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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
21, 1 (1980)

ON VECTOR-TOPOLOGICAL PROPERTIES
OF ZERO-NEIGHBOURHOODS OF TOPOLOGICAL
VECTOR SPACES
Thomas RIEDRICH

Abstract: The paper gives a summary of topological
(vector-topological) properties of neighbourhoods of zero
(nz) of a real, separated topological vector space (tvs).
Among other things there is shown that every nz in the
space Lo[O,l] of (classes) of real-valued measurable func-

tions (with the topology of the convergence in measure) con-
tains a nz W such that each two points in LOL'O,lJ \¥ can be

Jjoined by a five-gon in L, [0,1I\W, This is a partial an-
swer to a question proposed by V. Klee [5].
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Classification: 46A15, 28A 20, 46E30

1. Introduction. This paper gives a summary of to-
pological resp. vector-topological properties of neighbour-
hoods of zero (nz) of a (real, separated) topological vec-
tor space (tvs) which are important in connection with non-
linear operational equations (see [12)). These properties
concern homeomorphisms, retraction properties, boundedness
and compactness, product- and trace-properties and the con-
nectedness of the complementary set of a neighbourhood of
zero - with a new result about the space S(0,11 (= L [0,1})
of all real (Lebesgue-) measurable functions on [0,1] with
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the topology corresponding to the convergence in measure.
No assumption is made about the convexity of the neighbour-
hoods considered. If (E,r) is a tvs and USE a nz of E,
then pU(.) denotes the Minkowski-functional of U, defined
by py(x) = inf(t> Olt'lst) (x ¢E). Some of the results

have been announced in [13].

2, Basic definitions. If (E,r) is a tvs and Ug E is
a nz then U is called radially bounded, if each line
through zero (denoted by O ) intersects U in a relatively
compact set. If there is at least one radially bounded nz,
then (E,z) is called a locally radially bounded space (this
notion was introduced by M. Landsberg [81). U is called
shrinkable, if xeU and 04t <1 implies that the element
tx belongs to int U (interior of U). This notion was intro-
duced by R.T. Ives (see [ 2]) and especially investigated by
V. Klee [3] . Every tvs pessesses a basis of shrinkable
nz’ 8 (V. Klee [ 3]). The map

(pg(x) ™ x (xe ENU)

r:E—>E, r,(x) ={
v v x (xeU)

is called the radial retraction with respect to U, and we
call the map ©(;:E —> E, defined ly the equation GU(x) =
= (1 + pU(x))'lx (x € E) the bounding transformation for U,
If V is another nz of E, then we call the map ?U,V:E—’ E,

Py () (py(x)) " 2x (py(x) 4 0)
Py, vix) = { v

(pv(x) = 0)
the associated radial map of U and V.
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3. Homeomorphisms; retractions

Theorem 1. (V. Klee [3).) If (E,z) is a tve and U is
an open, shrinkable nz, then G’U is a homeomorphism from B
onto U,

Theorem 2. (V. Klee [3].) If (E,%) is a tvs and U is
a closed, shrinkable nz, then ry is a retraction from E on-
to U,

Theorem 3. Let (E,r) be a locally radially bounded tvs
and U and V two closed, shrinkable radially bounded nz. If
there are real numbers o > 0, (3> O with UE ooV and V e
£ AU (U and V absorb each other), then ng’VIU is a homeo-
morphism from U onto V.

Proof. Let U, Vand o> 0, 3> 0 as in the assumption
be given. The inclusions US «V and VE£R U imply the inequa-
lities py(x)£ wpy(x) and py(x) £ B py(x) for all x¢ E res-
pectively. From the shrinkability of U and V follows the
continuity of py(.) and py(.) (see [3]). The radial bounded-
ness of U and of V implies that py(x)#+0, py(x)+0 for x#o.
We denote the map TU,VIU by ¢ . Then, by elementary cal-
culations, ¢ is injective and @(U) = V; the inverse map-
ping is given by g»‘l(z) = g’v’u(zi (ze VN{0}) and 97-1(0)=
= 0. From the above mentioned properties of pu(.), pv(.) fol-
lows easily the continuity of ¢ for xc U\{o}. To show the
continuity of <4 in the point x = o, let an arbitrary nz W
be given. Without loss of generality, W is closed and shrink-

able. Then, for xe% W we have for x¥0

Py(@(x)) = py(x) (py(x)) Ipy(x) & Bpy(x) = pylpx) £1

i.e. @(x)ec W. The continuity of ?-l follows analogously.
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A counterexample, if the inclusion V& [SU does not hold
for any A > O is given by the space E = C[0,1] of all re-
al-valued continuous functions on the closed interval [0,1]
with the usual sup-norm topology, defined by x|l =

= sup Ix(t)}, if choose the nz’'s
08§ ¢ XV, if we

UsgxeBlixl£1% ana V = sxe Bl [ (x(1)? ar£1t,

Then, the radial map %y vlU is no homeomorphism, because
’
its inverse mapping is discontinuous at x = o (consider a

sequence X € E with

(=)

1 4 1
Pulcg) = lxl = = and pylxy) = L[ (x (tn2 at?? = - ;

=]

n=1,2,...). Let us additionally mention that U and V are
in fact homeomorphic (but not under the radial map), becau-
s€é they are closed convex bodies in an infinite dimension-

al Banach space (see [61).

4. Boundedness and compactness

Theorem 4. Let (E,r) be a locally radially bounded
tvs and U a closed, radially bounded nz. If the boundary
QU is bounded (in the vector topological sense), then U is
also bounded.

Proof. From the radially boundedness of U we get the
inclusion U&[0,1] @U. If 98U is bounded, then [0,1] AU is
also bounded. It follows that U is bounded.

Theorem 5. Let (E,T) be a finite-dimensional tvs.

Then any closed, radially bounded and starshaped nz is com-

pact.
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For a proaf see {101.

Theorem 6. Let (E,7r) be an infinite-dimensional tvs
amd U E a closed nz. Then 92U is not compact.

Proof. For any nonempty set AS E we define
K(A) = §yeBly = tx; xe A, tZ03% = [0,0)A

and denote K({x%) simply by K(x). Now we assume that 3U is
compact. Then the set K(x) ndU is compact for all x%o
from E. From a theorem about the properties of K(.) it fol-
lows that K(BU) is locally compact (see [11], Satz 4). The-
refore is K(dU)+ E and there is an X %0 from E with
K(x )n K(8U) = {0} (otherwise we would have K(x)g K(aU) for
every x+o0, this would imply K(3U) = E which is excluded).
There is a o"> O with tx eU for 0£t £ J . Therefore is
foo)g int U, otherwise we would have K(xo)nK(aU)*{o}.
For every yc 9U we set t(y) = sup {t>0lty ¢ 8Uf. From the
compactness of K(y) n 3U we have t(y)<+o (ye 8U). In ad-
dition we have the relations t(y)ye 3U and ty4¢ U (t>t(y)).
U is closed and therefore the relation augx(-xo) does not
hold. It follows the existence of an y, € 8U with y ¢ 3U
and y°¢ K(—xo). We denote the linear subspace of E spanned
by X, and Yo by Eo and define Uo =Un E,. It is easy to show
that the relations K(xo)$ int U ; SOUOE 3U; tly,ly, € 3,u,
hold , here is J‘.n'(,OUo resp. 80U° the interior and the boun-
dary of Uo with respect to the space Eo. Since dim Eo =2,
there is a compact nz of Ej with 8 U EW,, for which E\ W -
is connected. From t>t(y,) follows the relation tyo¢ U, and
we have K(x )€ int U . Therefore follow the relations

(EO\ Wo)n (Eo\ U°)4=¢ and (Eo\ wo)n intoU°=i-—¢ ,
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and in addition follows from Bouog W, the equality
(BN W )nint U )L ((B)\ W) N (BN U,))) =EBN W,

which contradicts to the connectedness of Eo\ 'o‘

5. Products and traces

Theorem 7. ILet (El,'t’l) and (E,,7,) be two tvs; 2%
resp. U2 shrinkable nz in E, resp. E,. Then U1>< uz is a
shrinkable nz of Elx E2'

Theorem 8. Iet (E,%) be a tvs and E, a closed linear
subspace of E; U a closed shrinkable nz. Then U0 = UnEo
is a closed shrinkable nz of Eo (with the induced topolo-
&y) and we have

8,U, =8UNE  and P“o = pyl B,

( ©.: boundary in Eo).-

()
The (simple) proofs of th. 7 and th. 8 are omitted.

6. Connectedness properties

We consider a question, proposed by V. Klee in [5], a-
bout the connectedness properties of the complement of nz ‘s
in general tvs.

From the results of Klee follows the Proposition 1. (see
[51.

Proposition 1. (see [51, Theorem A). Let (E,v) be a
tvs with dim EZ2. Then every neighbourhood U of zero con-
tains a nz W such that ENW is connected. Indeed, W can be
chosen so that each pair of points of ENVW is joined by an
8-gon in E\ W. (Here by an n-gon is meant an arc composed
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of n or fewer line segments.)

Klee directs the attention to the fact that if (E,7)
is locally convex, the 8-gons of Proposition 1 are repla-
ced by 2-gons if W is closed and 3-gons if W is open. When
E is locally bounded, W may be chosen so as to be bounded
and starshaped, whence the 8-gons are replaced by 3-gons
if W is closed and 4-gons if W is open. And (one of his
questions) he asks: "Can the number 8 in Theorem A (=> Pro-
position 1) be reduced for general topological linear spa-
ces?" (see [51]).

In this direction we prove the following theorem about the
space S(0,1) that is neither locally convex nor radially

bounded.

Theorem 9. Let (E,x) be the tvs of all real-valued
(Lebesgue-) measurable functions (more exactly: classes of
functions) on the closed unit interval [0,1] with the topo-
logy corresponding to the convergence in measure, i.e. E =
= 810,11 (= L [0,11). Every nz of S[0,1] contains a nz W
such that each pair of points of S[0,1]\ W is joined by a
S5-gon in E\W,

Proof. The topology in S[0,1] is given by the metric

{ 1
att,e) = J A& av (£,ge510,1) = [ gUe(e) -

- g(t)]) at

t
1+t

with the function ¢ :[0,00)—> [0,1) given by q(t) =

(O£ t<+00 ). The function ¢ is strictly monotone increas-
*

ing and concave and _tlimw @(t) = 1. Let U be an arbitrary
-

nz of S[0,1]. Then U contains all balls W(J) =
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= 4fe S[0,11 ] A(£,0)< I} for 0« & d,. We consider at
first the following case

1) Let £,ge SLO,10\ W) (0<d % J) be so that
£(t)g(t)Z0) (a.e. in[0,1]).

Then also the line segment

[(£,8] ={nesS[0,1)| h =Af + (1 -A)g, 0£4 £ 1 is con-

tained in the complement S[0,11N\ W(d). Indeed we have un-

der these assumptions the equality

1
dAf + (1 - A)g,0) =J; glaf(t) + (1 -A)glt)))at =

1
= jo @AIL(+ (1 -2)lg(t))dt (0& A £1)
and by the concavity of ¢ (.) the inequality

1 1
_/;qu(t)u 1 -)lgt)at 2 4 [ giet)at +

1
+ @ -2) flgat)Dat =2a(f,0) + (1 -2)d(g,0)

(0L A€ 1).
Since d(f,0) Z J' ; d(g,0) 2 o it follows that
Adf + (1 -24)g,0) 2 (0 £ A £ 1) which proves our assertion.

II) Now choose o with 0<d'< min(%,d;) and let two arbit-
rary chosen elements £ and g of (S[0,11)\ W(J") be given,
We define the functions (elements of S[0,1]) ? and & by the
equations

?(t) - {f(t) t with £(t)+0 (Oétél).

1 if £(t) =0

(2 is defined analogously).
We have the relation £(t)-£(t)20 (té€ [0,1]) (resp.
B(t)g(t)Z O for all t €[0,11). In addition £e (SL0,11)\ W,
because, with A ={te[0,11| £(t)+07%,
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4
at,o0) = fo gl2whatz [ gemat = ag,0) = I

Also £ € (S[0,11)\ W),
Now we define the functions (elements of S[0,1]) ?
A

and @ by the equations

A 1
N fv) (oeted
Fv) = 1
0 (E<tél)
and
0 (0&t&d)
3t ={ ?

B(v) (F<tel).

We consider the sequences (n?) ana (né) (n =1,2,...). For
all n =1,2,... we have the relations n?(t)f(t);o and
n3(t)2(t)2 0 (tef0,11) and for all n = 1,2,... and all
m=1,2,... the relation (nf(t))(mB(t))Z0 (t&[0,11). The
sequences of functions (cy(n!?(t)l )) resp. (q(m\é(t)l))

(n,m = 1,2,...) converge monotonely increasing to 1 on
[0,%] and O on (%-,1] resp. O on [0,%] and 1 on (%,1’] becau-
se |?(t)|>0 (O.‘-—ité%) resp. ié(t)|>0 (%<té1).

From the Levi’s theorem it follows that

A ~
lim d(nf,o0) = % and 1lim d(mg8,0) = %.
m~ry 00 m —¥ c0

Therefore, we have (see the choice of o)

d(no?,o)éd‘ and d(molé,o);o‘v

for sufficiently great n, m,

From these results amd the considerations under case
I) it follows that the following pairs of elements of
(S[0,11)\ W(0")) are joinable in this set (S[0,11)\ W(J)) by
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the joining line aégmént. The union of these line segments

gives the desired 5-gon:

A A A I d ~
(£,#lulf,n fluln f,n gluing,8)uiE,e]

which joins f and g in the complement of W(d).

[1

f2]

[3]

[ 4]

5]

[6]

[7

(8]

[9]

[10]
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