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ATTRACTORS AND A FIXED POINT TElEOREM IN LOCALLY CONVEX
. SPAC!
HWEI-ME!I KO', KOK-KEONG TAN*

Abstract: Let X be & Hausdorff locally convex space
and G be a non-empty complete convex subset of X, and let
£:G—> G be continuous., We prove that if (i) {f :n=1,2,...}
is equicontinuous and (ii) there exists MS G which is an at-
tractor for compact sets under f, then f has a fixed point.

Key words and phrases: Locally convex space, equi-con-
tinuous, attractor gor compact sets under f, fixed point,
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Classification: Primary 47H10
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1. Introduction. Iet X be a topological spase and f:
:X—>X be a map. A subset M of X is said to be an attrac-
tor for compact sets under f [8] if (i) M is non-empty com-
pact and f-invariant and (ii) for any compact subset C of
X and any open neighbourhood U of M, there exists an inte-
ger N such that £2(C)e U for all n>N. In [8] a conjecture
suggested by F.E. Browder was stated as follows:
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Conjecture 1. Let G be a closed convex subset of a
Banach space X and f£:G —> G be continuous. Assume that the-
re exists a set MEG which is an attractor for compact sets
under f. Then £ has a fixed point (%).

An affirmative answer to Conjecture 1 will give a ge-
neralization of the Schauder ‘s fixed point theorem.

In [ 2] a partial solution to the above conjecture was

obtained as follows:

Theorem (L. Janos and J.L. Solomon): Let G be a clo-
sed convex subset of a Banach space X and f:G—» G be conti-
nuous, Assume that (i) there exists a subset Mc @ which is
an attractor for compact sets under f and (ii) the family
§fn§:___1 is equicontinuous. Then f has a fixed point.

In this paper we generalige the above theorem to local-
ly convex spaces and thus partially generalize the celebra-
ted Schauder-Tychonoff fixed point theorem. Finally some re-

marks concerning attractors are also discussed.

2, Wallace's Theorem and its application. Let X be a
Hausdorff topological semigroup. S is said to act on X if

there is a continuous map i :Sx X —> X such that

s (89, (8y,x))= a(8,8,,x) for any 8,,8,¢S and xeX. If
se€ S, wednote by I';(s) the closure of the set 18™:m>ni.
let I'(s)= I';(s) and K(s) =Nil (8):n2z1}. The following
theorem can be found in [9]:

Theorem (Wallace): Suppose S acts on X. Let s8¢ S be
such that I"(s) is compact and let A< X be nonempty compact
such that sA2 A. Then for each 8, ¢ M(s), 8;A=A and s, acts
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as a homomorphism on A. In particular, the unit of K(s)
acts as the identity map on A.
Note that if I"(s) is compact, then K(8) is a compact

topological group (see [T]).

Lemma 1. Let X be a compact Hausdorff space and f:X
0
—> X be continuous. If A =m04f“(x), then f(A) = A.
Proof: That f(A)cS A is clear. To prove that Acf(A),

let x cA. Then there are x ¢ X such that x = fn(xn) for all

(%)
n=1

n=1,2,... . Since X is compact, the sequence (fn_l(xn))
has a convergent subnet, say fn‘” (xn ) — X, As f is con-
%

tinuous, we have fn"o(xn ) — f(x,). But fn"""(xn ) = x for all
= <
o , it follows that f(x,) = x. If x, were not in A, then
there exist disjoint open sets U and V such that xer and
AcV, since X is regular. As {fn(X)}z___l is a decreasing se-
quence of nonempty compact sets such that n(j,’fn(x) = AcV,
there exists a positive integer N such that £7(X)S V for all
nz N. Since (n ) is a subnet of (n):10=1, for this particu-
lar N, there exists o such that o > Lo=p B -1> N, But
then oz oty => fn"-l(X)EV, 8o that the point x , being
the limit point of (fnw-l(lslx) ), » belongs to V. This cont-
radicts the assumption that x,€ U and UnV = ¢ . Hence x c 4,
and x = f(x,)e £(A). Therefore ASf(A).

Let X be compact Hausdorff and S = C(X,X) be the fami-
ly of all continuous maps on X into itself equipped with
compact opén topology. For f£f,g€S, define £- g = fo g, the
composition of g followed by f; then S is a Hausdorff topo-
logical semigroup. Define & :SxX— X by o (f,x) = f(x),

for all feS and xe X. Then & is (jointly) continuous (see
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[31), and thus S acts on X. If £€S is such that {f":n=
1,2,...% is equicontinuous (there is one ani only one com-
patible uniform structure on X, see [3]), then, by Ascoli
Theorem (see [31), T'(f) is compact. Let A =m§1fn(x). Then,
by Lemma 1, £(A) = A, Hence, by Wallace’'s Theorem, the unit,
say r, of K(f) acts as an identity map on A. We claim that
r maps X onto A and in fact, each ge K(f) maps X onto A,
Indeed, let ge K(f) and x,€ X, we shall show that g(xo)e A,
Suppoe e g(x°)¢A, then there are disjoint open sets U and V
such that g(x )e U and AcV. Since (f‘n(x));o=1 is a decreas-
ing sequence of compact sets such that M"rj,,fn(x) €V, there
is a positive integer N such that £2(X)c V for all n2 N,
Now g belongs to the closure of F, = {#™:m>n} for all n =
1,2,..., then for any neighbourhood W of g, WnF ¢ for
all n=1,2,...; pick arbitrary f(w’n)e ¥nF,. Define a par-
tial order £ on the set D = {(W,n):¥ is a neighbourhood of
g n =N, N+l,...} by (W;,n)) < (W,,n,) if either M\ W, or
W,=W, and n,< n,. Then (f(v,n))(',n)eD is a net which con-
verges to g. In particular, f(l,n)(xo)"’ g(x,). On the ot-
her hand, for any (W,n)e D, f(w,n)slnl‘n, and hence
f(w,n)(xo)e f2(X)c V as n2N, It follows that g(xo)e V which
contradicts the assumption that g(x,) €U and UnV = ¢ . Thus
g(xo)e A for all x,€ X and hence g maps X onto A. This gives

us the following:

Theorem 2. Let X be compact Hausdorff, and f:X-—>X be
continuous, If -(fn:n=1,2,...? is equicontinuous, then each
ge K(f) maps X onto A =m64 (X). In particular, the unit r
of K(f) is a retraction of X onto A.
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3. Main result. Let L be a Hausdorff locally convex
space and K& L be nonempty. Then a family F of mappings from
K into itself is said tobte equicontinuous (on K) if for each
x € K and each neighbourhood U of the origin O, there exists
a neighbourhood V of O such that ycK and y - x €V imply
£(y) - £f(x)e U far all £ e F. The proof of the following theo-
rem is s8imilar to that of Theorem 3.1 in [2].

Theorem 3. Let G be a nonempty complete convex subset
of a Hausdorff locally convex space and £:G —> G be a map.
If (i) {fn:n=l,2,...§ is equicontinuous and (ii) there exists
MES G which is an attractor for compact sets under f, then f
has a fixed point.

Proof: Let Y = To(M) be the closed convex hull of M.
Then Y is a compact ([51) subset of G, Let X = mgo £7(Y) be
the closure of the set ngofn(l'), where £°(Y) = Y. Clearly X
is f-invariant. We simll show that X is totally bounded. Let
U be any neighbourhood of O. Then there is an open symmetric
neighbourhood V of O such that V+ V + VSEU, As M + V is an
open neighbourhéod of M and M is an attractor for compact
sets under f, there exists a positive integer N such that

£2(Y)c M + V for all n2 N, Now for the compact set
N-1
My /’LL{ 0 fn(Y), there is a finite subset E of G such that

-4 0 N-1 o«
wo Jl Pmerr v me  Ftm - U)o o § e
S (E+V)u (M+V) c (E+V) U (B+V+V) = E + V + V, It follows that -

X = n‘ijof“(r)s E+ V+V+VcE+ U, Therefore X is totally
bounded. Furthermore X, being a closed subset of a complete
set G, is complete and hence is compact ([41). Let A =
= mo..(jq £7(X). Then A is nonempty compact and £(A) = A by
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Lemma 1 and hence A< M since M is an attractor for compact
sets under f. As {fn:n=l,2,...} is equicontinuous on X,
then, by Theorem 2, there exists a retraction r:X— A. No-
te that g = for maps Y continuously into itself, By Schau-
der-Tychonoff fixed point theorem, there exists y e ¥ such
that g(y,) = y,. As r(y,)e A and A is f-invariant, the equa-
lities y, = g(y,) = £(r(y,)) show that y e A. Thus r(y,) =
=¥, since r is an identity map on A. Therefore Vo *
= £(r(y,)) = f(y,). This completes the proof.

The above theorem generalizes Theorem 3.1 in [ 2] and
is a partial generalization of Schauder-Tychonoff fixed

point theorem.

4, Some remarks on attractors. Iet X be a topological

space and £:X—> X be a map. We call a subset M of X to be
an attractor for neighbourhoods of points (or more appro-
priately "a local attractor") under f if (i) M is nonempty
compact and f-invariant, and (ii) for any neighbourhood U

of M and any x € X, there is a neighbourhood V of x and a po-
sitive integer N such that (V)< U for all n> N. It is
easy to see that if M is an attractor for neighbourhoods

of points unﬁer £, then it is an attractor.for compact sets
under f. The converse clearly holds if the space X is local-
ly compact. We note that Theorem 3 does not give a true ge-
neralization to the Schauder-Tychonoff fixed point theorem
as it requires {fn:n=1,2,...§ to be equicontinuous. However,
the validity of the following conjecture would provide a

true generalization:
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Conjecture 2. Let G be a nonempty complete convex sub-
set of a Hausdorff locally convex space, and f:G—> G be
continuous. If there exists a subset M of G which is an at-
tractor for neighbourhoods of points under f, then f has a
fixed point (7).

The above conjecture is not known even if G is a non-
empty closed convex subset of a Banach space.

The following result can be found in [6]:

Theorem (Meyers): Let (X,d) be a metric space and f:
:X—> X be continuous., If the following conditions hold, then
for each A € (0,1), there is a metric d, compatible with
the topology on X such that d(f(x),f(y)) « Ad(x,y), for all
x,y e X:
(i) there is a eX such that f(a) = a.
(ii) For each xe X, (x)—>aasn—>wo
(iii) there exists an open neighbourhood U of a such that
for each open neighbourhood V of a there exists a positive
integer N such that £7(U)c V for each nz N.

As an immediate comsequence of Meyers’ theorem, we ha-

ve the following: .

Theorem 4. Let X be a metrizable space, f:X— X be
continuous and a € X. Then the following are equivalent:
(1) For each A, 0 <A < 1, there exists a metric d compa-
tible with the topology on X such that d(f(x),f(y)) « Ad(x,y)
for all x,ye X and f(a) = a.
(2) The set {a} is an attractor for neighbourhoods of points
under f.

Proof: That (1) = (2) is straightforward. It is easy
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to show that (2) implies conditions (i),(ii) and (iii) in
Meyers ® theorem, and thus (2) =>(1).
The following result can be found in [11:

Theorem (Janos, Ko and Tan): Let X be a metrizable
space, f:X —> X be continuous and a & X, Then the following
are equivalent:

(3) There exists a metric d compatible with the topology
on X, such that d(f(x),f(y)) <d(x,y) for all x,yeX with
x+y, and £(x) — a for all xeX.

(4) The set {a} is an attractor for compact sets under f.

The astatements (2) and (4) are equivalent when the spa-

ce X is locally compact. Thus we have the following:

Theorem 5. Let X be a locally compact metrizable spa-
ce, £:X —> X be continuous and ae€ X. Then the statements

(1),(3) and (4) are equivalent.
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