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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
21,2 (1980)

COMMUTATIVE MOUFANG LOOPS AND DISTRIBUTIVE STEINER
QUASIGROUPS NILPOTENT OF CLASS 3
Tomas KEPKA

_ Abstract: Free commutative Moufang loops_and distri-
butive Steiner quasigroups nilpotent of class 3 are const-
ructed. !

Key words: Loop commutative, Moufang quasigroup
distributive, Steiner. ’ ’ ’

Classification: 20NOS5

Recently, L. Bénéteau has described free 3-elementary
commutative Moufang loops nilpotent of class at most 3. The
description is based on a trilinear construction using anti-
commutative graded rings. In the present paper, we give an-
other, more direct construction. The results are also appl-

ied to distributive Steiner quasigroups.

1. CM-loops and DS-quasigroups. A loop Q is said to be

a CM-loop if it satisfies the identity xx.yz = xy.xz. A qQua-
sigroup Q is said to be a DS-quasigroup if it satisfies the
identities xy = yx, X.Xy =y, X.yz2 = Xy.x2., The reader is
referred to £11,...,[9) for basic and some further proper-
ties of these structures.

let Q be a CM-loop. We denote by Cl(Q) the centre of Q
and by C,(Q) the subloop containing C;(Q) such that
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C5(Q) /C(Q) = £4(Q /€1 (Q)). Further, we put [a,b,c] =

= (ab.c)(a.be)™ L for all a,b,c € Q. The subloop generated

by all [a,b,c) is denoted by 4,(Q) and the subloop genera-
ted by all [[a,b,cl,d,el by A,(Q). We shall say that Q is
mlpotent of class at most 3 if AZ(Q)Ecl(Q). The loop Q is
said to be 3-elementary if D(Q) = 1, where D(Q) = ixdlxeql.
Obviously, Q is 3-elementary iff B(Q) = Q, where B(Q) = <x|
xeQq, = =13,

1.1, lemma. Let Q be a CM-loop. Then:

(i) [a,b,el = [b,e,cJ-l = [a,c,b]-]‘ for all a,b,c€eQ.
(ii) [[a,b,el,c,a)=L[b,d,cl,c,al for all a,b,c,deQ.
(1ii) [fa,b,cl,d,el =(la,d,el,b,c]llb,d,el,c,al
{Le,d,e),a,b] for all a,b,c,d,es Q.
(iv) L [a,b,c),d,el =LL4,b,c),a,el[la,d,c],b,e]
{la,b,d1,c,e] for all a,b,c,d,ecQ.
(v) {Lia,b,cl,c,d),d,e] =IlLDb,e,cl,c,d],d,a] for all a,b,c,
d,eeQ.
(vi) {La,b,cdl,cd,e)l =ila,b,el,c,ellla,b,dl,d,el .f, £ =
{tta,b,cl,c,dl,d,el [ la,b,c],d,e) lla,b,dl,c,e] for all
a,b,c,d,ecQ.
(vii) If Q can be generated by 5 elements then Al(Q) is a
group. |
(viii) tla,b,e),d,el =[lb,a,dl,c,elllvb,e,c),d,al
tlb,e,dl,c,a) for all a,b,c,d,e €Q.

Proof. (i) See (4, § VIII.2].
(ii) See (4, Lemma VIII.3.9).
(1ii) See 14, Lemma VIII.6.4).
(iv) See (4, Lemma VIII.6.4].
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(v) .See {4, Lemma VIII.S.S).

(vi) See [4, Lemma VIII.6.61].

(vii) See [4, Lemma VIII.6.3].

(viii) This is an easy consequence of (i),(ii),(v),(vi) apg
(vii).

1.2. lemma. Iet Q be a CM-loop generated by a set S,
Then Q is nilpotent of class at most 3 iff [lla,b,cl,d,el,f’
gl=1 for all a,b,c,d,e,f,g€S.

Proof. See 4, Lemma VIII.3.81.

1.3. lemma. let Q be a CM-loop generated by a set S,
(i) If Q is nilpotent of class at most 2 then 4,(Q) is ge-
nerated by the elements la,b,cl,a,b,ceS.
(ii) If Q is nilpotent of class at most 3 then Az(Q) is ge-
nerated by the elements ([a,b,c,Jd,el, a,b,c,d,e€S,

Proof. This is an easy consequence of [4, Lemma VIII,
3.8].

1l.4. Proposition. let O%4n be an integer amd Q a 3~
elementary CM-loop generated by n elements,
(1) If Q is nilpotent of class at most 2 then card Q& 3tm
m _m
and card 4,(Q)£3", n = (3) .
(ii) If Q is nilpotent of class at most 3 then card Q £
2 30**P carg Al(Q)‘—'3m+p and card A,(Q) £ 3P, 4(2) +
ny\ _
+ 4 (5) = po
Proof. Use 1.1 and 1.3.
1.5. Proposition. The following conditions are equiva-
lent for a quasigroup Q:
(i) Q is a DS-quasigroup.
(ii) There exists a 3-elementary M-loop Q(e) such that
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Xy = x 1o y'l for all x,yeQ.

Proof. Easy and well known (see e.g. [ 7, Satz 1.4]).

2, Ternary rings. Let G = G(+,F) be a ternary ring
(i.e., G(+) is an abelian group and F is a triadditive map~
ping of G3 into G). Consider the following identities:

(a) 3F(x,y,z) = O for all x,y,z <G,

(b) F(x,x,y) = O for all x,yecG.

(¢) F(F(x,y,z),u,v) = 0 for all x,y,z,u,veq.

(d) F(x,y,F(y,z,2z)) = O for all x,y,z€G.

(e) F(x,y,F(z,u,F(w,r,s))) = O for all x,y,z,u,v,w,r,s¢c G.

The following three lemmas are easy observations.

2.1. lemma. (i) If G satisfies (b) then F(x,y,z) =

= -F(y,x,z) for all x,y,ze€G.
(ii) If G satisfies (b) and (d) then F(x,y,F(z,y,y)) = 0 for
all x,y,z ¢G.

2.2, lemma. Let S be a generator set of the group G(+).
(i) If G satisfies (a) then G satisfies (b) iff F(a,b,c) =
= -F(b,a,c) for all a,b,c€ S,
(ii) G satisfies (c¢) iff F(F(a,b,c),d,e) = O for all a,b,c,
d,eeS.
(iii) If G satisfies (a) then G satisfies (d) iff
F(a,b,F(c,d,e)) + F(a,c,F(b,d,e)) + F(a,b,F(c,e,d)) +
F(a,c,F(b,e,d)) = O for all a,b,c,d,eeS.
(iv) G satisfies (e) iff F(a,b,F(c,d,F(e,f,g))) = O for all
a,b,c,d,e,f,gesS,

2.3, lemma. Let G(+) be an abelian 3-group with a ba-

sis S and E a mapping of S3 into B(G(+)). Then E can be
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extended in a unique way to a triadditive mapping of a3 in-
to G.
Put f(x,y,z) = F(x,y,z) + F(y,z,x) + F(z,x,y) for all

X,¥,z¢ Ge

2.4. Proposition. Let G(+,F) be a ternary ring satis-
fying the identities (a),(b),(c),(d),(e). Put xoey = x +y +
+ F(x,y,x~y) for all x,y e G. Then:

(i) G(o) is a CM-loop nilpotent of class at most 3.
(ii) G(o) is 3-elementary iff G(+) is so.
(iii) [ a,b,e] = F(a,b,c) and (1a,b,cl,d,e) = F(d,e,F(a,b,c))
for all a,b,c,d,evc-.G.
(iv) Cy(G(e)) = faeG¥(a,x,y) = O for all x,y eGi.
(v) A4,(G(o)) is an ideal of the ternary ring and asx = a +
+ x for all acAy(G(e)) and x¢G,
Proof. Easy.

2.5. Corollary. Let G(+,F) be a ternary ring satisfy-
ing the identities (b),(c),(d),(e) such that G(+) is 3-ele-
mentary. Put xxy = -x - y + F(x,y,y-x) for all x,ye G. Then
G(x ) is a DS-quasigroup nilpotent of class at most 3.

3. Auxiliary results I. In this section, let K denote
the set of all ordered 5-tuples (ijkpq) with ii,j,k,p,q} =
= {1,2,3,4,5}. Let L be the set of all (ijkpq)e K such that
i< j, k<p and either j<k or p<gqg. Obviously, card K = 120
and card L = 14, '

Consider a vector space V over the three-element field
having K as a basis and define eight endomorvhisms of V by

a(x) = (Jjikpq), b(x) = (ikjpq), c(x) = (ijpkq), d(x) =
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(ijkqp), £(x) = x + a(x), g(x) = x + ¢(x), e(x) = x + b(x)+

+

d(x) + db(x), r(x) =x + cd(x) + de(x) for every x =

(ijkpq) € K.

3.1. I.emmn.a2 =b2=c2 =d2 =1, rz = -f, 32= -2, e2=e,
r? = 0, aba = bab, ac = ca, ad = da, af = £ = fa, ag = ga,
ar = ra, beb = cbe, bd = db, be = e = eb, cde = ded, cf = fc,

cg =g =8¢, cr =rd, df = fd, de = e = ed, dr = re, cdr =

der = red = rde = r, £g= gf.
Proof. Easy.
Denote by W the subspace of V generated by L and put U =

£(V) + g(V) + e(V). Let t be the natural homomorphism of V
onto V/U.

3.2, lemma, dim (£(V) + g(V))£ 90,

Proof. Define a relation w on K by (x,y)e w iff either
x =y or x = a(y) or x = ¢(y) or x = ac(y). Then w is an equi-
valence and has exactly 30 blocks. Let S be a set of represen-
tants of w and R =4 £(x),g(x),x-ac(x)Ixe S§. It is easy to
check that R generates £(V) + g(V).

3.3. lemma. Iét Z be a subspace of V containing £(V)
and let x6 K be such that e(x),ea(x)€ 2. Then eab(x) € Z.

Proof., We have e(x) = x + b(x) + d(x) + db(x) € Z, ea(x)=
= a(x) + ba(x) + da(x) + dba(x)e 2, x + a(x) € Z, da(x) = ad(x)

and d(x) + da(x) € 2. Hence y = -x + ba(x) - d(x) + dba(x)e 2

and e(x) + y = b(x) + ba(x) + db(x) + dba(x) € Z. However,

a(Z) e Z, aba

bab, ad = da, and therefore ae(x) + a(y) =

= eab(x)e Z.

3.4. lemma. lLet Z be a subspace of V containing g(V)
and let x <K be such that e(x),ec(x),ecb(x),ecd(x),ecdb(x) e Z.
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Then ecdbe (x) € Z,

Proof. We have e(x) = x + b(x) + d(x) + bd(x), ec(x) =

c(x) + be(x) + de(x) + bde(x), ecb(x) = cb(x) + beb(x) +
dcb(x) + bdeb(x) e Z. Consequently, y = e(x) = x - c(x) +

+

+ ec(x) - ceed(x) + deb(x) + cdeb(x) + dbeb(x) + edbeb(x) =

n

d(x) + ab(x) + de(x) + bde(x) + deb(x) + dbecb(x)e Z. Fur-
ther, ecd(x) = cd(x) + bed(x) + decd(x) + bdcd(x)e Z and
ecdb(x) = ededeb(x) = ecdcb(x) = cdeb(x) + bedeb(x) +

+ dcdeb(x) + bdedeb(x)e Z. From this, z = ecd(x) - d(x) -

- cd(x) - dc(x) - cde(x) + ecdeb(x) - deb(x) - cdeb(x) -

- d@b(x) + bdecdeb(x)e Z. On the other hand, bed = bedbb =

= bebdb = cbedb = cbdcdeb, and hence u =y + z -~ gbdedeb(x)=
=y + z - becd(x) - bdedeb(x) = bde(x) + dbeb(x) + bded(x) +
+ bedeb(x) = bde(x) + debe(x) + bede(x) + bedeb(x)e Z. But
c(u) = cbde(x) + dedbe(x) + bebde(x) + bdebde(x) =

= ecdbe(x) e 2, since cbedeb = bdebde.

3.5. lemma. dim U£106.

Proof. Define a relatiom v on K by (x,y)e v iff either
x =y or x=b(y) or x=4(y) or x =bd(y). Then v is an
equivalence and has exactly 30 blocks. Denote by s the natu-
ral mapping of K onto K/v. Clearly, s(x)# s(y), provided
x = (i.ees) and y = (Jo...) are from K such that i+ j. More-
over, it is easy to verify that for each x€ K, the elements
a(x), sc(x), seb(x), scd(x), scdb(x) and scdbc(x) are pair-

wise different. Now, put x; = (12345), x, = a(xl), X3 =

ab(xy), x, = abe(x,), x5 = abed(x;). For 1£i45, let x;1=
=Xy, X4, T c(xi), X34 = cb{xi), Xi4 = cd(x’i), x5 = cdb(xi)

and x;¢ = cdbe(x;). Put J =dix;511£1i%5, 145463, Then
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8(J) = 8(K), and therefore e(V) is generated by e(J). Fur-

ther, let M =-[Jgij\1éi, j£5%. According to 3.4, U is gene-
rated by £(V) u g(V)ue(M). On the other hand, we have a(x);)=
= Xpp, aD(Xy9) = X539, a(xlz') = Xy, 8b(x),) = x4, alx3) =

= X359 ab(xl3) = X0, a(x14) = Xp4y ab(x“) = Xgp, a(xls) =
= Xy ab(xls) = Xgp, a(xls) = Xgan ab(xls) = Xg4 a(x23) =
X359 ab(x25) = Xg3, a(xyg) =
= x5 and ab(xyg) = X5+ Using3.3, it is easy to show that U

= X33, ab(xy3) = X3, alxys)

is generated by £(V)u g(V) v e(N), where N = M\4 X311%41 %429
x43,x51,x52,x53,x54,x55}. However, card N = 16 and 3.2 yields

the result.

3.6, lemma. V =U + W.

Proof. Put Z =U + W ., We are going to show that K&Z.
For, let x = (ijkpq) e K. Taking into account that xeZ iff
a(x)e 2 iff c(x) €Z, we can assume that i<j and k<p. Fur-
ther, we can restrict ourselves to the case x4 L. Then k< j
and q<p. If i<k and j<p then b(x)e L. If k<i and j<p
then ab(x)e L, and hence b(x)e Z. If i<k and p< j then
eb(x) e L, and hence b(x)e 2. If k<i<p<j then acb(x)e L,
and so b(x)e 2. If p<i then bacb(x), cdacb(x), cdbacb(x)e L,
hence bacb(x), dacb(x), dbacb(x)e Z, acb(x)e Z and b(x)e 2Z,
We have prove;‘l tnat b(x)e 2 and it remains to show that da(x),
db(x)e Z. If k<q then d(x)e L, If q<k then cd(x)e L, and
hence d(x) e L. Now, we are going to prove that db(x)e 2. As
one may check easily, we can assume that g< j. It suffices to
show that y = cdb(x)e Z, If i<k and j<p then ye L. If k<1i
and j<p then a(y)e L and ye Z, Suppose p< j. If i<k<q then
yel. If k<i<q then a(y)e L an(; y€Z. Further, it is easy
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to see that d(y) € Z and db(y)e€ Z. Hence, it is enough to
show that ab(y)e€ Z. We can assume that k<i and q<i. Then
bab(y), dab(y)e Z. If i< p then dbab(y)e Z. If p<i then
cdbab(y)e Z.

3.7. Lemma. V is the direct sum of the subspace U and

Proof. By 3.6, V=U + W. Hence dim (UnW¥) = dim U +
+ dim W - dim V£106 + 14 - 120 = O, Consequently, UnW = O,

3.8. Lemma. 44 dim tr(V).

Proof. Put y; = (12345), y, = (12354), y; = (12453),
Iy = (13452), ¥g = (23451), Yg = (13245), yq = (14235), Yg =
= (23145). Then y; € L and there are uniquely determined z;6 W
such that t(z;) = tr(y;). One may check easily that z; = ¥y -
T Y2 T Y3 2y TVt V2t Vg~ Ve %5 T VL ~ V2 * Y5~ Ve
Zq = <y) * ¥3 - V4 * Yge Put P =112y,3,,35,2,1. It is an ea-
sy exercise to show that P is an independent subset of W.

However, by 3.7, tIW is injective and the rest is clear.

3.9. lemma. Let xe K. Then r(x)¢U.

Proof. Suppose, on the contrary, that r(x)e U for some
x = (ijkpq) € K. We have ra(x) = ar(x), r(x) + ar(x)eU, and
so ra(x) e U. Similarly, cr = rd, r(x) + cr(x)eU, rd(x)e U,
Finally, dr(x) = d(x) + cdec(x) + c(x) = d(x) + cd(x) - r(x)+
+ x + c(x) + dc(x) + cde(x) e U, But dr(x) = rec(x). Using this’
information, we can assume i< j and k<p<q. Then x = vy for
some ie{1,6,7,8,9,10,11,12,13,14}, where y;,...,yg are de-
fined in the same way as in 3.8 and yg = (45123), Y10 °
= (24135), Y11 = (25134), Y12 = (34125), Y13 = (35124) and
¥14 = (15234). There are uniquely determined z;¢ W with
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t(z3) = tr(y;). We have t(z;)4 0 and z;4 U, a contradiction.

4. Auxiliary results II. In this section, let K be the

set of all ordered 5-tuples (ijkpq) such that {i,j,k,p,q} =
11,2,3,4Y and i + j+ k + p + ¢ = 11. Obviously, card K =

un

60. Put w = (12341).
Consider a vector space V over the three-element field

having K as a basis and define eight endomorphisms of V by
a(x) = (jikpq), b(x) = (ikjpq), c(x) = (ijpkq), d(x) =

= (ijkqp), f(x) = x + a(x), g(x) = x + c¢(x), e(x) = x + b(x),
r(x) = x + de(x) + cd(x) for every x = (ijkpq) ¢ K. Denote by

W the subspace of V generated by w and put U = £(V) + g(V) +
+ e(V). Let t be the natural homomorphism of V onto V/U.

4.1. Lemma. V is the direct sum of the subspaces U and

w. |
Proof. Define an endomorphism s of V as follows: s(x)

= 0 if x = (ijkpq) e K is such that q+1; s(x) = w if x =
= (ijkpq) is such that q = 1 and the permutation (ijkp) is
even; s(x) = -w if x = (ijkpq) is such t'hat q = 1 and the
permutation (ijkp) is odd. One may see easily that f(V) v

v g(V)u e(V)EKer s. Hence USKer s. On the other hand, Im 8=

=W, WnKer s = 0, WnU = 0 and the rest is clear.

4,2, Lemma. 1l<£dim tr(V).
Proof. We have tr(w) = t(w). However, t(w)*O0 by 4.1.

‘5. Main results. For 4<4n, let I =1 be the set of
all ordered triples (ijk) and K = K, the set of all ordered
5-tuples (ijkpq) with 1£1i,§,k,p,q4n. Denote by J = Jd the

set of all (ijk)eI with i< j and put card x =
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= card i, j,k,p,q? for every x = (ijkpg)€ K. Let L = L, ve
the set of all x = (ijkpq)ec K such that either card x = 5,
i< Jj, k<p and either j<k or p<gq, or card x = 4 and i< j<
< k<p. Further, let S = Sy
ing n elements such that the sets S, I and K are pair-wise

={al,...,an} be a set contain-

disjoint.

Consider a vector space V = V, over the three-element
field having M = M, = SUIUK as a basis and put a(x) =
= (jik), a(y) = (jikpq), b(y) = (ikjpq), c(y) = (ijpkq),
d(y) = (ijkqp) for all x = (ijk)e I and y = (ijkpq)€ K. Let
U = U, be the subspace generated by ix + a(x))xeIlvixixeKk,
card x£3juix + a(x)lxeKjuix + c(x)lxeXkiuix + b(x)ixeKk,
card x<43udx + b(x) + d(x) + bd(x)ixeK}. Finally, let W =

>Wn be the subspace generated by N = Nn = SudJu L.

5.1, lemma., V is the direct sum of the subspaces U ang
w.
Proof. This is an easy consequence of 3.7 and 4.1l.

Define a mapping F:M3-—-> V as follows: F(ai,aj,ak) =

(ijx) for all 1£1i,J,k& n; F(x,u,v) = F(y,u,v) = F(u,y,v) =

F(u,v,y) = O for all xe I, yeK, u,veM; F(ai,aj,(kpq)) =

(ijkpq) for all 1<i,j,k,pyq4n. By 2,3, F can be extendeq
in a unique way to a trilinear mapping (denoted again by F =
= Fn) of V3 into V. Thus we obtain a ternary algebra V(+,F),

5.2. lemma. U is an ideal of V(+,F),
Proof. Easy.
Let P = P(+,T) = P (+,T)) = V(+,F)/U. Denote ty t the

natural homomorphism of V(+,F) onto P(+,T),

5.3. lemma. P(+,T) satisfies (a),(b),(c),(d),(e).

- 365 =



Proof. Easy (use 2.2).
Put r(x) = x + (jki) + (kij) and r(y) =y + dc(y) +
"+ cd(y) for all x = (ijk)e I and ye K. Let X designate the
subspace generated by {r(x)lx<eI% and ¥ the subspace genera-
ted by i r(y)ly e k3.
n n X
5.4. Lemma. 4( )+ 4( 5) 4 dim t(y).
Proof. This follows from 3.8 and 4.2.
ny _ ..

5.5. Lemma. (3) = dim t(X).

Proof. Let x = (ijk)eI. If $i,j,k} contains at most
two elements then tr(x) = O. Suppose {i,j,k% = §1,2,3} and
put z = (123) + (231) + (312), v = (123) + (231) - (132).
Then ve W and t(z) = t(v)4% 0. The rest is clear.

5.6. lemma. t(X)n t(Y) = O,

Proof. It 'is easy to see that Xan (Y + U)EU.

5.7. Lemma. (3)+ 4 (%) + 4(3)< aim t(x+ 1),

Proof. Use 5.4, 5.5 and 5.6.

Now, let xoy = x + y + T(x,y,x~-y) for all x,y€ P. Let
Qo) = Qn(o) be the subgroupoid of P(o) generated by t(S).

5.8. Lemma., P(o) and Q(o) are 3-elementary CM-loops
nilpotent of class at most 3.

Proof. See 5.3 and 2.4.

5.9. Lemma. A,(P(0)) = A,(Q(e)) = t(Y).

Proof. Put b; = t(a;) for i =1,2,...,n and e(y) =
=[[bk,bp,bq3,bi,bj] for y = (ijkpq)e K. By 2.4(iii), e(y) =
= tr(y). According to 1.3(ii), A,(Q(e)) is just the subloop

generated by {e(y)ly eK§. On the other hand, uov = u + v
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for all u,veZ, where Z is the subspace of P generated by
t(IVK). Now, it is clear that A5(Q(e)) = t(Y). Similarly

the rest.

5.10. Lemma. A,(Q(e)) = t(X + Y).

Proof, Let Z = t(X+ Y) and let g be the natural hecmo-
morphism of Q(o) onto Q(O)/AZ(Q(O)) = G(o). By 1.3(i),
A, (G(o)) is generated by all [gt(ai),gt(aj),gt(ak)l, 141,
Jj,k4n, Further, uev = u + v for all u,ve Z. Hence Z(o) is
& subloop and g(Z) = A,(G(e)). However, Ker g = 4,(Q(0)) <2,
and so Z = A;(Q(e)).

5.11. Theorem. ILet 44n and Q(°) = Q (). Then:

(i) Qo) is a free loop of rank n in the variety of 3-ele-
mentary M-loops nilpotent of class at most 3.

(ii) cara @ =3", m=n+(%)+ 4(™).

(111) card A (Q(s)) = 3P aml card A,(a(e)) = 39, q = 4(%?)
and p = (3) + q.

(iv) C1(Q(e)) = A5(Q(e)) and C,(Q(e)) = Al(Q(°)).

Proof. (i),(ii) and (iii). Let G(o) be a free 3-ele-
mentary M-loop nilpotent of class at most 3 freely generat-
ed by the set S. There is a surjective homomorphism g of G(e)
onto Q(o) such that g(a;) = t(a;) for every i. We have
g(45(G(0))) = A,(Q(0)) and 39 card Ay(Q(e)) £ card A,(G(0)) £
£3% by 1.4(ii) and 5.4, 5.9. Hence card 4,(Q(s)) = 39, si-
milarly, card 4,(Q(e)) = 3P. The loop Q(e) cannot be genera-
ted by n - 1 elements (otherwise card AZ(Q(G))<3q, a contra-
diction) and consequently Q(o)/A;(Q(o)) = H(o) cannot be ge-
nerated by n - 1 elements. From this, 3" = card H, S LALIPA

£ card Q4card Gé3p+n, 3P™ = card Q = card G and g is an
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isomorphism,
(iv) Obviously, Cl(Q("))EAl(Q(o))f It suffices to show that

ueU, whenever u¢ X and F,'(ai,ﬂj,u)cU for all 1£i,j#4n. The-
re are 14 8, kyjye.o K€ {0,1,-1% and X),+-09Xg€ I such that
u =_k1r(x1) +oeet ksr(xs). Define a relation w on I by (x,¥)e
€ w, where x = (ijk)eI and yeI, iff either x =y or y =

(jki) or y = (kij). We can assume that (xi,xj)ehw for all

1¢i<j<s., Now, let x; = (kpq). If card {k,p,q}£42 then
r(x;) e U. If card 1k,p,q% = 3 and 54 n then there are 1<1i,
j4n such that card {i,Jj,k,p,q¢ = 5 and the result follows
from 3.9. Finally , suppose that {k,p,q% = {1,2,3¢ and n = 4,
We can aslsume that s = 8, x; = (123), x, = (213), x4 = (124),
X, = (214), X5 = (134), x6,= (314), Xq = (234), xg = (324).
Then k; = k, and k;r(x;) + kpr(x,)eU. The rest is clear.
5.12, Corollary. Let 44n and xxy = -x - y + T(x,y,y-x)

for all x,y ¢Q,. Then Q,(¥) is a free quasigroup of rank n + 1

in the variety of DS-quasigroups nilpotent of class at most 3.

5.13. Lemma. Let G(o) be a normal subloop of Q(e) such
that GEAI(Q(O)). Then G is an ideal of the ternary ring
P(+,T).

Proof. It suffices te show that t(F(ai,aJ.,u)) € G, when-
ever 1<i,j%n and uéX + Y is such that t(u) € G. We have
t(Flag,a5,u0)) = t(Flag,a5,u)) = T(t(a;),t(ay),t(w) =
= [t(ni),t(aj),t(u)l €G.

- 5.14. Proposition. Let G be a finite 3-elementary QM-
loop nilpotent of class at most 3. Then there exists a finite
ternary algebra H(+,E) over the three-element field such that
@S H, H(+,E) satisfies the identities (a),(b),(c),(d),(e) and
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xy = x +y + E(x,y,x~y) for all x,yec G. '

Proof., Assume that G can be generated by n elements
but not by n -~ 1 elements, Then there is a surjective homo-
morphism g of Q(o) onto G such that Ker g SA4,(Q(°)) and the
rest follows from 5.13.

5.15. Proposition. ILet G be a 3-elementary CM-loop nil-
potent of class at most 3. Then there exists a ternary algeb-
ra H(+,E) over the three-element field such that GE€H, H(+,E)
satisfies the identities (b),(c),(d),(e) and xy = x + y +
+ E(x,y,x-y) for all x,ye G.

Proof. G is an ultraproéuct of its finitely generated
subloops and the result follows from 5.14.
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