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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

21,2 (1980) 

COMMUTATIVE MOUFANG LOOPS AND DISTRIBUTIVE STEINER 
QUASIGROUPS NILPOTENT OF CLASS 3 

Tomes KEPKA 

Abstract: Free commutative Moufang loops and distri-
butive Steiner quasigroups nilpotent of class 3 are const­
ructed. • 

Key words: Loop, commutative, Moufang, quasigroup, 
distributive, Steiner. 

Classification: 20N05 

Recently, L. B£n£teau has described free 3-elementary 

commutative Moufang loops nilpotent of class at most 3. -3ie 

description is based on a trilinear construction using anti-

commutative graded rings. In the present paper, we give an­

other, more direct construction. The results are also appl­

ied to distributive Steiner quasigroups. 

1. CM-loops and DS-quasigroups. A loop Q is said to be 

a CM-loop if it satisfies the identity xx.yz = xy.xz. A qua­

sigroup Q is said to be a DS-quasigroup if it satisfies the 

identities xy = yx, x.xy = y, x.yz = xy.xz. The reader is 

referred to Cll,... ,[9.1 for basic and some further proper­

ties of these structures. 

Let Q be a CM-loop. We denote by C-^Q) the centre of Q 

and by C2(Q) the subloop containing
 C^(Q) such that 
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C2(Q) /O^Q) = ̂ ( Q /C^Q)). Further, we put La,b,c] » 

= (ab.c)(a.bc) for all a,b,ceQ. The subloop generated 

by all La,b,c] is denoted by A-̂ (Q) and the subloop genera­

ted by all LEa,b,c3,d,e] by Ag(Q). We shall say that Q is 

nilpotent of class at most- 3 if A2(Q)^C1(Q). The loop Q is 

said to be 3-elementary if D(Q) = 1, where D(Q) = ix^lxeQ*. 

Obvious-Ly, Q is 3-elementary iff B(Q) = Q, where B(Q) =4x1 

xeQ, x3 = 11. 

•̂--* ISSSa- I** Q be a CM-loop. Then: 

(i) [a,b,c] = L b ^ c ] " 1 = [a^b]"*1 for all afb,c&Q. 

(ii) [ La,b,c],c,d] = L [ b,d,c],c,a] for all a,b,c,deQ. 

(iii) L t a,b,c],d,e] = C Ca,d,e],b,c] LLb,d,e],c,a] 

L Lc,d,e],a,b] for all a,b,c,d,esQ. 

(iv) L La,b,c],d,e] =L L d,b,c],a,e] L La,d,c3,b,eJ 

L La»b,d],c,e] for all a,b,c,d,e cQ. 

(v) L LLa,b,c],c,d],d,e] =LL Lb,e,c],c,d],d,a] for all a,b,c, 

d,eeQ. 

(vi) L Ca,b,cd],cd,e] =LLa,b,c],c,e] LCa,b,d],d,e] .f, f = 

11 La,b,c],c,d],d,e] L ta,b,c],d,e] tLa,b,d],c,e] for all 

a,b,c,d,e c Q. 

(vii) If Q can be generated by 5 elements then A^(Q) is a 

group. 

(viii) LL a,b,c],d,e] =Ltb,a,d],c,e]LLb,e,c],d,a3 

L Lb,e,d],c,a] for all a,b,c,d,eeQ. 

Proof, (i) See [4, § VIII.2]. 

(ii) See t4, Lemma VIII.3.9]. 

(iii) See L4, Lemma VTII.6.4]* 

(iv) See L4, Lemma VIII.6.4]. 
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(v) See 14, Lemma VIII.6.53. 

(vi) See U, Lemma VIII.6.6 3. 

(vii) See 14, Lemma VIII.6.33. 

(viii) This is an easy consequence of (i),(ii),(v),(vi) ̂ d 

(vii). 

1.2. Lemma. Let Q be a CM-loop generated by a set S. 

Then Q is nilpotent of class at most 3 iff i t lajbjcJjdjel^f 

g 3 = 1 for all a,b,c,d,e,f ,g eS. 

Proof. See U, Lemma VIII.3.8l. 

^•3. Lemma. Let Q be a CM-loop generated ty a set S. 

(i) If Q is nilpotent of class at most 2 then A^(Q) is ge­

nerated by the elements ta,b,c3,a,b,c eS. 

(ii) If Q is nilpotent of class at most 3 then Ag(Q) is ge­

nerated by the elements 11 a,b,c,3 d,e3, a,b,c,d,ecS. 

Proof. This is an easy consequence of [4, Lemma VIII. 

3.8]. 

1.4. Proposition. Let 0^ n be an integer and Q a 3-

elementary CM-loop generated by n elements. 

(i) If Q is nilpotent of class at most 2 then card Q£3 n + m 

and card A1(Q)4r3
m, m = (3 ) . 

(ii) If Q is nilpotent of class at most 3 then card Q £ 

x3n+-n+P> c a r d ^(Qj^a^P ana c a r d A2(Q)^3
P, 4 ( n ) + 

+ H n ) = p-
Proof. Use 1.1 and 1.3. 

1.5. Proposition. The following conditions are equiva­

lent for a quasigroup Q: 

(i) Q is a DS-quasigroup. 

(ii) There exists a 3-elementary CM-loop Q(o) such that 
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xy = x o y for all x,y e Q. 

Proof. Easy and well known (see e.g. C7, Satz 1.43), 

2. Ternary rings. Let G = G(+,F) be a ternary ring 

(i.e., G(+) is an abelian group and F is a triadditive map­
's 

ping of G into G). Consider the following identities: 

(a) 3F(x,y,z) = 0 for all x,y,z<-.G. 

(b) F(x,x,y) = 0 for all x,ycG. 

(c) F(F(x,y,z),u,v) = 0 for all x,y,z,u,vcG. 

(d) F(x,y,F(y,z,z)) = 0 for all x,y,z e G. 

(e) F(x,y,F(z,u,F(w,r,s))) = 0 for all x,y,z,u,v,w,r,se G. 

The following three lemmas are easy observations. 
2*--* Lem*aa« (i) -Cf G satisfies (b) then F(x,y,z) = 

= -F(y,x,z) for all x,y,z £ G. 

(ii) If G satisfies (b) and (d) then F(x,y,F(z,y,y)) = 0 for 

all x,y,z eG. 

2.2. Lemma. Let S be a generator set of the group G(+). 

(i) If G satisfies (a) then G satisfies (b) iff F(a,b,c) = 

- ~F(b,a,c) for all a,b,c-S, 

(ii) G satisfies (c) iff F(F(a,b,c),d,e) = 0 for all a,b,c, 

d,e G S. 

(iii) If G satisfies (a) then G satisfies (d) iff 

F(a,b,F(c,d,e)) + F(a,c,F(b,d,e)) + F(a,b,F(c,e,d)) + 

F(a,c,F(b,e,d)) = 0 for all a,b,c,d,eeS. 

(iv) G satisfies (e) iff F(a,b,F(c,d,F(e,f,g))) = 0 for all 

a,b,c,d,e,f ,geS. 

2.3. Lemma. Let G(+) be an abelian 3-group with a ba­

sis S and E a mapping of S-3 into B(G(+)). Then E can be 
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extended in a unique way to a triadditive mapping of G"* in­

to G. 

Put F(x,y,z) = F(x,y,z) + F(y,z,x) + F(z,x,y) for all 

x,y,ze G. 

2.4. Proposition. Let G(+,F) be a ternary ring satis­

fying the identities (a),(b),(c),(d),(e). Put xo y = x + y + 

+ F(x,y,x-y) for all x,y <= G. Then: 

(i) G(o) is a CM-loop nilpotent of class at most 3. 

(ii) G(o) is 3-elementary iff G(+) is so. 

(iii) [a,b,c3 = F(a,b,c) and tta,b,c3,d,e3 -» F(d,e,F(a, b,c)) 

for all a,b,c,d,e*G. 

(iv) C-jGto)) s -vaeGtF(a,x,y) = 0 for all x,y<sG}. 

(v) An(G(o)) is an ideal of the ternary ring and aox = a + 

+ x for all acA1(G(o)) and xcG. 

Proof. Easy. 

2«5. Corollary. Let G(+,F) be a ternary ring satisfy­

ing the identities (b),(c),(d),(e) such that G(+) is 3-ele­

mentary. Put x*.y = -x - y + F(x,y,y-x) for all x,yeG. Then 

G(.* ) is a DS-quasigroup nilpotent of class at most 3. 

3. Auxiliary results I. In this section, let K denote 

the set of all ordered 5-tuples (ijkpq) with 4i,j,k,p,q$ = 

= -il,2,3,4,5}. Let L be the set of all (ijkpq)cK such that 

i< j, k<p and either j<k or p<q. Obviously, card K = 120 

and card L = 14. 

Consider a vector space V over the three-element field 

having K as a basis and define eight endomorDhisms of V by 

a(x) = (jikpq), b(x) - (ikjpq), c(x) = (ijpkq), d(x) = 

359 



= (ijkqp), f(x) = x + a(x), g(x) = x + c(x), e(x) = x + b(x)+ 

+ d(x) + db(x), r(x) =x + cd(x) + dc(x) for every x = 

= (ijkpq)e K. 

O "> P 9 2 2 2 
3.1. Lemma. aT « b* » c = d* = 1, f* = -f, g = -g, e = e, 

p 
r =0, aba = bab, ac = ca, ad = da, af = f = fa, ag = ga, 

ar = ra, bcb = cbc, bd = db, be = e = eb, cdc = dcd, cf = fc, 

eg = g = gc, cr = rd, df = fd, de = e = ed, dr = re, cdr = 

= dcr = red = rdc = r, fg = gf. 

Proof. Easy. 

Denote by W the subspace of V generated by L and put U = 

- f(V) + g(V) + e(V). Let t be the natural homomorphism of V 

onto V/U. 

3.2. Lemma, dim (f(V) + g(V))-£ 90. 

Proof. Define a relation w on K by (x,y)c w iff either 

x = y or x = a(y) or x = c(y) or x = ac(y). Then w is an equi­

valence and has exactly 30 blocks. Let S be a set of represen-

tants of w and R =4 f (x) ,g(x) ,x-ac(x)j xe S$. It is easy to 

check that R generates f(V) + g(V). 

3«3. Lemma. Let Z be a subspace of V containing f(V) 

and let x 6 K be such that e(x),ea(x) € Z. Then eab(x)eZ. 

Proof. We have e(x) = x + b(x) + d(x) + db(x)eZ, ea(x)= 

= a(x) + ba(x) + da(x) + dba(x)eZ, x + a(x)<sZ, da(x) = ad(x) 

and d(x) + da(x) e Z. Hence y = -x + ba(x) - d(x) + dba(x) G Z 

and e(x) + y = b(x) + ba(x) + db(x) + dba(x)*Z. However, 

a(Z) e Z, aba = bab, ad = da, and therefore ae(x) + a(y) = 

= eab(x)e Z. 

3.4. Lemma. Let Z be a subspace of V containing g(V) 

and let xcKbe such that e(x) ,ec(x),ecb(x) ,ecd(x),ecdb(x) 6 Z. 
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Then ecdbc(x)eZ. 

Proof. We have e(x) = x+ b(x) + d(x) + bd(x), ec(x) = 

= c(x) + bc(x) + dc(x) + bdc(x), ecb(x) = cb(x) + bcb(x) + 

+ dcb(x) + bdcb(x)eZ. Consequently, y = e(x) - x - c(x) + 

+ ec(x) - cecMx) + dcb(x) + cdcb(x) + dbcb(x) + cdbcb(x) = 

= d(x) + db(x) + dc(x) + bdc(x) + dcb(x) + dbcb(x)e Z. Pur- ' 

ther, ecd(x) = cd(x) + bcd(x) + dcd(x) + bdcd(x)€ Z and 

ecdb(x) = edcdcb(x) = ecdcb(x) = cdcb(x) + bcdcb(x) + 

+ dcdcb(x) + bdcdcb(x)eZ. Iron, this, z = ecd(x) - d(x) -

- cd(x) - dc(x) - cdc(x) + ecdcb(x) - dcb(x) - cdcb(x) -

- db(x) + bdcdcb(x)6 Z. On the other hand, bed = bedbb = 

= bebdb = cbcdb = cbdedeb, and hence u = y + z - gbdcdcb(x)= 

= y + z - bcd(x) - bdcdcb(x) = bdc(x) + dbcb(x) + bdcd(x) + 

+ bcdcb(x) = bdc(x) + dcbc(x) + bcdc(x) + bcdcb(x)e Z. But 

c(u) = cbdc(x) + dcdbc(x) + bcbdc(x) + bdcbdc(x) = 

= ecdbc(x)eZ, since cbedeb = bdebde. 

3.5. Lemma, dim U£106. 

Proof. Define a relation v on K by (x,y)e.v iff either 

x = y or x = b(y) or x = d(y) or x = bd(y). Then v is an 

equivalence and has exactly 30 blocks. Denote by s the natu­

ral mapping of K onto K/v. Clearly, s(x)4-s(y), provided 

x = (i....) and y = (j....) are from K such that i*fcj. More­

over, it is easy to verify that for each x€K, the elements 

s(x), sc(x), scb(x), scd(x), scdb(x) and scdbc(x) are pair-

wise different. Now, put x-̂  = (12345), x2 = a(x1), Xj = 

= ab(x-L), x4 = abe(x,), z. = abcd(x .1). For l£i^5 f let x^* 

= xi' xi2 = c(xi}» xi3 = cb<xi>t xi 4
 = cd(xi), xi5

 s cdb(Xi) 

and xi6 = cdbc(xi). Put J = 4 x^ll^ i=* 5, l£j£6$. Then 
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s(J) = s(K), and therefore e(V) is generated by e(J). Fur­

ther, let M =4xi.ll^i, j£5h According to 3.4, U is gene­

rated by f (V) u g(V)ue(M). On the other hand, we have a(xl:L)= 

= x21, ab(xn) = x31, a(xl2) = x22, ab(x12) = x41, a(x13) = 

= x32, ab(x13) = x42, a(x14) = x24, ab(x14) = x51, a(x15) = 

= x34, ab(x15) = x52, a(xl6) = x44, ab(xl6) = x54, a(x2J) = 

= x33, atyx^) = x43, a(x25) = x35, ab(x25) = x^, a(x26) = 

= x45 and ab(x2g) = x55. Usi:rg3.3, it is easy to show that U 

is generated by f (V)u g(V) u e(N), where N = Ms-i x31,x41,x42, 

x43,x51,x52,x53,x54,x55$. However, card N = 16 and 3.2 yields 

the result. 

3.6. Lemma. V = U + W. 

Proof. Put Z = U + W . We a re going to show t h a t K £ Z . 

For, l e t x = ( i jkpq) £ K. Taking i n t o account t h a t x c Z i f f 

a ( x ) e Z i f f c (x) £ Z , we can assume t h a t i < j and k < p . Fur­

t h e r , we can r e s t r i c t ourse lves to the case x £ L . Then k < j 

and q < p . I f i < k and j < p then b(x) e L. I f k < i and j < p 

then a b ( x ) e L, and hence b(x) £ Z. I f i < k and p < j then 

c b ( x ) £ L , and hence b ( x ) £ Z . I f k < i < p < j then acb(x) £ L, 

and so b ( x ) e Z . I f p< i then bacb (x ) , cdacb(x ) , cdbacb(x)£ L, 

hence bacb (x ) , dacb (x ) , d b a c b ( x ) e Z , acb(x) s Z and b ( x ) e Z . 

We have proved t h a t b(x) e Z and i t remains t o show t h a t d ( x ) , 

d b ( x ) £ Z . I f k < q then d ( x ) £ L. I f q < k then c d ( x ) £ L, and 

hence d ( x ) e L . Now, we a re going to prove t h a t d b ( x ) e Z . As 

one may check e a s i l y , we can assume t h a t q < j . I t s u f f i c e s to 

show t h a t y = cdb(x) £ Z. I f i < k and j < p then y £ L. I f k < i 

and j < p then a ( y ) e L a n d y € Z . Suppose p < j . I f i < k < q then 

y & L . I f k < i < q then a (y) £ L and y £ Z . F u r t h e r , i t i s easy 
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to see that d(y)eZ and db(y)6Z. Hence, it is enough to 

show that ab(y)€Z. We can assume that k<i and q<i. Then 

bab(y), dab(y)eZ. If i< p then dbab(y)eZ. If p< i then 

cdbab(y)e Z. 

3.7. Lemma. V is the direct sum of the subspace U and , 

W. 

Proof. By 3.6, V = U + W. Hence dim (UnW) = dim U + 

+ dim W - dim V-^106 + 14 - 120 = 0. Consequently, UAW • 0. 

3.8. Lemma. 4^ dim tr(V). 

Proof. Put y i = (12345), y2 » (12354), y3 = (12453), 

y4 = (13452), y5 = (23451), y6 » (13245), y? » (14235), y8 = 

= (23145). Then y^£ L and there are uniquely determined z± 6 W 

such that t(z^) = tr(y^). One may check easily that z, = y, -

- y2
 + y3' z4 = yl + y2 + y4 " y6' z5 = "yl " y2 + ?5 " ya» 

z7 = "yl + y3 " y4 + y6* P u t p = * zi>z4tz5tz7^ It is an ea­

sy exercise to show that P is an independent subset of W. 

However, by 3.7, tlW is infective and the rest is clear. 

3.9. Lemma. Let xcK. Then r(x)£U. 

Proof. Suppose, on the contrary, that r(x)eU for some 

x = ( i : jkpq)€K. We have ra(x) = ar(x), r(x) + ar(x)eU, and 

so ra(x)feU. Similarly, cr = rd, r(x) + cr(x)eU, rd(x)«U. 

Finally, dr(x) = d(x) + cdc(x) + c(x) = d(x) + cd(x) - r(x)+ 

+ x + c(x) + dc(x) + cdc(x)&U. But dr(x) = rc(x). Using thia 

information, we can assume i<j and k<p<q. Ihen x = y^ for 

some ie. 41,6,7,8,9,10,11,12,13,14}, where y±f»fya are de­

fined in the same way as in 3.8 and y« = (45123), y-,Q
 s 

= (24135), y n = (25134), y12 = (34125), y u = (35124) and 

y14 = (15234)• There are uniquely determined z* £ W with 
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t(zi) = tr(y^). We have t ( z i ) 4 - 0 and z..£U, a contradiction. 

4. Auxiliary results II. In this section, let K be the 

set of all ordered 5-tuples (ijkpq) such that ifi,j,k,p,qj = 

= 41,2,3,4$ and i + j + k + p + q = 11. Obviously, card K = 

= 60. Put w = (12341). 

Consider a vector space V over the three-element field 

having K as a basis and define eight endomorphisms of V by 

a(x) = (jikpq), b(x) = (ikjpq), c(x) = (ijpkq), d(x) = 

a (ijkqp), f(x) = x + a(x), g(x) = x + c(x), e(x) = x + b(x), 

r(x) = x + dc(x) + cd(x) for every x = (ijkpq)e K. Denote by 

W the subspace of V generated by w and put U = f(V) + g(V) + 

+ e(V). Let t be the natural homomorphism of V onto V/U. 

4»--* Lemma. V is the direct sum of the subspaces U and 

W. I 

Proof. Define an endomorphism s of V as follows: s(x) = 

= 0 if x = (ijkpq)eK is such that q + l; s(x) = w if x = 

= (ijkpq) is such that q = 1 and the permutation (ijkp) is 

even; s(x) = -w if x = (ijkpq) is such that q = 1 and the 

permutation (ijkp) is odd. One may see easily that f(V) <J 

ug(V)u e(V)SKer s. Hence US.Ker s. On the other hand, Im s= 

= W, WnKer s = 0, WnU = 0 and the rest is clear. 

4-2* Lemma, l^dim tr(V). 

Proof. We have tr(w) = t(w). However, t(w)^0 by 4.1. 

5. Main results. For 4^-n. let I = I be the set of 
• • ' n 

a l l ordered t r i p l e s (ijk) and K = K^ the set of a l l ordered 

5-tuples (ijkpq) with 1£ i , j , k , p , q ^ n. Denote by J = J n the 

set of a l l (ijk) t l with i < j and put card x = 
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= card 4i,j,k,p,q? for every x = (ijkpq)c K. Let L = 1^ be 

the set of all x = (i:jkpq)e K such that either card x = 5, 

i-< j, k-c p and either j<k or p<q, or card x = 4 and i< j< 

< k<p. Further, let S = Sn = { â ,... ,anl be a set contain­

ing n elements such that the sets S, I and K are pair-wise 

disjoint. 

Consider a vector space V = V over the three-element 

field having 11 = 1^- S u I u K a s a basis and put a(x) = 

= (jik), a(y) = (jikpq), b(y) = (ikjpq), c(y) = (ijpkq), 

d(y> = (ijkqp) for all x = (ijk)£ I and y = (ijkpq)eK. Let 

U = Un be the subspace generated by h x + a(x)|x€ I JutxlxcK, 

card x^3iuix + a(x)lxeK$u£x + c(x)lx»£ K$u{x + b(x)1xeK, 

card x^4iu«(x + b(x) + d(x) + bd(x)ix€K{. Finally, .let W = 

= Wn be the subspace generated byN = Nn = Su«JuL. 

5.1. Lemma. V is the direct sum of the subspaces U and 

W. 

Proof. This is an easjp consequence of 3.7 and 4.1. 

Define a mapping F:M^—> V as follows: F<aifa.,ak) = 

= (ijk) for all 1=. i,j,k=- n;cF(x,u,v) = F(y,u,v) = F(u,y,v) = 

= F(u,v,y) = 0 for all x«sl, yeK, u,veM; F(a. ,a., (kpq)) a 

= (ijkpq) for all 1£ i , : j , k , p , q ^ n . By 2.3, F can be extended 

in a unique way to a trilinear mapping (denoted again by P a 

= Fn) of V"* into V. Thus we obtain a ternary algebra V(+,F)^ 

5.2. Lemma. U is an ideal of V(+,F). 

Proof. Easy. 

Let P • P(+,T) = Pn(+fTn) = V(+,F)/U. Denote ty t the 

natural homomorphism of V(+,F) onto P(+,T). 

5.3. Lemma. P(+,T) satisfies (a),(b),(c),(d),(e). 
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Proof. Easy (use 2.2). 

Put r(x) = x + (jki) + (kij) and r(y) = y + dc(y) + 

+ cd(y) for all x = (ijk)c I and ycK. Let X designate the 

subspace generated by "tr(x)l xe l \ and Y the subspace genera­

ted by-tr(y)iy&K$. 

5.4. Ltmma. 4 ( n) + ,4( n) ̂  dim t(y). 

Proof. This fol lows from 3.8 and 4 . 2 . 

5 -5 . Lemma. ( n ) = dim t ( X ) . 

Proof. Let x = ( i j k ) e l . I f 4 . i , j , k ^ con ta ins a t most 

two elements then t r ( x ) = 0 . Suppose - t i , j , k ? = {1 ,2 ,3} and 

put z = (123) + (231) + (312) , v = (123) + (231) - (132) . 

Then vcW and t ( z ) = t ( v ) 4 - 0 . The r e s t i s c l e a r . 

5 .6 . Lemma. t ( X ) n t(Y) = 0 . 

Proof. It is easy to see that Xn(Y + U)£U. 

5.7. Lemma. (n) + 4 (n) + 4 ( n ) £ dim t(X + Y). 

Proof. Use 5.4, 5.5 and 5.6. 

Now, let xoy = x + y + T(x,y,x-y) for all x,yeP. Let 

Q(o) = Qn(o) be the subgroupoid of P(o) generated by t(S). 

5.8. Lemma. P(o) and Q(o) are 3-elementary GM-loops 

nilpotent of class at most 3. 

Proof. See 5.3 and 2.4. 

5.9. Lemma. A2(P(o)) = A2(Q(o)) = t(Y). 

Proof. Put b£ = t(ai) for i = l,2,...,n and e(y) = 

= Ubk,bp,bql,bi,bj3 for y = (ijkpqUK. By 2.4(iii), e(y) = 

= tr(y). According to 1.3(ii), A2(Q(o)) is just the subloop 

generated by €e(y)|y 6.K5. On the other hand, uov = u + v 
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for all u,veZ, where Z is the subspace of P generated by 

t(IuK). Now, it is clear that A2(Q(o)) = t(Y). Similarly 

the rest. 

5.10. Lemma. A1(Q(o)) = t(X + Y). 

Proof. Let Z = t(X + Y) and let g be the natural homo-

morphism of Q(o) onto Q(o)/A2(Q(o)) = G(o). By 1.3(i), 

A1(G(o)) is generated by all [gt(ai) ,gt(aj) ,gt(ak)3, l^i, 

,j,k£n. Further, uov = u + v for all u,ve.Z. Hence Z(o) is 

a subloop and g(Z) = A]L(G(o)). However, Ker g = A2(Q(o))oz, 

and so Z = A-L(Q(o)). 

5.11. Theorem. Let 4^ n and Q(o) = 0^°). Then: 

(i) Q(o) is a free loop of rank n in the variety of 3-ele-

mentary CM-loops nilpotent of class at most 3. 

(ii) card Q = 3m, m = n + ( n ) + 4 ( n ^ ) . 

(iii) card AX(Q(*)) = 3
P and card A2(Q(o)) = 3

q, q = ^i^1) 

and p = (n) + q. 

(iv) C1(Q(o)) = A2(Q(o)) and C2(Q(o)) = Ax(Q(o)). 

Proof. (i),(ii) and (iii). Let G(o) be a free 3-ele-

mentary CM-loop nilpotent of class at most 3 freely generat­

ed by the set S. There is a surjective homomorphism g of G(o) 

onto Q(o) such that g(a^) = t(a^) for every i. We have 

g(A2(G(o))) = A2(Q(o)) and 3
q£ card A2(Q(o))^card A2(G(o))^ 

£ 3q by 1.4(ii) and 5.4, 5.9. Hence card AgtQU)) = 3q. Si­

milarly, card A1(Q(o)) = 3
P. The loop Q(o) cannot be genera­

ted by n - 1 elements (otherwise card A2(Q(©)) <3
q, a contra­

diction) and consequently Q(o)/A,(Q(o)) = H(o) cannot be ge­

nerated by n - 1 elements. From this, 3n = card H, 3 p + n ^ 

4z card Q^card G^3 p + n, 3 P + n = card Q = card G and g is an 
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isomorphism. 

(iv) Obviously, C1(Q(«>))£A-^Qto)). it suffices to show that 

ueU, whenever ucX and F(a.j,»a -,u) c U for all l^i,j^n. The­

re are \£ s, k-,,... ,kfle $0,1,-1$ ana x-Lf..*fx8c I such that 

u * k-̂ rfx.,) +...+ ksr(xfl). Define a relation w on I by (x,y)6 

c w, where x * (ijk)e-I and ye I, iff either x = y or y » 

=- (jki) or y = (kij). We can assume that (xifx.)^w for all 

l^i<j^s. Now, let x-ĵ  = (kpq). If card fk,p,q}-^2 then 

r(x1)cU. If card 4k,p,q? = 3 and 5-£ n then there are l . £ i f 

ji4n such that card -ti»j»k,p,q$ = 5 and the result follows 

from 3.9. Finality , suppose that 4kfp,qJ » 41,2,31 and n » 4. 

We can assume that s - 8, xx = (123), Xg « (213), x-3 » (124), 

x4 « (214), x5 = (134), x6 « (314), x? = (234), XQ -* (324). 

Then k^ = kg and -^(x-,) + kgrtegJcU. The rest is clear. 

5.12. Corollary. Let 4-f- n and x*y « -x - y + T(x,y,y-x) 

for all x,ycQn. Then Qn(*) is a free quasigroup of rank n + 1 

in the variety of DS-quasigroups nilpotent of class at most 3# 

5.13. Lemma. Let G(o) be a normal subloop of Q(«) such 

that G£A., (Q(e)). Then G is an ideal of the ternary ring 

P(+,T). 

Proof. It suffices to show that t(F(a. ,a.,u)) e G, when-

ever l^i,j-*n and u*X + T is such that t(u) e G. We have 

t(F(«ifajfu)) = t(F(aifa^fu)) = f(t(ai),t(aj)ft(u)) = 

» Ct(ai)ft(aj)ft(u)3 6G. 

5.14. Proposition. Let G be a finite 3-elementary CM-

loop nilpotent of class at most 3. Then there exists a finite 

ternary algebra H(+fE) over the three-element field such that 

GSH, H(+,E) satisfies the identities (a), (b), (c), (d),(e) and 
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xy * x + y + E(x,y,x-y) for all x,yc G. 

Proof. Assume that G can be generated by n elements 

but not by n - 1 elements. Then there is a surjective homo-

morphism g of Q(«) onto G such that Ker gSA^CQ^)) and the 

rest follows from 5.13. 

5.15. Proposition. Let G be a 3-elementary CM-loop nil-

potent of class at most 3. Then there exists a ternary algeb­

ra H(+,E) over the three-element field such that GSH, H(+,E) 

satisfies the identities (b),(c),(d),(e) and xy = x + y + 

+ E(x,y,x-y) for all x,y£ G. 

Proof. G is an ultraproduct of its finitely generated 

subloops and the result follows from 5.14. 
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