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COUNTEREXAMPLE TO THE REGULARITY OF WEAK SOLUTION
. OF ELLIPTIC SYSTEMS
J. NECAS, O. JOHN, J. STARA

Abstract: In the paper there will be given an examp-
le of nonlinear elliptic system

(o d N
(1) ;?abl(ai(grad u)) =0, r=1,...,mon Q=
= {xeR), Ix|<1}, u = u; on 30,
having analytic coefficients and unique solution with dis-
continuous but bounded first derivatives even in dimensions
n = 3,4, (For n = 5 an example of considered type was con-
structed by J. NeZas (see [10]).

In the introduction we give a brief survey of the pro-
blem of regularity and counterexamples. In Chapter 1 there
will be studied the counterexample mentioned above. In Chap-
ter12 we add seme calculations omitted in Chapter 1 in de-
tails.

Key words: Regularity, elliptic systems
Classification: 35J60, 35D10

Introduction. The problem of regularity (or analyti-
city) of weak solutions of nonlinear elliptic systems can
be traced to the beginning of this century - to the 19. D.
Hilbert ‘s problem and can be expressed by the question:

Supposing ali. and u_ in (1) to be analytic, is the weak so-

°
lution u also analytic function? The history of this pro-

blem is described in several books and papers (see [5],0(6],
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[4]), hence we will mention here only some crucial poinmts.
Very soom - im 1939 - the problem was solved positively for
systems of equations of second order in plane by Ch.B. Mor-
rey. Very important further step was made by E.De Giorgi
and J. Nash in 1957. They proved regularity of solutiom of
one equation of secomd order in the space R, of arbitrarily
high dimension n. Another positive result was proved by one
of the authors (J. Nedas - in 1967) for equationas of .arbit-
rarily high order in plane. Almost immediately there appear-
ed counterexamples (E.De Giorgi - 1968, E. Giusti, M. Miran~
da - 1968), showing that the situatiom of one equation of
second order in 1‘_‘ or of systems of arbitrary order in plane
is in some sense exceptional and that there exist systems
with analytic coefficients whese 8olutions are not even con-
tinuous (x). Unfortunately, these counterexamples have some
disadvantages:

(i) They have analytic coefficients, they are natural-
ly defined on Sobolev spaces l%, but the corresponding ope-
rators are not differentiable on this space.

(ii) For low dimensioms (which play the most important
role in physies) it is unclear, whether the irregular solu-
tion is unique or if, perhaps, there could exist another
regular solution of system in question (xx).

x) are bounded and have unbounded gradients.

xx) i.e. the typical quasilinear system
] %}. Di(Ai‘j(u) Du) =0 forr =1,...,n.
WL s 8 ’ ’
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In 1977 J. Nelas constructed a counterexample without these
disadvantages and working in all dimensioms nZ5, but the

problem in n = 3,4 still remained unsolved. The aim of this
paper is to give a counterexample with unique irregular so-

lution in an with dimensions n=3.

Chapter 1
1.1, Notation. Let Q= -fxePh,lxl<1}, u:l — R 2,

i§°i,5=1"
Let us denote

au
DX u, —-——'1 , d” the Cronecker symbol
ij ’
ox,
~mv . 2 av .
Vju = ){(?4 Dluji, an“ = 5’§4(Vj‘1)2, (Vu’ Vv) =

= 51§4 Vju Vjv,
for a fixed real number .o let
Vigcu = Dkui.j +y (Jy, 5 Vin + d'lk 50+ d:jk viu),
mn

k\ﬁz (du, ov) = , .2 V. A

2,
gul® = Vi igde1 Vip® VixT

1.2, System and its solution. ILet 79"y A,» be real num-
bers. We shall consider the system
(2) k4D4DuJ+3~(d" Vit + Iy Djukk)+
+ AV u Vju 7, [1+ i Vuj?1-1
+ dy Vjuly(4s3 3 (me2)) + 3 32 I0uP[1+ JyuiP]) o

+ P ivul*a+ 197ul?)"23 = o,

n

We shall prove that the function u = {u, :%.
1J l,J—l
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= -1 _1,
(3) “ij(x) —xixj!xl -nlxicf“i‘i
is a weak solution of the Dirichlet boundary problem for the

system (2),i.e.for every infinitely differentiable functiom
¢ with compact support in Ll the equality

2.~
(4) <Au,@>= j;i[( Vig® * AV Ve vuils W Vual©l l)Vijkg? +
+ »ival*1 + V7?12 (vu, ve )i= 0
holds, if the numbers A, 7,y satisfy the following condi-
tions

(5) A=I[1+(n-H%m-H"2 (F-7),

© »=-m-HD7Br2mD@-3 +gm 430+ 2) +
1 1,242
+1+gdx[1+ (n-2)T% .
1.3. Unicity of the solution. Unicity of the solutiom
is an immediate consequence of the following inequality

(1) (DAtw)g,¢> 2z Clgh?
[w})™
holding for a positive coonstant C and a class of test func-
tions x and which implies that the operator A is strongly
monotone. In fact, as it is proved in 2.3,we establish an
algebraic condition of monotonicity, i.e. the integrand of

(DA(u)g,®? is greater than
a-3 L uggr2,
We have
{DA(u)@, ) = fn'_UIJCyIIZ +A £V u Vjquq +Vu V9 Vyu+
+9; 9 VuViulll + 4 7ul®17h + Qu Ve Vin (-2(Tw, 09 )
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[1+ w13 vy 5

+ 1vul® 17eiZi + ivui?)? -

g+v{i4 h7ali?( Vu,Vg 2+

- 4 1 7ul*( Vu, Vg 2[1 + ivual?17333,

Estimating the second term by HBlder inequality we get
2
3A 2
(8) (M(u)@,q);];l(l-z-_p—) ﬂd‘c_ylv.

Taking in consideration the symmetry of the solution and of
the system in the indices i, Jj, we can choose the test func-
tion @ symmetric in i, j, too. Thus it suffices to consider
the test functions ¢ with only m = %- n (n + 1) different

components. For such functions @ we get (supposing that o<
<0)

(9) gl "2 z(1 -4—_'—3—7-?%-2-7) "9"2 2 .

S

Summarizing the inequalities (8) and (9) we obtain (7) with

a constant C which is positive if

1 - wﬁ‘%{mpo, which implies the inequality

-2
P<gv3i
and if
Az
1- 3% >o.

The second condition implies that 7" € (7%, %) where (for
n=3)

¥y =2 272 V32

is approximately M =" 0,39, 7o =~ 0,13. Analogous nume-

rical results show that the counterexample works in dimen-
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sions » = 4,5. For higher dimensions the functiem

2

is a decreasing function of variable n. It proves that for
all n&3 we can choose 7" so that the function u given by
(3) is the unique solution of the system (2) with analytie
coefficients and linear growth. Moreover, u is the solution
of the Dirichle t boundary problem with analytic boundary

condition q,.

Chapter 2
2.1. Deduction of A(y) and »(3). The system (4) cam

be written in the form
10)  [48;5 V59 + ¥ Vi@tax =0, @ =gy D-

By means of the Gauss formula we deduce from (10) the system
in a strong form
J =
(11) Dk&ijk + 4D (l}m + i’kik + Qikk) + D"‘P'i =0,
(i’j = l,o.o’n),
remembering that
Bij = Vipw + A1+ i Va3l Viu Vyu Vi,

(12) '
Y, =0+ 1val?12 Vel v

We want to choose the parameters »,A,7y in such a way that

the function

x 1
(13) w 5(x) = i - d‘ijlxl, (i,§ = 1,0..,m)

Ix
would be the solution of (11).
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After tedious but net difficult calculations we get
the following expressions for ¢ and ¥ (see (12)) im case
of function u given by (13):

x
q’ijk = |x1™a( d'ikxj + dzikxi) +b d’ijxk] +c x—::'—j;k—

]
x|
(14) 122 %
qi = (n -‘—];)5[1 + (-3 1° =
where

(15) a=1+'x(n-%),b=-%+7’(n-%),
¢ =All+ m - U7l - 3 -1

Substituting (14) and (15) into (11) and differentiat-
ing we put the coefficients of oi":.m-lxl-1 and xilex\'3 equal

zero. Thus we obtain
2a + (n-1)b +»[1 + (n - %)23'2 (n -0+

+9L2(2 + n)a + (2 + n)b + 3¢l =0,
(16) - 1y29-2 1,5
-2a + (n-1)e =»[1 + (n - £)]7° (n - 3)7 -
-7[2(2 + n)a + (2 + n)b + 3¢] = O,
From here it follows immediately that

an =1+ m-5% -2 (S -5)

(18) =~ (n-~- %)-5 {33’2(n+1)(n - %) +3P(n2 + 3n + 2) +
+ @+ DIxML+ (a-D2%

2.2. Equivalent norms. We are to formulate sufficient
conditions on parameter 7 under which there exists a con-

stant c2,> 0 such that

(19) a2z ¢y hDul?
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where ilDul? 'ifk(nhuij)z’ I Sub? '{,ih( Vijk“)z'
It is

I Sl =,§hEDl\xlj +F(dy 5 Vx® * VJu + jk Viu)]ag
2 (supposing that o < 0) 2 iDal? + 2'3'&%' IDknﬁI 1V, ul+
+ [4y+39%@ +2)) 1ui? 2 Iul® + 290 VE IDul IVull +
+[4y+37%m+2)1 Vel = [4p+ 3¢2@ + 2)] {IVul +
+ (pVa IDui )[4y + 392 + 2217142 +
+ (1= (pn)[4 + 3y @217 (Dul,

It is easy to see that for

(20) I
it takes place (19) with ep=1- (yn)[4 + 31'(n+2)J-1> o.

2.3. Monmotonicity condition. Let us suppose that > 0,
2 > 0. (From (17) it follows that A > O is implied by the
condition (20),) Putting

(21) Vo= Vua + | wu"’)’}r
and denoting by I(p) the integrand of {(DA(u) ®,g)> we have
(22) 1(g) = Ndgl? +
+A{LVu Tju v,9 + Vju V9 Tyo + Vie VW -
- 2(Ty, Vo) Vju Vu Vud 05,91 + i 1TuP(Tw,vg)%
+ UTRI* Uvgn? - 4-4TuI4 (T, ve)3.

The expression standing by A in figure brackets can be esti-~
mated by means of HSlder inequality as follows:
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LV T8 g+ V500 6§35, (VT e
+...]23% = iSgn 43 WTul* 1vgp a2 + 2 1Tl
(%, Vg)2[3 - 6 ITul’ + 2 NV’GM]}% 4 (using the
fact that 0 & Pull< 1) & Hogl43 LNTul* 1Vgi?
+ 2 | TR ( Ty, vgrda - 171t
Using the estimate in (22) and putting
Q= 1Tult §vgi2 + 2 TN T, Tg)%Q - kTul?)

we obtain

(23) I(g) 2 Idg §2 - V3aQldgh + »a? Z Idp i3 -
2
Let now
(24) 4y >32

2 o oF
and let (20) hold. Then I(g)Z ¢ i Dgli with ¢j. > O and

80 the monotonicity of the operator A defined by (4) takes

place.
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