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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

21,2 (1980) 

THE NIL-DEGREE OF A TORSION-FREE ABELIAN GROUP 
D. R. JACKETT 

Abstract: Recently Webb, Acta Sci. Math. Szeged 39 
(1977), 185-188 provided a bound for the nil-degree (if it 
is finite) of a torsion free group of finite rank. In this 
paper we extend Webb s result to torsion-free groups A, not 
necessarily of finite rank, but with certain finiteness con­
ditions on the rank of A/pA for each prime p. We also prove 
an associative ring on such a group is nilpotent exactly if 
it is nil. 

Key words: Ring, (strong) nil-degree, p-adic module* 

Classification: 20K20 

All groups that we consider here ar0 abelian groups, 

and all rings are not necessarily associative rings. A rinff 

on a group A is a ring whose additive group is (isomorphic 

to) A. We write (Af«) for a ring on A and say that A supports 

(A,»). The rank of A is denoted by r(A). We use the standard 

notation Z, and for a £>rime p, J for the group of integers 

and the group of p-adic integers, respectively. 

Szele C91 defined the nil degree (nilstufe) of a group 

A to be oo or the largest integer n (if one exists) such that 

there is an associative ring (A,») on A with (A,»)n+0. Gard-

This paper formed part of the author's Ph.D. thesis, univer­
sity of Tasmania, 1977, which was written under the direction 
of Dr. B.J. Gardner. 
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ner [83 defined the strong nil-degree of A similarly, where 

for the non-as3ociative ring (A,0 on A, (A,*)n is the sub-

ring of (A,*) generated by all products of the form 

(...((a^*a2)
#a-J-. ..^a^. Throughout this paper (A,')n will 

always have this meaning. Feigelstock C43 has introduced a 

concept very aimilar to the atrong nil-degree of a torsion-

free group. Following Feigel3tock we define the extra strong 

nil-degree (strong nilstufe) of the torsion-free group A to 

be the positive integer n such that there is a ring on A with 

a non-zero product of length n (all pos9ible bracketinga con-

sidered), but no ring on A with non-zero product3 of length 

greater than n. If no such n exists then the extra strong nil-

degree is defined to be oc . For a torsion-free group A we 

let N(A), Ng(A) and N.g(A) respectively denote the nil-degree, 

the strong nil-degree and the extra strong nil-degree of A. 

A group is called nil if it has nil-degree 1. 

Feigelstock I 5 J has claimed that if A is a torsion-free 

group of rank two then N-g(A) is 1, 2, or oo , but appears to 

have only shown that N(A) is 1, 2, or oo j his proof relies 

on Lemma 1 of Beaumont and Wisner [ 3J that requirea considera­

tion of associative rings. Feigelstock has also conjectured 

that if A is a torsion-free group of finite rank n then 

N.g(A) is 1, 2,...,n or co . 

Recently Webb £101 has shown that if A is a torsion-free 

group of rank n then K(A) is l,2,...,n or oo and NE(A) is 

l,2,...,2n~ or oo • Also, he has provided an example of a 

torsion-free group A of rank three for which N„(A) = 4. Thus 

Feigelstock'9 conjecture is not true. However, if we replace 

N£(A) with No(A), the conjecture can be proved. 

- 394 -



Theorem 1. Let (A,.) be a ring on a torsion-free group 

A of finite rank n. If (A,«) = 0 for some positive integer 

m then (A,*)n+1 = 0. 

Proof: Suppose (A,*)m = 0 for some positive integer m, 
k+1 and k is a positive integer for which (A,*-) 4*0, We show 

k k+1 » 
(A,«) /(A,») is not a torsion group. 

k k+1 Indeed, suppose (A,*) /(A,») is torsion. If we choo-
k 

se a non-zero element at=(A,») then there is an integer n-.*}- 0 

such that n1a<s(A,*) . Thus 

_ # *• *» . *» 
O =Fn-,a = an • a-, + a-, * a-, + a-, • a-, +•••+ a-, • a-, • 1 1 1 12 12 13 13 l n ( 1 ) l n ( 1 ) 

where a-, and a-, are in A, and a-T and a-T are in (A,») , for 
i i 

each ie{2,3,..•,n(l)J. Without loss of generality we can as­

sume a-f • a-,41 0. 

Since a-f e (A,« ) it is possible to choose a non-zero in-
*• k+1 teger n2 such that n2a-,e(A,«) . Hence 

O-j-n-jta-^ • a-̂ ) = (a2 • a2 + a2 * a2 + a2 . a2 +. ••+ 

+ a~ * £u ) * a- , 
2n(2) 2n(2) x 

where a2 and a2 are in A, and a2 and a2 are in (A,*) , for 
i i 

each i e $2,3,... ,n(2)} . Again we can assume (a2 • e^) • a-, 4=0. 

If we repeat this procedure we can obtain elements a-,, 

a2,...,a k in A, and an element a' . in (A,«) such that 

("- ( ( am-k' am-k) ' am-K-l)# •••)* a l * °' 

Clearly 

('-'((am-k' am-k)# am-k-l)# •••>• ai* ( A>'> m 

contradicting the fact that (A,-) = 0. We conclude that 
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k k+1 (A,*) /(A,*) cannot be a torsion group. 

Consequently, for each positive integer k for which 

(A fO
k + 1+0 f (AfO

k/(Af O
k + 1 has torsion-free rank greater 
k 

than zero. That is, r((AfO ) is strictly greater than 

r((Af ) k + 1). Since A has finite rank n, (A, O n + 1 = 0. 

Corollary 2. If A is a torsion-free group of rank n 

then Ng(A) is l,2f...,n or co . 

It is not difficult to find torsion-free groups A of 

rank n for which the bound of n for N«(A) in Corollary 2 is 

actually attained. Indeed consider A - .©.A. where each A* 

is a rational group with type (2i,2i,...f2i,...). A referen­

ce to Theorem 4.2 of Gardner t8J shows Ng(A) * n. 

The remainder of this paper is concerned with extend­

ing the associativa case od Corollary 2 (that is, Webb's 

Theorem) to other classes of torsion-free groups. Our aim is 

two-fold; we wish to find some infinite rank torsion-free? 

groups whose nil degrees, if finite, are bounded, and we 

would also like under certain circumstances to lower the 

bound on the finite nil-degrees mentioned in the Corollary, 

we concentrate our attention on torsion-free groups A with 

the property that for each prime p, r(A/pA) is bounded by so­

me positive integer n (not depending on p). This amounts to 

considering torsion-free groups whose p-basic subgroups all 

have rank .4 n. Clearly a torsion-free group of rank n sa­

tisfies this property. 

A k 

For a group A and a prime p let A/ \ = lim (A/p A) de­

note the p-adic completion of A. If A is torsion-free and 

p-reduced then clearly A, x is torsion-free. Also, A/ \ can 
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be made into a module over the ring of p-adic integers Q # 

by defining, for j =» s Q + s-̂ p +...+ s^p +... in dj and 

(ax + pAf &2 + P2*>*-->ak * P k ^ f * ) in i ( p ) f 

2 k 
j(a-^ + pAf &2 + P A f * #t ak + P *#•••) 

= (j(1)(a1 «• pA) f j
( 2 )(a 2 • p

2A),...fj
(k)(ak • p

kA)f;.#) t 

where j^ ' « s + a-,p "'"•••+sk-iP "" ' o r e a c n positive inte­

ger k. 

The next result enables us to extend rings on certain 

groups to rings on their p-adic completions.. 

Proposition 3. Suppose A is a group with no elementa of 

infinite p-height for some prime p f and (Af •) is a ring on A. 

Then there is exactly one ring structure (^(D)t*) 9£k *( D) 

which extends that of (A,*), and this preserves associativity 

and commutativi.ty in (A,*). 

Furthermore &/„)»•) becomes a Q?-algebra. 

Proof: The proof of the Proposition is analogous to the 

proof of Corollary 119.4 of Fuchs t73. The only statements 

that require verification are that the extension (A(D)t
#) °* 

(A,-) is unique, and that (A/-)»•*) becomes a Qg-algebra. Sin­

ce A can be regarded as a p-pure and p-dense subgroup of the 

p-reduced group Aj ) the proof of Lemma 119.2 of Fuchs 173 

applies to show that (A/p),«) is unique. That (A(p)t
#) is a 

Q^-algebra follows at once from the definition of the Q*-mo-

dule A(p) given prior to the Proposition. 

15B e following well -cnown result is required. 
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(4) (Puchs L6 3, p. 166 ) . Let Q - » B - ^ A 4 C ^ 0 

be a p-pure exact sequence. Then the sequence 

-* 0& A A A. 

°-+B(p)-*A(p)^C(p)-^0 

is splitting exact. 

Lemma ft. Suppose A is a torsion-free group and B is a 
A A 

p-basic subgroup of A. Then A/ % and B/ * are isomorphic p-

adic modules. Furthermore. A/ % has finite rank over QlT if 

and only if B has finite rank over Z, and* in this case the 

Qt-rank of A/ v ani the Z-rank of B coincide. 
p - vp; 

Proof: Consider the p-pure exact sequence 

0-->B^A--»A/B--*0 

where oc is the inclusion map. (4) shows that the sequence 
A 

0 _ > g ( p ) ^ ( p ) - + ( A / & ) ( p ) - > 0 

is splitting exact, so A/ ^ Im ̂  © (k?B), *. Since A/B is 

p-divisible , (A/B), j = 0, whence A(p)—
B(p) ^

as groups). 

Next let (b-̂  + pB, b2 + p
2B,...,bk + p

kB,...) be an ar­

bitrary element of B(p), and let j be a p-adic integer. Then 
AC-jU^ + pB, b2 + p

2B,...,bk + p
kB,...)) 

= A(j(1)b1 + pB, 5iZ)b2 + p2B,...,j(k)bk + p
kB,...) 

= ( j * 1 ^ + pA, j(2)b2 + p
2A,...,j(k)bk + p

kA,...) 

2 v 
= j(bx + pA, b2 + P A., ...,bk + p A,...) 

= j C ^ t ^ + pB, b 2 + P^,...,^ + p
kB,...)), 

so ̂ (0)
 a n d B(D)

 a r e *SOI--orphic Qp-modules. 

Suppose now the rank of B is finite. A trivial induc-
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A 

tion argument together with (4) show that the rank o:f B, v 

over Q* is precisely the rank of B. Thus the Q.*-rank of 
A A 

A/ v is the rank of B. To prove the converse suppose A/ * 

has finite rank n over Q*, and B has rank strictly greater 

than n. Then B contains a p-pure free summand of rank (n+1), 
A A 

so (4) shows that ^(D\^--(n) contains a summand isomorphic 

to the direct sum of (n+1) copies of J . This is clearly 

impossible . 

Suppose A is a torsion-free group and oo :A—> A(D)
 ia 

the canonical map from A into its p-adic completion. If a ia 

an arbitrary element of A then le t a denote the image of a 

under the map 06 • Similarly if B is a p-basic subgroup of 

A and ft :B — > ®(r>) 1S tne canon--cal nmp from B into its p-

adic completion, then let b denote the image of b & B under 

the map p> . We can now improve the final assertion in Lem­

ma 5. 

Lemma 6. Let A be a torsion-free group with finite 

rank p-basic subgroup 3 = < b-̂  > (B < b 2 > <•£ ...® ^ b n ̂  * 
A A A A A I 

Then the elements b-, ,b2,... ,bn of A/ x form a basis of A/ J 

over Q*. 

Proof: From Lemma 5 it suffices to show that the set 

S = -i"Blfb2,... ,Bnl of elements of B, , form a basis of B, * 

over Q*. 

First we show that S is independent over Q*. Indeed 

suppose 

(*) j ^ + j2b2 +...+ :jnbn = 6 
, . . /u\ 

for some p-adic integers Jx,J2» • • • ,t3n* Wltn i\ defined 
as usual for i c4l,2,... ,ni and k€4lf2,...if (*) Dec 
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(j(1)b1 + PB, j
(2)bi + P2-,.«".Jik)bl + P1^.-..) + 

+ (4 1 ) b2 + pB« j2 2 ) b2 + ^ j2k>b2 + Pk-»...') +...+ 

+ (Jn1 ) bn + pB» & * \ + >***''''&\ + P^B,...) 

= (pB, p2B p B , . . . ) . 

Thus 

0(^b1 + 4k>b 2+ . . .+ 4k>bn6pkB 
for each k € { l f 2 , . . . J . Hence for every k € - t l f 2 , . . . } there 

are integers i £ k ) , ^ k ) , . . . , ^£ k ) such that 

i * \ + 4 k ) b 2 +...+ 4 k ) b n ^ ^ v \ +i2
k)Pkb2 +...+ 

+ ̂ w . n * n 

,(k) _ . (k)„k Consequently j>K' - i ^ P for each i 6 $ 1 , 2 , . . . , n j . But 

then 

Jibi = ( 4 1 ) b i + pB> J i 2 ) b i + P2 B"*-.J ik > b i + P^..-.) 

- (4X)Pbi + PB. ̂ i2>P2bi + P2B,...,-?{k)Pk«>t + p
kB,...) 

, = 0 , 

A 

for each i €il,2,...,n$. Since Bjpj is torsion-free as a 

Q*-modute, we conclude that S is independent over Q*. 
A 

Next we show that S generates &(«)• Let 

(b(1) + pB, b ( 2 ) + p2B,...,bCk) + pkB,...) 

be an arbitrary element of B/ y Then for each k€il,2,...$ 

there are suitable integers mi , i e4l,2,...,n], such that 

b ( k ) + pkB =- (m:
(k)b1 + m^

k)b2 +...+ mn
k)bn + p

1^, 

and Oim|k)< pk. Now for each k c*l,2,. ..3 
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K(k+1) _,_ kn _ *(k) . kR 

b + p B - D + p o , 

so b ( k + 1 ) - b(k)c pkB. It follows that for each iefi.,2,... 

...,n} and each k £ tt,2,. ..3, (m|k+1) - m|k))bi€ p
k < bt> . 

Thus for each i e41,2,...,nj, the sequence m| , m^ ',... 
(%r\ (k+1) (k) k 

...,m£ ,... has the property that m^ ' m m> (mod p ), 

for each k 6 41,2,...}. Hence m> , m^ ',...,m̂  ,... deter-

.(k) (k) mines a p-adic integer j^ for which j> ' = m> ' for each 

k 6«ll,2,.. m\ . But then 

J1B1 + ^2b2 +-'-+ A 

= (m-jj1^ + pB, m(2)b1 + p
2B,... ,m^k)b]L + p

kB,...) + 

+ (m^1)b2 + pB, i-4
2)b2 + p

2B, ...,m2
k)b2 + p

kB,...) +...+ 

+ ( m n 1 > b n + PB> " 4 2 > b n + *>% — •** \ + p1^,...) 

= ((m^ 1 )b 1 + m
( 1 ) b 2 +...+ m n

1 ) b n ) + pB, 

(m^2)b1 + m
( 2 ) b 2 +...+ m n

2 ) b
n
) + P2fi» • • • 

..., (m^ k )b 1 + n 4
k ) b 2 +...+ HL

(k)bn) + p
kB,...) 

= (b(1) + pB, b ( 2 ) + p 2B,...,b ( k ) + p k B , . . . ) , 

so S indeed generates B, x. 

A consequence of Lemma 6 and Proposition 3 is the fol­

lowing. 

Proposition 7. Suppose A is a torsion-free group with 

no elements of infinite p-height for some prime p, and 

r(A/pA) is finite. Then any ring (A,-) on A is completely 

determined by its effect upon any p-basic subgroup of A. 
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If A has finite rank and r(A) = r(A/pA), then it is possib­

le to choose a p-basic subgroup of A that is also a sub-ring 

£f (A,.). 

Proof: Let B « <b1> e < b2 > © ... © <*bn> be a p-

basic subgroup of A. If A/ x is the p-adic completion of A 

then Proposition 3 shows that (A,-) may be viewed as a sub-

ring of (*(D)t
#)« -tanflia 6 now shows that the ring (*(D)»

#)t 

and hence the ring (A,*), is determined by the effect of 

(A,*) on the set-Cb-î bg,.. *,bn$. 

To prove the final assertion of the Proposition we use 

an argument similar to the proof of Lemma 4.3 of Beaumont 

and Pierce £23. Suppose r(A) = r(A/pA) = n. Then ib-^bg,... 

...,bni is a maximal independent set of elements of A, so 

for all i and j e. -£1,2,... ,n] there exists an integer m with 

(m,p) = 1, and integers m-t̂ D-̂ ,...,!̂  such that 

m(b£ • b.) « atjb̂  + m2b2 "•'•••4" "^n # 

Cbnsequently (mB,-) * «mb-ltmb2,... ,mbn>,•) is a subring of 

(A,»). Finally since B is p-pure in A and (m,p) » 1 it fol­

lows that mB is a p-basic subgroup of A. 

The partial similarity of Proposition 7 with Theorem 

120.1 of Fuchs 173 cannot be strengthened. To demonstrate 

this simply let A be a rational group with non-idempotent ty­

pe. It is clear that there is a prime p for which A satisfi­

es the conditions of Proposition 7. However since A is a 

nil group and every p-»basic subgroup of A is cyclic, not e-

very partial multiplication on a p-basic subgroup of A will 

extend to a ring on A. 
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Suppose now A is a torsion-free group with no elements 

of intinite p-height, for some prime p, and (A-*) is an as­

sociative ring on A. Proposition 3 shows that (A,.) can be 

viewed as a subring of an associative ring J.A/D),*) on A/ %. 

If we let K denote the quotient field of <£, then K €> Q*A, j 

can be made into an associative algebra (K# G*A(p)*') over 

K by defining, for k,, k2 in K and a-,, &2 in ^(Dv» 

( k ^ *x). (k2® a2) =- (k1 k2) o a 1 . a2) 

and 

k1(k2®.ai) * (kx k 2)@ a r 

\ P > It is clear that if i,,^ has finite rank over Q* then 

K S n*A/ \ will have finite dimension over K. Also the map 

a—> 1 & a for each icA, , is an embedding of (A/D)f*) ia 

(K® Q*A/ %,*•), so (A,«) can be viewed as a subring of the 

algebra (K © ^ l ( p ) , . ) . 

These comments form the basis for the proof of our next 

result. 

Proposition 8. Let A be a torsion-free /group with no 

elements of infinite p-height for some prime p, and suppose 

r(A/pA) =-n. If (A,-) is a nil ring then (A,On+1 * 0. 

Proof: (A,*) can be embedded in the associative algeb­

ra (X®r*A/ %,•) over the field X. If B is a p-basic subgroup 

of A then there exist elements bitb2,###,^n °* A 8 u c n that 

B =- <b 1>^<b 2>© ...@ <bn> . Lemma 6 shows that -t£-,f$2,... 

...,bn^ is now a basis of A/ % over Q* so \10 b-^,1© b2,..., 

1 ® \ I is a basis of K ® Q * ij J over K. 

For each i « U,2,...,n \ , b± is a nilpotent element 

of (Af • ), so 1 g b£ is a nilpotent element of 
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(K&& A(p)>*). Since ( K ® Q * A.(p)tO has finite dimensi­

on n over K, a reference to Abian t1], p. 155, now shows 

( K ® Q * ^p)**)11"1"1 = 0. Thus (A,On+1 * 0, as desired. 

Now for the main result3. 

Theorem 9* Suppose A = D <£> R is a torsion-free group. 

where D is a divisible group and R is a reduced group. Suppo­

se further that D has finite rank d and the rank of A/pA is 

bounded by the integer n, for every prime p. If (A,*) is a 

nil ring on A then (A,0 ( d + 1 ) ( n + 1 ) = 0. 

Proof: Let (A,*) be a nil ring on A. If there is a pri­

me p for which A has no elements of infinite p-height, then 

Proposition 8 shows (A,«)n = 0 . Hence we can assume that 

A has elements of infinite p-height for every prime p. 

Consider a fixed prime p. It is readily checked that 

A/p A is a torsion-free group with no elements of infinite 

p-height such that r((A/pcdA)/p(A/p<5>A))^ n. Also, since p^A 

is a fully invariant subgroup of A, the nil ring (A,«) on A 

yields a nil ring (A/p^A,.) on A/p^A. Thus Proposition 8 

implies (A/p^A,*)11 = 0. Since this is true for every pri­

me p, (A,O n + 1S Qp^k = D. 

Now (D,») is an ideal of (A,*), so (D,*) is also a nil 

ring. Since (D,0 can be made into a finite dimensional al­

gebra over the field of rationals Q, (D,-) is a nilpotent 

ring. Theorem 1 now shows (D,0 + = 0, so (A,#) 

a 0, as required. 
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Corollary 10. Let A be a reduced torsion-free /group 

with the property that r(A/pA) ie bounded by the poeitive 

integer n, for every prime p. Then N(A) is 1,2,...,n or oo . 

We conclude ty noting that certain result3 in Webb [10.3 

enable ua to give the non-associative analogues of the pre- * 

vious Theorem and ita Corollary. The proof a are omitted ain-

ce they are direct consequencea of the non-aa9ociative re­

sults in Webb's work and the arguments used to prove Theorem 

9. 

Theorem 11. Let A = D © R be a torsion-free group whe­

re D is a divisible group and R is a reduced group. Suppose 

D has finite rank d and the rank of A/pA is bounded by the in­

teger n, for every prime p. If (A,») is a ring on A for which 

there is a poaitive integer m such that every product of 

length m is zero, then every product of length 

X2 n- 1 + l)(2d"1 + 1) is zero. 

Corollary 12. Suppoee A is a reduced toraion-free group 

with the property that r(A/pA) is bounded by the positive in­

teger n, for every prime p. Then N.g(A) 13 1,2,•••f2
n""1 or «>. 
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