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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

21,2 (1980) 

MIXED VARIATIONAL FORMULATION OF UNILATERAL PROBLEMS 
Jaroslav HASLINGER, Jan LOVISEK 

Abstract; The mixed variational formulation of uni­
lateral boundary value problems is derived and its finite 
element approximation is studied. Provided, the exact so­
lution is smooth enough, the rate of convergence for both, 
the primal quantity as well as for associated Lagrange mul­
tiplier is obtained. Algorithm for effective computation 
is proposed. 

Key words: Finite element method, mixed variational 
formulation. 

Classification: 65N30 

The application of finite element method for solving 

unilateral boundary value problems has been discussed by 

many authors (Glowinski-ldons-Tremilieres), (Brezzi-Hager-

Raviart), (HlavdSek), etc. Using the fiitz method, the ori­

ginal minimization problem over a convex set K(SD of func­

tions, satisfying unilateral boundary conditions, is trans­

formed into the minimization problem over the "finite ele­

ment approximation" of K(H), where the conditions on 3-0. 

are satisfied approximately only. Various methods of quad­

ratic programming can be used for numerical solution. In 

this paper, another way is chosen. Proper dualization of 

constrains leads to the problem of finding the saddle-point 
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of a certain Lagrangian. This formulation is used tor the 

numerical solution of the original unilateral problem by 

finite element method. The error estimates for both compo­

nents of the saddle-point are given. This approach has two 

advantages: 

the Lagrange multiplier has obviously the physical mea­

ning, so that its approximation is useful; 

using the Usawa's algorithms, it is possible to carry 

out very economic calculations. 

Let us mention the similar approach can be used for 

various unilateral problems, as the Signorini problem with 

or without friction, the contact problems of elastic bodies, 

etc., see (Haslinger, HlavaSek), (Nefias, JaruSek, Haslinger). 

Functional context and notations. Let il be a domain 

with Lipschitz boundary 611 • We shall use the Sobolev spa­

ce H GW of functions, derivatives of which up to the order 

k exist and are square integrable in Jl • The usual norm of 

u in HkOl) will be denoted by M^.. H1/2Oil) denotes the 

space of traces of functions, belonging to H (UK It is 

the Hilbert space, equipped with the norm 

vcH1^) 

We shall denote by H~1/2(3il) the dual space to H1/2(0JQ. ) 

and by II II „i/2 the dual norm. The duality pairing between 

H~1/2(dH) and H1/2(dil) will be denoted by < , > . 

1. Variational formulation of thetproblem. We consi­

der the following model problem 
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(1.1) - Au • u = f in il 

with the unilateral boundary conditions 

(1.2) urg, 3u/3n>0, ( u - g ) 3 u / 3 n s 0 on a i l , 

where 3u/8n denotes the normal derivative with respect 

to the outward normal n, f eL (il) and geJ&^iBSL). 

Let us introduce the convex set 

(1.3) KUD == <v€H1(a) \ vzg a.e. on d£l\ 

and the functional of potential energy 

(1.4) J(v) =«vl2 - 2(f,v)0, 

2 
where ( , ) denotes the scalar product in L (XI). 

Then the problem 

r find ue K(H) such that 

l j (u)£JCv) VVCSKCCD 

represents the variational formulation of (1.1) and (1.2). 

Theorem 1.1. There exists a unique solution of ('P) 

and u can be characterized through the relations: 

r u e. K(.a), 

(1.5) J % 

I ( u , v - u ) 1 . s (grad u,grad (v-u))0+ (u,v-u)Q2r (f ,v-u)0 

VvcKOl). 

Proof: see [ 2 ] . 

Mixed formulation of Cp). Let 

(1.6) AOA) *l^*U~1/2(dJl) t <<a,v>ro V • * H1/* (ai l) , 

It is easy to see that 

(1.7) v*K(&)«—^veH1^) and <(tt,v-g>20 V ^ £ j^iBXi). 
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Let us define the following problem, the so called 

mixed variational formulation of OP): 

f find (u*f A * ) € H 1 ( i l ) x A ( a i l ) > satisfying 

« P * ) - ( u * v ) x - < A * , v > « (f ,V)0 Vvf iH^J l ) 

. < A - A * , u * ^ < A - A * , g > VAeAtfBD-

Theorem 1.2. There exists a unique solution of «P*) 

and 

(u* A*) « (uf 8 u / 8 n ) , 

where u is the solution of © ) . (For the proof see [23.) 

Remark 1.1. (u,9u/3n) can be characterized equiva-

lently as the saddle-point of the Lagrangian e£(v,A) over 

H1(fiL)KA(8il)9'Wfaere 

(1.8) tf (v,A) * J(v) - <Afv-g> . 

2. Finite element approximation of (CP*). To propose 

a consistent mixed finite element analysis, we shall consi­

der straight triangular elements only and therefore study 

problems on polygonal domains. For simplicity we restrict 

ourselves to plane polygonal domains. 

p 

Thus let ilc R be a polygonal bounded domain. We con­
sider a regular family of triangulations "t3*nl of Si , whe­
re h = max diam T, T€ 3 ^ . Let i^} be a family of parti­
tions of 3.Q. , independent (for the moment) on Xl, i.e. 

tffy 

a i l sA,Vl aiai+l» «i
 = Vfl' 

We denote by H. == length aiai+i an<-* H =- max H^ • Next we 

shall consider a regular family {^^l in the following sen­

se: 
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there e x i s t s a constant ^ - 0
> 0 axich that H/fc^ £ oC0, 

i s l , . . . , m . 

Let us define the spaces 

Vh(Q) « - f T € C ( 5 j | • | T e P 1 ( T ) VTeTh] , 

XH(8H) - *ftCL2C8il)| ^ i a i a i + 1 ^ Va i*i+1>> 

i = l , . . . f m ] f 

where P, (T), p
0 (84*1+1) denotes the space of a l l polynomi­

a l s of degree 1 in 2 variables and the constant functions 

on a^a.j.+1, r e s p e c t i v e l y . 

Let us define the fo l lowing problem 

r f ind (u£, A*H) e vh(jQ) x A H ( 9 n ) such that 

( n > < (uh>Vl -<A*>V * ( f .Vo Vvh6Vh(a) 
U ^ - ^ H , u ^ > z < ^ H - ^ H , g > V^H6AH(3il)f 

with 

^ ' V * 4l <Vh ds V * h 6 V ^ . (^HdAH(6>iX>t 
A H ( 9 J Q ) = 4^HeAH(ajQ) I ^ 2 0 on 3X1} . 

(5*̂ ) is the approximation of (3*). 

3. Existence and uniqueness of the solution of (C?h). 

In what follows, we shall study the existence and the uni­

queness of the solution of (^ h). Let us set 

(3.1) 3C(h,H) =-{vh€Vh(XU i <(^H,vh> ^ <(UlJfg> 

V^dAjjOil)}. 

Then 3C(h,H) is the finite-dimensional approximation of 

K(&). Next, let the pair (uh,&*H) £ Vh(£)x AH(6>~a) be the 
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solution of (tf*n)» Then «£ is the unique solution of the 

problem: 

r find u£e 3C(h,H) such that 

I (^^h^rt^h-^o Vv h^0C(h fH). 

On the. other hand, a pair (u£, A*H) e V^OC&xA-^QXl) can be 

characterized as the saddle-point ot the Lagrangian £& over 

the set VhCil)x A H O J C L ) , where & is defined by 

(3.3) #(vhf (OJJ) » J(vh) - <(^H,vh-g > • 

It means, the first component of the saddle-point (^Jt^g) 

is uniquely determined. In order to prove the uniqueness of 

JT we need the following result. 

Lemma 3.1. Let h/H be sufficiently small. Then 

Л* 

(3.4) 

^/ИлO „ „ .. 

hold for any pe A
H
(&X-l) with a positive constant 6 ̂ > 0. 

Proof. As 

we obtain (see L8J) 

(3.5) 11^11^2 «
<
jj^

fe
fl*fli » 

- l
 / 

where veH (&) is the unique solution of the boundary value 

problem: 

- Av • v • 0 in i l 

3v/3 n = <a on dJl • 



Let <u,e .A.HC&Q). Then p+ iT^^OJl) for V* c <0,1) 

and the following regularity holds 

(3.6) »*«1+e
&c<*>«r»-l/2*e-

Furthermore we write 

where v. is the Qalerkin approximation of v on V^CQ.). Ap­

plying the triangle inequality we obtain 

" V l m ll?h • ? + ? l i r , ? ,1 - l ?h " ? B1 • 

Together with (3.7) we obtain 

(3.8) 1*1-.--"ĝ  T ^ ^ l ^ h - ^ i -

On the other hand, using the error estimates of classical 

finite elements, (3.6) as well as the inverse hypothesis 

between H~1/2Oil) and r ^ ^ O i l ) for <u, e % H Oil) f we 

obtain 

ftv^vll-^c hellTll1^c(e) h
e ||^»_1/2+&£c(h/H)

e »(^».1/2. 

from th i s , (3.8) and (3.5 ) , the inequality (3.4) holds. In 

order to prove the second inequality in (3 .4) , we take into 

account the inverse hypothesis between L (9i l ) and H~x/*Oil ) 

for x* e A H O i l ) # We can write 

l(*H0.*e H~V2II<uj _ 1 / 2 V ^ c ^ ( S i l ) . 

Hence we obtain the second inequality in (3.4). 

Theorem 3.1. There exists a unique solution 

(u*,^H)cVh(a)xAH(3il) of (3*h). 

Proof, We can apply the abstract result from tll# 
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4. Error estimates. Now, we shall study the rate of 

convergence of u?L to u* and A*U to A* , provided the ex­

act solution u of CP) is smooth enough. First, we derive 

the abstract error estimates* To this end, we give another, 

equivalent form of (?*)• Let 

seca) * ^(MxH'^c&xL) 

be the Hilbert space with the norm 

(4.1) 1VB« (IwllJ + Hftl l1/2)
1/2f V = (•,<*) 6 36(0). 

Let 

(4.2) A(UfV) « (u,v) 1 - <A,v> + <^,u> , U = (u,a ) 

be a continuous, bilinear form on 36(0.) ;* ̂  (ID and 

tK(H) =- H-^iDxAdD be a non-empty closed convex subset 

of $£(&)• We denote by II a positive constant such that 

iJl(U,V)UMtilUftl \\\ VUl Vu\Ve # t Q ) . 

On the other hand we see that 

(4.3) ii(u,u) * (u,u)x vueafeoi). 

Now we consider the following variational problem 

find U* = (u*,A*) 6 IKCiO) such that 

A(U* V - U*) :> #(V - U*) VVe JK(£L), 

where £ W * (f,v)Q + <(«>,g> . 

Immediately we obtain 

Lemma 4.1* ftie problem ( ? ) i s equivalent to (CP*). 

Let us set 

K(h,H) = vh(&)x.AHoa). 
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Then K(h,H) is the internal approximation of IK (ID. The 

approximation of (ir) is the following: 

find U* = (u*,J^H)€,K(h,H) such that 

(4.4) { A(U*,Vh - U*) ̂ ^(Vh - U*) VVh6 K(h,H). 

Again, it is easy to see that (4.4) is equivalent to ({R* ). 

Lemma 4.2. It holds: 

(4.5) II u* - u£l.|[ = (u* - u£,u* -u*)1-^i^(U* - U*,U*- Vh)+ 

+ fl(U* Vh - U*) + ̂ <U* - Vh)l VVh6K(h,H). 

Proof. We deduce from the relation (4.3) 

(u* - u*,u* -u*) 1 = A(U* - U*,U* - U*) -

= #(u* -u£,u*-vh) + ji(u*vh-u*) + A(u*,u* -u£) + 

+ A(u*,u* -vh) £ A(u* -u*,u* -vh) + & (u*,vh-u*) + 

+ # ( u * - vh) + r(u*- u*). 

Lemma 4 . 3 . I t ho lds : 

(4.6) j[A* - ^ H ' L i / 2 ^ c *>lu* - "h11! + *g l%% - ^ H 1 1 - ! ^ 
H 

(4.7) |A*- A V o * c {I A*- <«_,«_ + H"1/2 | h* - ^Hfi.1/2+ 

+ H _ 1 / 2 || X* - A*H!l_1/2* i f tft. L 2 (9 i l ) . 

Proof. Using the definition of (CPh) we obtain 

< <** " *Vh> • < < W " < * W = <<?W + 

+ < f - V o " <uh>h>l " < < * W + <u*-«h^h>l " < * •>_>* 

4 c tjlu* -u*ll_ + ll(U.H . A*ll_1/25 \ * v 
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New we can write 

. u P ^ : * * H , T h \ i i u * - u*i_ + 

+ R ^ - A* »_ 1 / 2 V ( U H 6 A H O i i ) . 

From this sad (3.4) i t follows 

'(4.8) n ^ - a y _ 1 / 2 * c a « * -«*«_ + IIA*- <V..1/25 

V ^ e A j j O i l ) 

(4-9) H <«H - A*»V c H--/2 »<*H - A* Hll_1/2 . 

New (4 .8) , (4 .9) together with triangle inequalities 

»**-*V- l /2 *"** - <V'-l/2 * M<*H "^V- l /2 

l|A*-A*HH0A »A* - <^\ + 1^ . -A*Hlt# i f Ji* & L2Oil) 

result in (4.6) end (4.7). 

Leama 4.4. It holds 

(4.10) | u* - u*l.2* cUaf llu* -TJI 2 + 
^ l ^a) n -

+ inf (DA*- ( «H1I /2 • <<f*B - A*,u* - g > I i -
AH 

Proof. Broa (4.5) we deduce 

II u* -u*,.2*!! 4 e Ilia* -u*ll|2 + \ Nu* -vhlll
 2I + 

+ (u*,Th-u*)_ - < A*,Th - u*> + <,fcH - A*,u*> + 

+ (f ,«*-Th)0 + <A*- <<^,g>--M*snu*-u*l2 + 

+ -JA* - A V - i / 2 * i Hu*-Th l l2+i HA*- <*1»f1/2 + 

+ (-Au* +u*,Th-u*). + Ou/dm,T h -u*> - <A*,Th - u*> • 

+ <i*^ - A*,u* -g> + ( f ,u* - t h ) 0 4 K { 6 » « * - u*!2 + 

+ |Hu*-T h l l_ l+e lA*-A* H »_ 2
/ 2 + 
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Taking e ̂  0 sufficiently small, we obtain (4.11) 

Theorem 4.1. Let u* denote the solution of CP) such 

that 

(j) u*cK(n.)AH2ttU; 

Ua) ** fgeH"^ (*i*i.n>» i"l,...,»t 

(jjj) the set of points from dfl , where u* changes 

from u*> g te u* « g is finite. 

Then 

(4.11) tlu* - u£l&6e(u*,g9 Jl*)(h + H) 

(4.12) \\%* - ̂ grLi/2^ c(«*»Si#* ) (h + H) 

(4.13) 8^*-^*Hl.1/24:c(tt*fgf3l*) H'
1/2(h • H). 

Proof. We set vQ * *»n
u* c ̂ h ^ » wn®r© rh u* d«»otes 

the piecewise linear Lagrange interpolate of u* • .From (j) 

we deduce (£31) 

(4.14) flu* - rnu*\ * 0(h). 

As u*£,H2ta)f du*/9n » A* s H1/2(mimit|.1)f i*-l f...,m. 

Let ^ B eA H (aH) be the orthogonal L -projection of &* 

om X H (9A) . It is readily seen that j^eAgC&fi-) and 

in addition 

(4.15) H3t*- P&I1/2 = ° (H)* 

Finally it remains to estimate the term < ZZ^ - A* fu* - g). 

To this end let 

3X10 »4x e9Xl 1 u*(x) - g(x)} 
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8 & t M x e d.0.1 uHx)>g(x)l . 

Now, i f « i a i + i c ^-&0i we have 

(4.16) f {AJLT - A * ) ( U * -g) ds » 0 . 

On the other hand, i f a^a^+, c 3-OL t̂ w e have t̂* * 0, con­

sequently xZg being the orthogonal projection i s equal 

to zero on *ia i+i* Therefore (4.16) holds again. 

Finally l e t the interior of a^i+i contain both the 

points, from ^-&0 and ^A-^- ^en 

I J (»* - g)(a* - ft) d. U I «* - gl l^ ( a . a .+ i ) 

V*+< 

X IV - ft, 1 «. A l»* - glU < v H 1 / 2 J 51* -
%*ui °° .- 1 + 1 

L ( a j a ^ ; 

As A* 6 H 1 / 2 ( a i a i + 1 ) , we have 

11 * * " ftl"?,. . > = 0 ( H 1 / 2 ) . 
- ( a i a i + l } 

By virtue of ( jj) we get 

«* - «eH»<*i«W-

Since u* - g s 0 in some point of fliai+-i >
 w e have 

• l u*-*»L (a.a. ) i 0 ( H ) ' 

Combining the two previous estimations, we obtain 

| J (u* - « H £ H -A*) dsi« 0(H
2). 

Now, using the fact that the number of segments, contain­

ing both the points of 9-Q-0, ®i*-t, is bounded above in­

dependently of H. Hence 
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<<<% -A* ,u* - g> = 0(H2). 

From this, (4.14) and (4.15), the estimation (4.11) fol­

lows. (4.12) and (4.13) are consequences of (4.11),(4.6) 

and (4.7). 

Remark 4.1. If the regularity assumptions on u are 

weaker, the rate of convergence is lower, of course. If 

there are no regularity assumptions on u, one can prove 

the convergence of (uh, A*R) to (u* ,X* ) in 3€(il) only, 

without the information on its rate. 

5. Numerical algorithm for solving (J^)* Our aim is 

to find the saddle-point of the Lagrangian 

tf<vh, <*-> • i / 2 < v V i - < f -Vo - < ( V v h - «> 

on the set Vh (XI) x A H (6\(l). To this end we use the Uzawa's 

algorithm. 

This algorithm appears as the standard gradient met­

hod of the optimization theory, applied to the dual prob­

lem. It is based on the construction of two sequences of 

elements 

u(n)€ Vh(jGL), ^ ( n )eA H(8il) 

(indices are omitted), defined in the following way: 

we start with any fjt}°'€ A ^ O i l ) (given arbitrari­

ly), we calculate u , then <a ,û  , etc 

ru, being known, u is defined as the element of 

Vh(H) satisfying 

(5.1) (u(n"l'1),v)1 = (f,v)0 4- <(u,
(n),v> Vv6Vh(£D. 
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Then we define 

(5.2) («.
(n+1) = ̂  (<a(n) - f n(u

( n ) - g)), 
H 

where p n > 0 is some positive constant aid P^ is the pro-
H 

jection of A Oil) on A H(9il). It is easy to see that 

(5.3) PA (f)|a m • max (0, *At))9 

^H {ai*i+l * 
where Jt^(t) denotes the mean value of f on •4*^+1 • 

The algorithm (5.1) is very effective from the practi­

cal point of view. The components of the vector on the right 

hand side of ( 5 . 1 ) , corresponding to nodal points, lying on 

8X1 , change only. This fact can be used for economic com­

putation. Let the numbering of nodes of 3°n be such that 

the vector cC of unknowns can be arranged as follows: 

0 \cC 

where <x/ denotes the unknowns, associated to nodes from 

il , cc/ from the boundary d£L 9 respectively. 

Then ( 5 . 1 ) can be written in the matrix form 

-ao 
where [A.1 is the stiffness matrix and 3", Hf" are defined im 

a similar way as (o&',<£")• Using the partial elimination, we 

obtain 

4. VI g " 

r» „*/ 0 A 3J \<x."l V g' 

with the above decomposition of the vector 06 , U-awa's al-
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gorithm can be applied to much smaller system of linear 

equations 

A w " *, ..." A3«st * g , 

where the number of unknowns is equal to a number of nodes 

ef CTft on dXL . This decomposition of the vector oc is 

not necessary, if we use a modification of the frontal so­

lution method for solving linear equations. 
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