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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
21,2 (1980)

ON BICOMPACTA WHICH ARE UNIONS OF SPACES
DEFINED BY MEANS OF COVERINGS
E. G. PYTKEEV, N. N. YAKOVLEV

Abstract: ILet X be a bicompact space which is the
union of infinitely many subspaces of a class J , defined
by means of coverings: Lindel3f, metalindel3f, developable,
weakly- J6@ -refinable etc. What can be said about the se-
quentiality of X, about the existence of a Gy-point in X ?
We study this problem and receive some results which are
applied to the investigation of bicompact subspaces of some
unions of 5, -products of metric spaces.

Key words: Bicompact spaces, sequential spaces, Gg-
point metalindel®f spaces, weaklyl(fb-refinable spacés.

Classification: 54D30

Let P be a class of spaces, defined by means of cove-
rings. In this note we consider the following problem: if
a bicompact Hausdorff s:»pace is the union of a certain fami-
ly of spaces which are the elements of & , what can be
said about the existence of Gg-points and about the sequen-
tiality of this bicompactum?

In special cases, this question was investigated by
A.V. Arhangel’skii [13,[2),[3] and some other authors [4],
[51. In this note we considerably strengthen the results of
the papers and [3],(5], and solve some problems frOI;l [3].
Our interest in the bicompacta which are the unions of spa-

ces, defined by means of coverings is stimulated also by
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the fact that every bicompactum which is embedded in I -pre-
ducts of real lines, is hereditarily metalindeldf.

We think that one of the main corollaries of this note
is that the existence ef a demse set of Gs-points in a bi-
compact Hausdorff space very often implies the sequentiality
of this space.

We adopt the terminology of [6]. The space X is called
metalindelsf if everi open coverimg of X can be refimed by
an opem poimt-countable ceverimg [ 7).

The space X is called weakly-JdQ-refinable [8] if every
epen covering of X can be refined by an open covering 7 .=
= UV a Such that for every xe X there is such a natural =
that X belongs te at mest countably many elements of ’Vn.

The class ef weakly-J'O-refinable spaces includes all
metrie &-metrizable, paracompact, developable, metalindelsf
and other classes of spaces, defined by means of coverings.
In this class, the countable compactness is equivalent te
bicompactness [8].

A If §° is a certain property of a space, then we say that
a space X is & pointly- {° -space, if fer every xc X the sub-
space X\ x has the property 7° . Nete that the preperty of
being poimtly- P is weaker than the hereditarily [-pre-
perty.

Now, if v is a tepology on X, then Yy, (where A is
an infinite cardinal) denotes the A -modificatiom of = [ 6]
(i.e. such a topolegy om X that the family of all sets which
are the intersections of A many open in v sets, is & base
ef this topology). '

Lproduct of metric apaces X, with a basic peimt
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(x;‘) is a aubapch of a product TTX (. such that for every
€ > O and for every (y ) € 2* , Hoo:;o(yoc,xoc)> gl <
As usually, a = -product (& -product) of spaces X,
with a basicipoint (X_) is a subspace of a product X,
such that for every (y) € = (8)]|{ec:y + % 3144,
(< #y)- '
A space is called v -monolithic [121] iff for every A
JAl4£ T it follows that nw([Al) < w .

l. G g -peints_and nen-trivial cenvergimg sequences
We begin with the followirg

Definition 1. A point x, is called a super Fréchet

peint, if for every ASX such that x e [A] and A - the first
cardinal such that x E'[AJ.U& there exists an Alexandrov super-
sequence SS A such that |S| = 4 and S converges te x, (i.e.
Sux, is a ene-peint compactification of S).

We alse name the space a super-Fréchet space, iff each
point X & X is a super-Fréchet point.

Obviously, the luper-!‘récliet property implies the Fré-
chet-Uryson property.

Prepesition 1. If X is- a bicompactum, x,€ X, and
x_\{x.} is a metalindeldf ’space, then x, is a super-Fréchet
peint. ‘

Proof: Iet x e [A) amd y(x ,A) = A . Let ¢~ be a
point-countable covering of Y = [A]J N\ {x } by open sets,such
that (Ul x, for every Ue 7 - ‘

Suppese, first, that A= ¥ . For each xcY let us in-
dex the elements of 7 , containing x as {U;(x),U,(x),...
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eeeyUp(x),.0.d and let onX) 3&,@ 10 (x)}. Let x € &, and
for e:tery natural n choose X, €AN )n&j?! 'y‘n_l(xk).

AN My ¥n-1(% )+ 0, otherwise x ¢[Al). The set ix,§ is
discrete in Y. Really, let ze€Y and Ue 3 such that Us z.
Now, 1f Usx, for some n, then U = U (x,) for some k and se
m«fnU for every mzmax 1k,ny . It follows that x,—> X,, be-
cause [A] is a bicompactum.

Suppose that 7 > ¥ .. Let y & A and for everycv< 20
choose y, € A\NUSLy(ypl: B <oc? . ANV {fx(yﬂ):[&<cﬂ3*
% @, otherwise y(x,,A)< A ). The set iy, :cc <0 (A) is
obviously discrete in Y and [{y, : v < Q(A)3| = A . It fol-

lows that y -—> x_, because [A] is a bicompactum.

o?

Proposition 2. Iet X be a pointly-metalindeldf bicom-
pactum, then X is Fréchet-Uryson and a set of Gy-points is
dense in X. ’

Proof: X is a Fréchet-Uryson according to Propositiom
1. Then according to one lemma of A.V, Arhangel ‘skii [6],
there exists a countable Sc X and a bicompact FcX which is
Gy in X such that [S12F. Let x ¢ F, then [SI\i{x} =Y is a
metalindeldf space, but Y is separable, therefore Y is Lin=-
deld? and this implies that x, is a Gy-point in [s] . It fol-

lows that x_ is a Gg~point in F and hence in X.

. Proposition 3. Iet X be a bicompactum, t(X) £ ¥ , X =
=ULX : 0 < @3 and for ‘each o
1. if AcX, and A is countable, then [Aly is Linde-
oC

18f,
2, if Fc X _and F is a bicompactum, then F contains a
Gs-point (in F),

then X also contains a G;'-point. ‘
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Proof: On the contrary, suppose X does not contain any
Gy-point, then every Gy-bicompactum F in X also does not con-
tain any Gy-point. Suppese that =< @, and for each x < (5
we have already defined a family of bicompact {rx; with the
following conditions:

1) B, eF, if <'> ",

2) E is a Gf-bicompactum in X,

3) E,EnX =4,

Let us construct Fp with the same properties. Let l",: =
=N{F,:00 < 3% . Then Fg is a Gy-set in X. If anxﬂ# [
then let x, be an arbitrary point of Fﬂ° Ia) xﬁ and K, be an ar-
bitrary Gd--bicompactum in F(? , containing xq. Suppose j < @y
and for each o < j we have already constructed a family of
points -ixoc§ and bicompacta K such that:

a) x, e K _n Xp. )

b) [{xec,: o < c}ln K. =9,

¢) K ,EK . if a;’; o’

d) K is a Gg-bicompactum in FE .

Let Kg =N{K : < < jf. It is a Gy-bicompactum in FI: .
There are two possibilities:

I iz, 1< j}JDKgn Xp »

II. there exists xj€ (Kgn XgIN[U{x 1< j¥l. Then
let Kj be an arbitrary Gg-bicompactum, containing xj and con-
tained in Kg\[{ X o < J%¥) (it is possible because of the
condition 1. of our proposition). It is clear that a) - d)
are fulfilled.

If for every j< w,; we always have the possibility II,

then we have a free sequence { xj'é in a bYbicompactum ef

J<ay :
countable tightness. That is impossible [ 6], therefore there
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. . . ° o
‘is j,< @, such that ({x st < J.l] o anxﬂ . If IJ N
NnXp =0, let Fy = xg. But if xgn X3+ 0, then this space
is Lindeldf, because [{x_ :oc< jg¥ln Xﬂ?[f x,:
< j.i] X and because of the first condition of our pro-
positien.

Kg is & Gy-bicompactum in X, therefore Kg does not con-

tain any Gy-point and therefore K;s‘: xl, s, 80 there exists a

Gj-bicompactum Kc K2 such that Kn Xp = 9 (here we use the

fact that xgn X, isJLindelbf). Ist Fy = K. Obviously, the
conditions 1) - 3) are satisfied.

iF, tx< “’1} is a decreasing sequence of bicompacta.
But then N{F  : x< w1}4= @, and that is impossible, be-

cause of the condition 3) together with X = U{ X tx< col}.

Corollary 1. Let X =U{X :o0< ol§ and X be a bicom-
pactum of countable tightness, then each of the following
conditions implies the existence of a dense set of Gg-points
in X:

a) for every oc, X, is pointly-metalindeldf;

b) (281 > 230 ) for every o¢, X is metalindeldf and
sequential,

¢) for every o , X_is embedded in some = -product
of separable metric spaces,

d) for every o< , X is K -monolithic and t(X,) =
£Ko '

e) for every o« , X is & space with closure-preserv-
ing covering of compact sets. /

In view of Proposition 3 we can arise a problem: is the
proposition 3 true without the cond'ition t(X) éxo? (or may

be some points of Corollary 17?)
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We have obtained some partial results in this way:

Propositiom 4. Let X be a bicompactum, X = U{X :
t < @,} and for every « ,

1. X is Lindeldf,

2, if FcX and F is a bicompactum, them F contains s
Gg-point (in F),
then X also contaims a G(;-point.

Proof: Suppoa.e it is not true. Them as in the proef
of Propesition 3 we may éefine‘for every o¢ =< 3 & fanily eof
bicompacta {E _} arswering the requirements 1) - 3) of that
Proposition. If F,: = N{P, :0c< (32, then Fﬁ is a G-bi~
compactum. Therefore P/: ¢ x,.,, (otherwise it contaimns a Gy~
point). let yel"; N X{3 . P(.S N x,, is a Lindel®f space, se
there exists a Gy-bicompactum B(y)>y such that B(y) n(r‘ﬁn
NX,) = $. Then F, = r(’, N B(y) alse answer the require-
ments 1) - 3). It is clear that NiFy : i< @43, and we
again have the contradiction in view of 3).

Corollary 2. Let X = U{X_ :«< 6013 and X be & bi-
compactum. Then each of the following conditioms implies the
existence of a dense set of Gd—i)ointa in X,

a) for every o , X, is pointly-Lindeldf,

b) (2”") 230 ) for every oc , X is Lindel8f and se-
quential;

¢) for every o , X is embedded in some &' -preoduct
of separable metrie spaces.

Remark. Parts c), d) and e) of Corollary 1 and part ¢)
of Corollary 2 are the essential generalization ef the cer-
reapondiig properties of Eberlein, Corson and monolithie bi-
compacta of countable tightness.
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Proposition 5. Let X be a bicompactum, X = U{ Xt
< @f, and for each o

l. if ASX_ and A is countable, then [Alxw is Linde~
1a8f,

‘2, if Fc X and F is an infinite bicompactum, then F
containe a nen-trivial converging sequence, ‘
then X also contains a non-trivial converging sequence.

Proof: Suppose, om the contrary, that X does not contain
a non-trivial converging sequence.

Suppose [L < @, and for each o« < (3 we have already defined
& family of bicompacta {FO(E with the following conditions:

1) E_eFr if o’ > o,

2) F_ is infinite,

3) F,.nX, =4,

-We shall construct Fg with the éane properties. Let
l'l‘; =N{Ff :x<fB33. If 3 is a non-limit ordinal, then 1?/%
is infinite according to 2). Now, let 2 be a limit ordinal
and ﬂ: be finite, them if [} = Jim ooy and xee E )N F ,then
[{xp3INixtc Fl.ls and is also finite, but it means that
[ {xh}] is a countable metrizable compactum, and hence con-
tains a non-trivial converging sequence and that is impossible,
therefore ﬁ; is infinite. '

I. 1t I;rs!ﬁ is finite, then %:\ xn is infinite, the-
refore there is an infinite bicompacum rﬂsrg " such that I'/; la)
la) Xﬁ = g.

II. 1If _’5 N X, ie infinite, then it is an infinite clo-
sed set in xn . Let S be a countable subset of Fz N Xﬂ, then
ch.c_rfg and [S1\ X, 34y}, because otherwise [S1eX; and [S]

contains a non-trivivﬁl converging sequence according to the
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conditions of our proposition. The same arguments make us su-
re that {y} may be considered as a non-isolated point of [Sl].

Besides, [ Sly = [S]r\X{3 and hence is a Lindel3f space. The-
p .

refore, there exist a Gy in[S] bicompactum B(y)>y, contain-
ed in [S], and a countable covering {Uj} of [S1NXj such that
B(y)n (4}:/]1 u;) = @, and therefore B(y)n Xﬁ = g, It is clear
that B(y) is infinite f(otherwise {y% is a non-isolated G, -
point in [S1) and so we can define F{_,, = B(y). Obviously the
conditions 1) - 3) are now fulfilled. Bufc then according te 1)

(\.gFt_A tp< wl} = @ and that is impossible according to 3).

Corollary 3. Let X be a bicompactum, X = U{X_:aoc< wl}
and one of the following conditions be fulfilled:

1. for every oc, X, is pointly-metalindeldf,

2. for every o, X is # -monolithic and t(X_ )< %,
then X contains a non-trivial converging sequence.

2. CC-closed spaces and seguential spaces

In our following arguments, the next notiom will play a
key role.

Definition 2. We shall call a space countably compact
closed (briefly CC-closed) if every countably compact subspa-
ce of X is closed in X.

The class of CC-closed spaces obviously contains all T1
sequential spaces, but also some others, far from sequential
spaces, for example, all Tl spaces, in which countably cem-
pact sets are finite.

We shall start with the following

Lemma 1. Let X be a Hausdorff space, x, e X, and X\{xOE
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is a weakly-dO-refinable space, then for each countably com-
pact Ac X\{x°§ always [AJQX\{xo}.

Proof: Iet A be countably compact amd A< X\ {x 3. Let
U = {.U(x) such that [U(x)]15 x,}. Let V' be a weakly-o®-re-
fining of U . Then according to [81we can find a finite sub-
fanily of 1 (denote wl,...,v‘}), which covers a countably
compact set A. Now we have [A] Q&g[ ViJ c USLU(x)]:U(x) €
11 € XINi{xy3.

Propesition 6. a) If X is a Hausdorff pointly-weakly-
08Q-refinable space, then X is CC-closed;
b) if X is a Hausdorff countably compact space and X\ x,
is weakly-od@-refinable, then t(x)) < % .
Proof: a) immediately follows from Lemma 1.
To prove b) suppose [A] 5x, and B = U{[S]:ScA% then B
- is countably compact and BS X\ x

°
=[B], hence [A]15x,; & contradiction.

. According to Lemma 1 B =

Proposition 7. Let X = 4;(:54 X; and for each i, X; is a
Hausdorff weakly-JO-refinable and sequential space, then X
is CC-closed.

gr_g_t;_f: Let A be a countably compact subspace of X and
A = AN X;, then A; is closed in X;, otherwise there exist
X, € xi\ A; and a sequence x; € Ai such that x; — X but then
x,¢6 A and hence xosLl; a contradiction. Therefere Ai is &
ve’kly-d'e -refinable, and so A is also a weakly-d@-refinable
a8 a countable union of such spaces. Hence A is a bicompactum
according to [ 8], therefore A is closed in X.

Lemma 2. Let X be a countably compact and CC-closed spa-

ce, then
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a) X is =& space of countable tightness,

b) if ASX, then lc_'uleu;lJto .

Proef: &) If ASX and B = U{[S):ScA |S|<%gt,then
B is also countably compact anmd so B = [Bl, _

b) Let Ay = A and for every X< < Wy we have alre-
ady defined A, . Let Ay = Uik :ox < B}and R={s:8c4;
and S be countable discrete im A;?. Then I.B‘l z1a1Yo,

For every S c 3 fix a point x(S)e¢ [S]\L;; and put A =

= Ar;u{x(S):S 6 B} . Ten [A] = Uikg: < @y3. Really,
U&Aﬂ :p< wl’:c[AJ, amd if U&Aﬂ : < @1 is net
closed,then it is not countably compact, therefere there is
a countable set S which is'diserete in U{Ap : < @,}. But
then there is (3, < @, such that ScA, and se x(S)el[S] and
x(S)eA%‘_J_. This contradiets the fact that S is discrete in
Uidg:p< %,

Propositiom 8. Iet X be a regular countably compact
space with the property that each closed FcS X contains a
point of countable character in F, then if X is CC-closed,
then X is sequential.

Proof: Iet [A]l, be a sequential closure of A, and
(Al +[AJ. It follows that [A]l, is not countally compact, se
there is a countable Sé[A]c which is discrete in [A],. New
the set F = [SINSc[AIN[A], and F is cloeed‘ in X (because
S is discrete in itself). Let x, be a peint of countable cha-
racter in F. Then x, is a point of co'untahle character nl;o
in [S], because [S] is a regﬁhr and counta by cohpact spa-
ce, therefore there exists a sequence -ixn}gs such that

~—> x_,and se x_ec[A]l , a contradiction.
*n ° ° e !
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Proposition 9. (2%l > 2#0 ). Let X be a bicompactum.
Then X is a CC-closed space iff X is a sequential space.

Let us prove a non-trivial part. Let X be a CC-closed
space, then t(X) < ¥, (according to Lemma 2 a)) and so
t(F) £ &, for every closed FEX. Then according to a lemma
of A.V. Arhangel’skii [6) there are countable égx and a
Gy in F bicompactum ¢ such that [S12 $ . But according to
Lemma 2 b) [[ S]] < 2% , hence ($| = 290, Now if 271 > 2#",
then there is y, & Gy-point in § and so it is a point of

countable character in F. Now according to Proposition 8, X

is sequential.

*,
Corollary 4. (2 "> 2

00
= %k=J4 Xi and for each i, & is a sequential weakly-d8-refin-
able space, then X is a sequential space.

L g
%), I£Xis a bicempactum, X =

It follows from Proposition 7 and Proposition 9.

Proposition 10. Let X be a pointly-d©-refinable bicom-
pactum, then
a) tX)£ %,
- +#, X
b) (277> 2 %) X is sequential.
It follows from Lemma 2 and Proposition 9.

Proposition 11 (mein). Let X be a bicompactum and X =
0
= %_U,’ X;, ther any of the followimg conditions implies that

X is a sequential space with a dense set of Gy-points;

a) for every i, X; is a space with Gs-diagonal,

b) for every i, X; is a weakly-dJO-refinable space
with a countable pseudocharacter;

c) for every i, X, is a pointly-metalindeldf space.

Proof: In any of these cases, each closed set Fc X has
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a Gy-point (in F). Really, it follows from one theorem from
[2] in the cases a) and b), while in the case c) for every
xoeX we have X\{x.} = %g% XN {xo}, hence X\ x, is weakly-
o ©-refinable, so according to Proposition 6 a) X is CC-clo-
sed and hence of countable tightness (Lemma 2 a)). Now, using
Corollary 1 a) we receive the necessary fact.

Besides, in any of these cases X is a CC-closed space.
Really, the case c) is clear. In the case b) it follows from
the fact that X\{x,} =,-b§4 X\ ix,} and so is a weakly-df -
refinable space, as a countable union of such spaces and fur-
ther from Propositiom 6 a). In the case a) it follows from a
theorem of Chaber [11]: if a regular countably compact space
is the union of countably many spaces and each of them has a
GJ-diagonal, then X is a bicompactum.

Now Uxi is a sequential space according to Proposition 8.

Corollary 5. Let X be a bicompactum, X = %L:ﬁ,, X; and
every Xi be embedded in some X -product of separable met-
ric spaces, then X is a sequential bicompactum with & dense
set of GJ-points. .

It follows from the fact that every X, -product of se-
parable metric spaces is hereditarily metalindel®f and from
Proposition 11 c.

The last fact generalizes the well-known vroperties of
Eberlein bicompacta. This result cannot be significantly im-
proved, because such a bicompactum need not be a Fréchet-Ury-
son bicompactum. For example, the so-called separable Frank-
lin bicompactum is such a space. On the other hand, there is

a bicompactum which may be embedded even into the union of
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two =i -products ef . = 0,1}, but does not kave even a

countable tightness. It is a space TW (a)l +1).

Problem: let X be & bicompactum ami X = XU X,, where

each X3 is embedded into some Z.'* -product of compacta. Does

X be a Fréchet-Uryson bicempactum? Is X an Eberlein bicom-

pactum? And if X; are embedded inte the same =4 -product?

(2]

£33

[4]
£3]
[6]
{71

[8]

fe)
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