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21,2 (1980)

ON A SIMPLE ONE-ELEMENT EXTENSION OF LEFT ZERO
SEMIGROUPS '
LEE SIN-MIN

Abstract: For each finite left zero semigroup Ln of
order n, we embedded it into a simple groupoid Sn of order
n+l, We show that Sn is rigid if nz 3. It is shown that the
variety of groupoids generated by S2 contains infinitely ma-

ny finite non-isomorphic simple groupoids such that each of
them generates the same variety. This provides a solution
to Problem 67 of Birkhoff [1].
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§ 1. Introduction. A groupoid {G°;o)> is said to be
an extension of another groupoid {G;o> if G is isomorphie
to a subgroupoid of G’. We identify G with the subgroupoid
of G°. If G* is simple, i.e. its lattice of congruences is
the two-element lattice, then we say G’ is a simple exten-
sion of G.

In [ 3], we show that any finite or countable groupoid
‘G has a simple extension G’ such that |G'-G| = 1. We call
G’ a simple one-element extension of G, In this paper we
want to introduce another simple one-element extension for

each finite left zero semigroup, i.e. the semigroup satis-
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fies the identity xo y=x. It is well known that ary left
zero semigroup of order greater than two is not simple and
has a large group of automorphisms. It is shown that the
simple one-element extension Sn of the left zero semigroup
Ln of order nZ3 has a trivial group of automorphisms.

We show that the variety Var(Sz) of groupoids genera-
ted by S, has infinitely many non-isomorphic simple grou-
poids such that each of them generates the whole variety.
This provides a solution to the problem which is raised by

B. Jonsson in Birkhoff ‘s book [ 1].

§ 2. The simple one-element extension of finite left

zero semigroups. Let N Dbe the set of all natu-
ral numbers. Denote by WN* the set union of N and a sym-
bol e not in N . We define the binary operation o on W¥*
as follows:
(1) xex = x for all x in N¥,
(2) xee =1 for all x in W,

x for all x, y in W,

(3) xoy
e if x=1

4) eox={

tx-1if xe N - 13,

The groupoid {N¥* ; o> is an idempotent groupoid which
contains a countable left zero semigroup <N ; o) . For
each nZ1, we denote by Ly (respectively Sn) the subgrou-
poid §1,2,...,n} (respectively {eJUL ) of N* ., It is ob-
vious that L, is isomorphic to S, ard L is a subgroupoid
ot’ Sn'

Theorem 2.1. The groupoid S, is a simple one-element

extension of T'n .
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Proof. Let © be a non-identity congruence of Sn. Ir
eém for m"Ln then ece 8 ecm, i.e., e 8(m-1). If we left
multiply both sides of the congruence by e successively, we
will reach e © 1. Then for each x e L we have xce 8 x ¢l
i,e. 1 © x. Hence by the transitivity of 6 we conclude that
8 = Snx Sn’ If we have x © y where x, y in Ln and x< y then
left multiplying both sides of the congruence by e succes-
sively x-1 times, we obtain e ® (y-x+1) which implies € =

= Snx Sn by the above result. Hence Sn is simple.
Corollary 2.2. The groupoid < IN*; o) is simple.

The group of automorphisms of S1 is the cyclic group
of order two. The groupoid 82 has a non-trivial automorph-
ism f which maps e to 2, 2 to e and 1 to 1. We recall that
a groupoid™G is said to be rigid if its group Aut(G) of au-

tomorphisms is trivial.

Theorem 2.3. The groupoid Sn is rigid if and only if
nz3.

Proof. We assume nZ3 and f is an automorphism of Ih'

Claim: f(e)=e.

If f(e)=i where ie L, then there exists Je L, such that
f(j)=e. Since nZ3, we can find two elements s, t distinct
from j. Hence f(s)+e+f(t). A8 jos = jot = j, we obtain
f(jes)=f(jot)=e i.e. eo f(s)=eo f(t)=e. Hence f(s)=f(t)=1,
a contradiction. Therefore we must have f(e)=e.

Now f(1l)=f(x o e)=f(x) e f(e)=f(x) oe = 1 ard by induc-
tion we can show that f(k)=k for any k e L. Hence f is the
identity map. Thus Sh is figid.

By the sane argument we have
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Corollary 2.4. ' The groupoid { IN¥; o> is rigid.

§ 3. Simple graupoids in the variety generated by S,.

In this section we show that the variety of groupoids Var(Sz)
vwhich is generated by S.‘, has arbitrarily large simple grou-
peids. This provides an example of a locally finite variety
of algebras which is not residually small.

For each non-empty set X, we denote by x"=xu{1§ where
14 X. We define a binary operation o :X*< x*—> x* as fo11-
ows:

(1) xox=x for any xec X',
() xoy={ 1if x4y in X or x=1, ye X
’ x otherwise.

Theorem 3.5. The groupsid <x*;+) is simple.

Preof. If |X| =1 then x* is isomorphic to the group-
oid L, which is simple.

If 1xiz2 and.e is a non-identity congruence of x* we
wanmt to show that & = X'x< X', If 1 0 x where xc X then left
multiplying both sides of the congruence by yc X - {x} we ob-
tain y © 1. Thus 6 is the universal congruence. If x 6 y whe-
re x,y in X then xox @ xoy would imply x 6 1 which redu~

ces to the previous case. Therefeore <X+; o) is simple.

Theorem 3.6. The groupoid x* is in Var(S,).

Proof. Let S‘: be the direct power of 82. It is clear
that Sg is in Var(S,). For each xcX, let x be the map from
X te S, such that

2 if y=x
x(y)= {

e otherwise
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Let 1:X—> S, be the constant map 1(y)=1 for all y
in X.

let P(X) be the subgroupoid of Sg generated by {z:x e
exiu {ys. Then P(X)- izzxr-.xi contains only maps e Puch
that o0(y) is either 1 or e. As {1l,el is a left zero semi-
group then P(X)-§ x:xeX} is a subgroupoid of P(X).

We consider the relation 6 defined on P(X) by setting
L O if and only if either o = or o , B € P(X)- ix:x € X3,
We shall denote the equivalence class containing o by
fx1 6. It is obvious that © is a congruence relation and
f1] & =P(X)- {x:x e X3.

The map & :X'—> P(X)/@ defined by $(x) = [x] @ and
$(1)=[118© is an isomorphism. Thus X" is in Var(S,).

Theorem 3.7. For any set X with cardinality greater
than one we have Var(x')= Var(S,).

Proof. Let x,yc X then we see that the subgroupoid
{1,x,y} of X" has the following Cayley table:

o] x 1 ¥y

x[x x 1
111 1 1
yll y vy
The above groupoid is isomorphic to S2 under the homo-
morphism f:x —»e, 1 —> 1 and y —> 2. Thus Sze:Var(X+).
With Theorem 3.6 we conclude that Var(x') = Var(Sz).
The above result shows that in Var(Sa) there exist in-
finitely many non-isomorphic simple groupoids each of which
generates Var(Sz). This gives a solution to the Problem 67

in Birkhoff ‘s book [1].
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