ab = b = 

= be for all (a,b,c)e A(Q). Then: 

(i) The transformation e and f are infective, 

(ii) Every element of e(Q)nf(Q) is idempotent. 

(iii) If both e and f are aurjective then Q is idempotent. 

Proof, (i) Let a,b,c,deQ, e(a) = c = e(b) and a = db. 

Then (d,b,c)e A(Q), and so a = db = b. We have proved that 

e is infective. Similarly for f. 

(ii) Let a,b,ceQ and e(b) = a = f(c). Then (b,a,c) e 

£A(Q), b = ba = a = ac = c and a = aa. 

(iii) Ttiia i3 an immediate conaequence of (ii). 

3.9. Proposition. Let Q be a finite quasigroup such 

that card Q = card A(Q). Then Q is idempotent. 

Proof. By 3.5 (i) and the hypothesis, A(Q) = 4(f(a), 

a,e(a) I ae QK By 3.8 (i), e and f are infective. Since Q 

is finite, e and f are permutations and Q is idempotent by 

3.8 (iii). 

It seems to be an open problem whether there exists a 

non-trivial (finite) quasigroup Q with A(Q) = -C (f (a) ,a,e(a)) 

laeQK 

3.10. Lemma. Let Q be a finite idempotent quasigroup 
o 

of order n such that Q is isotopic to a group. Then n -£. 

± card A(Q). 

Proof. Let aeQ, h(x) = xa, g(x) = ax and x + y = 

= h~1(x)g (y) for all x,ye Q. Then Q(+) is a group, a is 

its unit, h(a) = a = g(a) and xy = h(x) + g(y) for all xfyc 

e Q. We have x » xx « h(x) + g(x), and so g(x) = -h(x) + %. 

- 486 -



Now, l e t b£Q. Biere i s c eQ such that -h2(b) + h(b) = 

= hg(c) . Then b.ac = h(b) + g2(c) = h2(b) + hg(c) + g2(c) = 
p 

= h (b) + g(c) = ba .c . Hence (b , a , c )e A(Q). The r e s t i s c lear . 

3 .11 . Proposition. Let Q be a f in i t e non- t r iv ia l qua-

sigroup isotopic to a group. Then card Q<card A(Q). 

Proof. The statement follows from 3.9 and 3.10. 
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