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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

21.2(1980) * 

ON THE AUTOMORPHISMS OF PRINCIPAL FIRJfc BUNDLES 
Ivan KOLAft 

Abstract: Using Palais-Terng theorem on natural bund­
l e s , we determine a l l smooth pr inc ipa l f ibre bundles with 
the property that the group of a l l automorphisms can be ex­
pressed as a semi-direct product of a prescribed type . 

Key words: Pr inc ipal f ibre bundle, natural bundle, j e t , 
gauge transformation. 

C l a s s i f i c a t i o n : 58A20-

This research was insp i red by a d i scuss ion with Prof. 

A. Trautman and by h i s paper on gauge traIBformations [ 3 3 . 

Consider a pr inc ipa l f ibre bundle ar :P—>M with s t r u c ­

ture group G. Let Aut P be the group of a l l automorphisms of 

P . We have*an exact sequence 

(1) 0 —> AutjjP —> AutP—^BiffM, 

where AutjJP means the group of all vertical automorphisms of 

Pf £3]. An interesting problem is: under what conditions 

AutP can be expressed as a semi-direct product of Autj| and 

DiffM? In general, given an exact sequence of groups 

(2) 0 — * A—•* B — * C — * 0 , 

B can be expressed as a semi-direct product of A and C iff 

there exists a splitting of (2). We shall determine all P 
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such that there is a splitting of (1) with the following 

"local" property. Denoting by LDiffM the pseudogroup of all 

local diffeomorphisms of M and by IAutP the paeudogroup, of 

all local automorphiams of P, we shall as3ume that the 

splitting DiffM — > AutP is the restriction of a splitting 

S: LDiffM—> IAutP defined on the whole pseudogroup LDiffM. 

Such a splitting S is a lifting functor on P in the 

sense of A. Nijenhuis Lll, which endow3 P with the etructu-

re of a natural bundle . According to a recent theorem by R. 

S. Palaia and C.L. Terng (and a related result by D.B.A. Ep­

stein and W. Thurston) L2], any natural bundle has finite 

order. Given an r-th order natural bundle E —> M with lift­

ing functor F and an element c £ M, any element X of the 

group LrM of all invertible isotropic r-jets on M at c de­

termines a diffeomorphism FX: E c—> Ec. The assignment 

XI—>FX i9 a amooth left action of LrM on E £ 2J. Converse­

ly- given a smooth left action gp of the group l£ =- Lr K n on 

a manifold Q, n = dimM, we can construct the associated fib­

re bundle Q^ =- (MJQJI^J^M) , where HrM means the r-th order 

frame bundle of M. The bundle Q^ is natural with respect to 

the following lifting functor F. Any local diffeomorphism 

f: IT—>V on M is prolonged into a principal bundle isomor­

phism Hrf: HrU—*-HrV and we define Ff: p"1(U) —-> p^CV) by 

Ff(u,q) == (H f(u),q), where p denotes the bundle projection 

of Q^ 

In our case, S is a functor into the category of prin­

cipal fibre bundles, so that SX: FQ—.> Pc satisfies SX(ug) = 

= (SX(u))g. If we fix an element uePc, we obtain a map Su: 

: LrM — * G defined ty 

- 310 -



SX(u) = uSuX. 

As S(YX)(u) = SY(uSuX) = u(SuY)(SuX), Su is a group homor-

phism. Conversely, let G be a Lie group and £•--£—* G an 

analytic homomorphism. Then (X,g) j—> 6 (X)g is a left action 

of if on Q and we can construct the associated fibre bundle 

P = (M,G,lF,HrM). Any element of P being an equivalence 

class of the equivalence relation (u,g)^(uX, 6(X~ )g), uep, 

g€.G, Xel . f , we have a well-defined right action Px G — r P, 

((u,g),h).—:> (u,gh). One verifies directly that P(M,G) is a 

principal fibre bundle and the induced lifting functor S is 

a splitting S: LDiffM —,> LAutP. Thus, we have deduced 

Theorem. If P is a principal fibre bundle such that 

there exists a splitting S: LDiffM—> LAutP, then there is 

an integer r and an analytic homomorphism & : L« —*- G such 

that P coincides with the corresponding bundle (M,G,I.F,HrM) 

and S is constructed as above. 
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