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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

21,2(1980) 

ON A SIMPLE ONE-ELEMENT EXTENSION OF LEFT ZERO 
SEMIGROUPS 
LEE SIN-MIN 

Abstract: For each finite left zero semigroup I*, of 
order n, we embedded it into a simple groupoid S n of order 
n+1. We show that S R is rigid if n z 3. It is shown that the 
variety of groupoids generated by S 2 contains infinitely ma­
ny finite non-isomorphic simple groupoids such that each ©f 
them generates the same variety. ©lis provides a solution 
to Problem 67 of Birkhoff El]. 

Key words: Left zero semigroups, one-element extension, 
simple groupoids, residually small variety. 

Classification: 08A05 

§ 1. Introduction. A groupoid <G*; o> is said to be 

an extension of another groupoid <G; o> if G is isomorphic 

to a subgroupoid of G'. We identify G with the subgroupbid 

of G'. If G' is simple, i.e. its lattice of congruences is 

the two-element lattice, then we say 0' is a simple exten­

sion of G. 

In C33, we show that any finite or countable groupoid 

G has a simple extension G* such that |G'-Gl =- 1. We call 

G' a simple one-element extension of G. In this paper we 

want to introduce another simple one-element extension for 

each finite left zero semigroup, i.e. the semigroup satis-
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fies the identity xoy=x. It is well known that ar$r left 

zero semigroup of order greater than two is not simple and 

has a large group of automorphisms. It is shown that the 

simple one-element extension S of the left zero semigroup 

L of order n£3 has a trivial group of automorphisms. 

We show that the variety Var(Sp) of groupoids genera­

ted by S~ has infinitely many non-isomorphic simple grou­

poids such that each of them generates the whole variety. 

This provides a solution to the problem which is raised by 

B. Jonsson in Birkhoff's book [13. 

§ 2. The simple one-element extension of finite left 

zero semigroups. Let IN be the set of all natu­

ral numbers. Denote by N* the set union of H and a sym­

bol e not in IN .We define the binary operation o on W * 

as follows: 

(1) x c x = x for all x in IN* , 

(2) x*e = l for all x i n N , 

(3) x oy = x for all x, y in W , 

( e if x=l 
(4) e o x -

«• x-1 if xe It - U\. 

The groupbid <IN* ; °> is an idempotent groupoid which 

contains a countable left zero semigroup < IN ; <-) • For 

each n£l, we denote by 1^ (respectively S ) the subgrou-

poid 41,2,...,n\ (respectively 4e5UL n ) of IN* . It is ob­

vious that 1*2 is isomorphic to S, arid L is a subgroupoid 

of Sn. 

Theorem 2.1. The groupoid S is a simple one-element 

extension of L . 
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Proof. Let 0 be a non-identity congruence of S . If 

e9m for meL then e©e 8 e o m, i.e. e 9(m-l). If we left 

multiply both sides of the congruence by e successively, we 

will reach e 8 1. Then for each x e L we have x « e 8 x &1 

i.e. 1 9 x. Hence r/y the transitivity of 8 we conclude that 

8 = S x- S . If we have x 8 y where x, y in L and x< y then 

left multiplying both sides of the congruence by e succes­

sively x-1 times, we obtain e 8 (y-x+1) which implies 8 = 

= S x. S by the above result. Hence S is simple. 

Corollary 2.2. The groupoid ON*; °> is simple. 

The group of automorphisms of S-. is the cyclic group 

of order two. The groupoid S2 has a non-trivial automorph­

ism f which maps e to 2, 2 to e and 1 to 1. We recall that 

a groupoid"Xx is said to be rigid if its group Aut(G) of au­

tomorphisms is trivial. 

Theorem 2.3. The groupoid Sn is rigid if and only if 

n>3. 

Proof. We assume n£3 and f is an automorphism of L . 

Claim: f(e)=e. 

If f(e)=i where ie 1^ then there exists j e L such that 

f(j)=e. Since n.^3, we can find two elements s, t distinct 

from j. Hence f(s) + e4-f(t). As j © s = jot = j, we obtain 

f(jo s)=f( j o t)=e i.e. e o f (s)=eo f (t)=e. Hence f(s)=f(t)=l, 

a contradiction. Therefore we must have f(e)=e. 

Now f(l)=f(x o e)=f(x) o f(e)=f(x) * e = 1 ard by induc­

tion we can show that f(k)=k for any k fe L^. Hence f i? the 

identity map. Thus Sn is rigid. 

By the sane argument we have 
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Corollary 2 . 4 . The groupoid < \H*i •> i s r i g i d . 

§ 3 . Simple itrqujpids i n the var ie ty generated by S 2 . 

In th i s s e c t i o n we show that the var ie ty of groupoids Var(S2) 

which i s generated by S^ has arb i trar i ly large simple grou-

p e i d s . This provides an example of a l o c a l l y f i n i t e var i e ty 

• f algebras which i s not r e s i d u a l l y smal l . 

For eaeh non-empty s e t X9 we denote by X --Otutll where 

1 4 X. We def ine a binary operation o :X x X —> X as f o l l ­

ows: 

(1) x * x ~ x for any x e X , 

(2) « . , . { * if *+y in x or X B l « *•x 

x otherwise. 

Theorem 3 . 5 . The groupoid <X ; o > i s s imple. 

Proof. I f I X | * 1 then X* i s isomorphic to the group­

oid 1*2 which i s s imple . 

I f IX \Z 2 and 8 i s a non- ident i ty congruence of X we 

want to show that 0 * X+* X+. I f 1 9 x where x«. X then l e f t 

mult iplying both s ides of the congruence b y y c X - - i x } w e ob­

t a i n y 9 1 . Thus 0 i s the universal congruence. I f x 0 y whe­

re x , y in X then x © x 0 x o y would imply x 0 1 which redu­

ces to the previous ease . Therefore <X j o> i s s imple. 

Theorem 3 . 6 . The groupoid X* i s i n Var(S 2 ) . 

Proof. 3>t s£ be the d i r e c t power of S2* I t i s c l ear 

that S 2 i s in Var(S 2 ) . For eaeh z&X, l e t x be the map from 

X to S2 such that 

2 i f y*x 

otherwise 
r 2 

w \. 
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Let 1:X—> S2 be the constant map l(y)=l for all y 

in X. 
v 

Let P(X) be the subgroupoid of S2 generated by $x:x e 

6 X I U Cl^. Then P(X)- { x : x e X i contains only maps oG such 

that o6(y) i s e i ther 1 or e . As i l , e ^ i s a l e f t zero semi­

group then P ( X ) - ^ x : x c X 5 i s a subgroupoid of P(X). 

We consider the r e l a t i o n 0 defined on P(X) by s e t t i n g 

cC © p i f and onty i f e i ther oc = (I or a; , (J c P(X)- i aj:x € Xj. 

We sha l l denote the equivalence c la s s containing co by 

tocl ©. I t i s obvious that 0 i s a congruence r e l a t i o n and 

y . 3 e =P(X)- { x : x e X 5 . 

The map $ :X+—* P(X)/G def ined by $ (x) * [ x ] e and 

$ ( 1 ) = t i l 9 i s an isomorphism. Uius X i s in Var(S 2 ) . 

Theorem 3*7* For any s e t X with c a r d i n a l i t y greater 

than one we have Var(X )= Var (S 2 ) . 

Proof. Let x ,yc . X then we see that the subgroupoid 

| l , x , y ] of X+ has the fo l lowing Cayley t a b l e : 

x 1 y 

x x 1 

1 1 1 

1 У У 

The above groupoid is isomorphic to S
2
 under the homo-

morohism f :x —->- e, 1 —> 1 and y —> 2. Thus S
2
 c Var (X+

). 

With Theorem 3.6 we conclude that Var(X
+
) = Var(S

2
). 

The above result shows that in Var(S
2
) there exist in­

finitely many non-isomorphic simple groupoids each of which 

generates Var(S
2
). This gives a solution to the Problem 67 

in Birkhoff's book [1]. 
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