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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
21,2 (1980)

MIXED VARIATIONAL FORMULATION OF UNILATERAL PROBLEMS
Jaroslav HASLINGER, Jan LOVISEK

Abstract: The mixed variational formulation of uni-
lateral boundary value problems is derived and its finite
element approximation is studied. Provided, the exact so-
lution is smooth enough, the rate of convergence for both,
the primal quantity as well as for associated Lagrange mnl—
t1p11er is obtained. Algorithm for effective computation
is proposed.

Key words: Finite element method, mixed variational
formulation.

Classification: 65N30

The application of finite element method for solving
unilateral boundary value problems has been discussed by
many authors (Glowinski-Lions-Tremilidres), (Brezzi-Hager-
Raviart), (Hlavéd¥ek), etc. Using the Ritz method, the ori-
ginal minimization problem over a convex set K({)) of func-
tions, satisfying unilateral boundary conditions, is trans-
formed into the minimization oroblem over the "finite ele-
ment approximation” of K(f), where the conditions on 20
are satisfied approximately only. Various methods of quad-
ratic programming can be used for numerical solution. In
this paper, another way is chosen. Proper dualization of

constrains leads to the problem of finding the'saddle-point
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of a certain Lagrangian. This formulation is used for the
numerical solution of the original unilateral problem by
finite element method. The error estimates for both compo-
nents. of the saddle-point are given. This appreach has two
advantages:
- the lagrange multiplier has obviously the physical mea-
ning, so that its approximation is useful; i
- using the Uzawa’s algorithms, it is possible to carry
out very economic calculations.
i.et us mention the similar approach can be used for
various unilateral problems, as the Signorini problem with
or 'without friction, the contact problems of elastic bodies,
_etc., see (Haslinger, Hlavélek), (NeZas, Jarulek, Haslinger).
Functional context and notations. Let fL be a domain
with Lipschitz boundary 8. . We shall use the Sobolev spa-
ce HX(Q) of functions, derivatives of which up to the order
k exist and are square integrable in L . The usual norm of
u in HX(Q) will be denoted by l(uﬂk. Hl/z(aﬂ.) denotes the
space of traces of functions, belonging to chﬂ). It is
the Hilbert space, equipped with the norm
||9ﬂ1/2 = virg Mok, .
ver! @)
We shall denote by 8"1/2(30) the aual space to H/2(30 )
and by | “-1 /2 the dual norm. The duality pairing petween
n'l/z(an) and nl/z(a.o.) will be denoted by (, > ,

1. Variational formulation of the, problem. we consi-
der the following model problem
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(1.1) -Au+u=27f in O
with the unilateral boundary conditions
(1.2) uzg, dw/9dn20, (u-g)3w/dn =0 on 340 ,

where Ju/3n denotes the normal derivative with respect
to the outward normal n, fe 12(n) and 3631/2(8.9.).

Let us introduce the convex set
(1.3) K(b.) = {veH (@) \ vzg a.e. on 0%
and the functional of potential energ\
(1.4) aw) =Wvid - 20e,m),,
where ( , )° denotes the scalar product in Lz(ﬂ.).
Then the problem

@) {find ue K(Q) such that
Jw£J(v) VveK(@®

represents the variational formulation of (1.1) and (1.2).

Theorem 1.1. There exists a unique solution of (¥)

and u can be characterized through the relations:

(1.5) ue k),
’ . { (u,v-u)ls (grad u,grad (v-u))°+ (u,v-u)'o?. (£,v-u)y

lVV ekK(Q).
Proof: see [ 2)].
Mixed formulation of (P). Iet

(1.6) ABQ) ={ueE/2(60) 1 (@720 Vverl/2(80),
vZoi,

It is easy to see that

(1.7) ve K(Qe=pveB (D) nd (w,v-g>20 Ve A(32).
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Let us define the following problem, the so called
mixed variational formulation of (J):
£ind (u*, A%) e BL(Q)x A (302), satisfying
(%) | (w¥v); -<A*,v) = (£,v),  YveEl(Q)
(A=2%u*d>z<A-2%g)> YAe ABD)-=
Theorem 1.2. There exists a unique solution of (P¥*)
and
(u¥, A*) = (u, du/9n),
where u is the solution of (®). (For the.proof see [2].)

Remark 1.1. (u,3u/3n) can be characterized equiva-
lently as the saddle-point of the Lagrangian £ (v,A) over
Hl(S).)xA(aﬂ)rwhere

(1.8) L(v,A) =J(v) = A,v-g) .

2, Finite element approximation of (P*). To propose

a consistent mixed finite element analysis, we shall consi-
der straight triangular elements only and therefore study
problems on polygonal domains. For simplicity we restrict
ourselves to plane polygonal domains.

Thus let Qc R2 be a polygonal bounded domain. We con-
sider a regular fémily of triangulations {Th} of ) , whe-
re h = max diam T, Te &) . Let {J;} be a family of parti-
tioms of 3 , independent (for the moment) on Th' i.e.

m
00 = a8, 87 = apyy.
We denote by Hi = length aj8, and H = max Hi' Next we
shall consider a regular family {735 in the following sen-

se;
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there exists a constant o(,>0 such that H/H; 4 <,

i=1l,...,m.
Let us define the spaces

V@) =fveC@)| v|peP(T) VTeTyui,

= 2
Ky80) = {uge1?(80)) “alaga,, € Pol®i%ie)s
i=1l,...,m},

where Pl(T), Po(aiai,,,l) denotes the space of all polynomi-
als of degree 1 in 2 variables and the constant functions
on a;8; .., respectively,
Let us define the following problem
find (u¥, X) eV, (Q) x Ap(8Q) such that

(g - N‘H,u}’l‘)z g -W“H,g) V(u.H/s An(am,

with
{@yrvp? = ,{.; o GV ds
Ay8Q) = {uyeAp(80) | @20 on 803

Vvhevh(m, (aHeAH(G_O.),

(?“h) is the approximation of (P¥).

3. Existence and uniqueness of the solution of (fP';l).

In what follows, we shall study the existence and the uni-

queness of the solution of (). Let us set _

(3.1)  H(h,H) ={vpe v, ) | {uy,v, > = {uy,87
Ve Agan)t.

Then X (h,H) is the finite-dimensional approximation of

K(Q). Next, let the pair (u;,é\.*ﬂ)evh(ﬁ)xl\“(an) be the
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solution of (’.?"‘h). Then uz is the unique solution of the
problem:

' (; find ue X (h,H) such that
(302) { % : *

(uf, v -uy)q = (£, v, -uf) Y v, & (n,H).

On the other hand, a pair (u;,?\."'n) EVh(ﬂ)xAn(aQ.) can be
characterized as the saddle-point of the Lagrangian & over
the set V, (2)< A (8Q), where & is defined by

(3.3) L(vy, @g) = Ivy) - <@g,V -85 -
It means, the first component of the saddle-point (uf¥,A%;)
is uniquely determined. In order to prove the uniqueness of

3'; we need the following result.

Lemma 3.1. Let h/H be sufficiently small. Then

4 t“‘vh>

> anl/2
’ﬁy&\ “'n\ll' RE né"“:ﬁ(aﬂ)

hold for any “e 7\3(0.0.) with a positive constant p=o.
. Proof. As

n n = %E)
S VR L i
we obtain (see [8])

—_
(3.5) hely =<ﬁ‘-’;‘-’l; 05l ,

/ .
where Ve H1(Q) is the unique solution of the boundary value

problem:
~-Av+v=0 inQ

8v/3n = & on 30 .



Let we Ap(60). Men we BV2*(50) for Ve e <0,1)
and the following regularity holds

(3.6) ¥y, fele) Mh g pye -

Furthermere we write '
{,my  {u, %)

6 o, L

(Q . h'"l '
where ?h is the Galerkin approximation of ¥ on Vh(D.). Ap-
plying the triangle inequality we obtain

IFply =%, - F+ 90,2050 - 15, - ¥4 .
Together with (3.7) we obtain
{@yvy)

(3.8) %1, < su “-—T-E + 5, - ¥l -

1 ‘bfm‘ Vol h 1
On the other hand, using the error estimates of classical
finite elements, (3.6) as well as the inverse hypothesis
between H/2(20 ) and B 1/2*¢(50) for “e ](H(a.a), we
obtain '
- - €= (3 £
ll,vh-vllléc h llvul+béc(e) h ﬂéo‘_l/2+aéc(hlﬁ) h«,l -1/2°
From this, (3.8) and (3.5), the inequality (3.4) holds. Im
order to prove the second inequality in (3.4), we take inte
account the inverse hypothesis between cham and 8'1/ 2(8.0.)
for © sKB(an). We cen write

tehge e BV20ul,,,  YeeRgoa.
Hence we obtain the second inoqual'ity in (3.4).

Theorem 3.1. There exists a unique solution
(uf, ) € ¥, Q) < Az (BQ) of ().
Proof. We can apply the abstract result from [11,

- 237 -



4. Error estimates. Now, we shall study the rate of

convergence of “’1‘1 to u* and .'/\,*H to A*, provided the ex-
act solution u of () is smooth enough. First, we derive
the abstract error estimates. To this end, we give another,

equivalent form of (P*). Let
%@ = B @=E2(50)
be the Hilbert space with ;.he norm
(4.1) wvn= (el + Nl 2502, v = v, w e R Q.
Let

~

(4.2)  AWU,V) = (u,v)y = (A,v2 +{,u), U= (u,A)

be a continuous, bilinear form on F()»< ¥ () and
K@ =1l =« A () be a non-empty closed comvex subset
of ¥(). We denote by M a positive constant such that

AU, MleMiliull wvu YU,Ve (D).
On the other hand we see that

(4.3) AW,U) = (u,u)y VU e 3.

Now we consider the following variational problem
%) { find U* = (u¥, A*) € IK(Q) such that

AUXY - U0 2 F(V - U9 YVe K@),
where F(V) = (£,v), + {87 .

Immediately we obtain
Lemma 4.1. The problem (B) is equivalent to (5.

Let us set
K(h,H) = V(@)= N y(3Q).
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Then K(h,H) is the internal approximation of K (). The

approximation of (%) is the following:
£ind UF = (u¥, Ay) € K(h,H) such that
(4.4) { B
* « -
AWMLY, - 0 2&(V, - UMV Ve Kh,H).

Again, it is easy to see that (4.4) is equivalent to (Cf’h* ).
Lemma 4.2. It holds:
(4.5)  Nu* - ubhd = (ux - u,ut —uf)) £LAUT - UE,UR- V)4
+ AURV, - U¥) + F(@U* - )} VYV, ek(h,H).
Proof. We deduce from the relation (4.3)

(u* - u}";‘,u* -uﬁ)l = A (U* - Uﬁ‘,U* - U}’;) =

A U* Uk, U* -v,) + AUV, -U*) + A(U*,U* -0 +

A UE,UF -V, ) &£ A(U* -UXU* =V, ) + A (U%,V, -UF) +

+

+

FUF- V) + F (u*- U;l‘).

Lemma 4.3. It holds:
(4.6) A - AGH_, pée Llu* - uXll, + ijxti; NAX - gl o

-1/2
(4.7 WA= Wl se {MA¥- @+ H DA - gl ot
s B2 % - A Y i Afe P00,
Proof. Using the definition of (IP ) we obtain
(g = Wow? = $ygm? = (Afgm) = <@gym) +
+ (f,v), - (1‘1!’1‘,vh)1 = <(“H’vh) + (u*-ui,f,vh)l - <9L",vh)é-

£c fu* -uh“l + "HH - M }]lvh 1°
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Now we can write
oup B = M
y@ "’n“l

+ Mg - WU, Vg ey,

Llu* - ul +

From this and (3.4) it follows
4.8) Ny - A, o 2e ha® ol + 01AF - wgll ) 8
Vg eApe0)
(4.9) Ny - Hghyeem™? Nay - 2% ),
Now (4.8),(4.9) together with triangle inequalities
UA* - Wl jp “UW* - gl yjp + Nty - WgH, 1,
N —* gl & WA - @b e Dy - A% ie a¥ e 12(80)
result in (4.6) and (4.7).
Leuma 4.4. It holds
(4100 | - o4 chine  lu* w2 +
+ iirH §ha" - @gl2, + Cuy - A o - g>3E.
Proef. From (4.5) we deduce
I u* - A"‘llisu feu* g2 + L wu* v, n27 +
+ (W, vpeu¥)) - (A, v - wt) s L - AP .
+ (£,0% —vy) + (Ao g2 €M {elut ad)? o
sl -2, e 3 Nur - w2 e LAt s @l .
+ (-Auw* W, v -uh) + (3w n,vp-u*) - (A, - u¥)+
+ (g,ﬂ -2*u* -g)+ (£,u* “VplosMiehu* - n;li +
+ % Hu* -vhngl + el - ‘”n'-i/a +
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+»% WA - (""B“-IZL/Z + (@:n - A% Ju¥ - g)
Taking € > O sufficiently small, we obtain (4.11)

Theorem 4.1. Let u* denote the solution of (P) such
‘that

(§) wreKO)nE2WQ);

(33) w* ,geEl (agai,1), i=1,...,m,

(33) the set of points from 3SL , where u¥ changes
from u*> g te u* = g is finite.
Then

(4.11) Nu* - n;ﬂmhc(u*,g,.h")(h + H)
(4.22) A% - A'ph) o4 clu*,g,A%) (b + H)
(4.13) A=A o Le(u,g, A%) B2 + B),

Proof. We set v, = r,u*€V, ({), where rju* denotes
the piecewise limear lLagrange imterpolate of u* . From (j)
we deduce ([3])

(4.14) W u* - rhu"\\l = 0(h).

As wte Bz(n), du*/0n = N*e .Hl/z(aiaiﬂ), i=l,...,m.
Let pasﬁn(an) be the orthogonal Lz-projection of AF

on KB(Q.Q). It is refdily seen that E‘LHGAH(QIL) and
in addition

(4.15) Na* - Gl ,, = o).

Pinally it remains to estimate the term (i - A* ,u* - g).
To this end let :

a0, = {x ¢ 30 | u¥(x) = g(x)}
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DL, ={xe 80l uvtx)>gx)t.

Now, if @;8;,7C a&lo, we have

(4.16) S (@ -A*)(u* -g) ds =0 .
a,"‘a’»{w4 ¢n

On the other hand, if a.a; ,c 3.0,, we have A* =0, con-
sequently ZZH being the orthogonal projection is equal
to zero on a;8;,7. Therefore (4.16) holds again.

Finally let the interior of a58; .44 contain both the
points, from 3-0.0 and 9£,. Then

Zi *
II (w* - g)(A* - &) dsl &)l w -g“ o (8185,7)
A

o - @glas £llu* - glly, (a (8501) gl/2 o> .
4 1>

- Gyl

12 (aiai_,,l) *
As M e Bl/z(alal+l), we have

I a* - agl 5 = o@l/?)
L%(a; °1+1) *

By virtue of (jj) we get
- geH (al J_.'_1)

* o
Since u g = 0 in some point of 8;8;,9, We have

= O(H).

ll“""‘3'1. (a )

8i8i+1
Combining the two previous estimations, we obtain
L[ @*- @)@y -a%) asl= o?),
q,.a,o
v
Now, using the fact that the number of segments, contain-

ing both the points of 00 , aﬂ-t, is bounded above in-

dependently of H. Hence
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@y =M u* - g) = o?),

From this, (4.14) and (4.15), the estimation (4.11) fol-
lows. (4.12) and (4.13) are consequences of (4.11),(4.6)
and (4-7)0

Remark 4.1. If the regularity assumptions on u are
weaker, the rate of convergence is lower, of course, If
there are no regularity assumptions on u, one can prove
the convergence of (uy, A*y) to (u* ,A%) in Q) only,

without the information on its rate.

5. Numerical algorithm for solving (P ). Our aim is
to find the saddle-point of the Lagrangian

LV, @) = 1720y ,vp ), = (£,7) ) = {@yyvy, - g’

on the set Vh(.Q)x J\.H(&O.). To this end we use the Uzawa’s
algorithm.

This algorithm appears as the standard gradient met-
hod of the optimization theory, applied to the dual prob-
lem., It is based on the construction of two sequences of

elements

vWev @, «Mery@n)

(indices are omitted), defined in the following way:
we start with any c.(.(o)e AH(an) (given arbitrari-
ly), we calculate u(°), then y(l),u(l), etc.
c&(n) being known, u(n+1) is defined as the elememnt of
V,, Q) satisfying

(5.1) (u(n"'l),v)l = (f,v), + <(w(n),v> VveV, Q.

- 243 -



Then we define

(n+l) _

(5.2) @ = &H(C‘(n) - Son(u(n)

- g)),

where S°n>° is some positive constant am Py is the pro-
H

jection of A(30Q) on Ag(8Q). It is easy to see that

(5.3) PA'H(f)‘a = max (O,Jl’i(f)).

18541

where in(f) denotey the mean value of f on 8;8; 1.

The algorithm (5.1) is very effective from the practi-
cal péint of view. The components of the vector on the right
hand side of (5.1), corresponding to nodal points, lying on
9£) , change only. This fact can be used for economic com-
putation. Let the numbering of nodes of T be such that

the vector o¢ of unknowns can be arrarged as follows:

“'I
“=(2)
wll
where o’ denotes the unknowns, associated to nodes from
QO , « from the boundary 3L , respectively.

Then (5.1) can be written in the matrix form

‘ o’ 3’
[Al (“”) = (3,,,)
where [A] is the stiffness matrix and 3, 3* are defined in
a similar way as (c¢’,o”). Using the partial eliminationm, we
obtain )
’ ’
4, M« 4
~

. u
Q Aser, I 4

with the above decomposition of the vector o¢ ., Uzawa’s al-
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gorithm can be applied to much smaller system of linear

equations

-A3¢"=8”,

where the number of unknowns is equal to a number of nodes

of J°, on d0 . This decomposition of the vector «< is

not necessary, if we use a modification of the frontal so-

lution method for solving linear equltionp.

8
(2)
(3
14
(5

[6]

7

[8]
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