
Commentationes Mathematicae Universitatis Carolinae

Stanislav Žák
A Turing machine oracle hierarchy. I.

Commentationes Mathematicae Universitatis Carolinae, Vol. 21 (1980), No. 1, 11--26

Persistent URL: http://dml.cz/dmlcz/105974

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1980

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/105974
http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

21. 1 (1980)

A TURING MACHINE ORACLE HIERARCHY l+)

Stanislav ŽÁK

Abstract: We introduce three complexity measures of
computations on Turing machines with oracles. The complexity
of a computation on a Turing machine with an oracle is given
either by the number of interactions with the oracle during
the computation, or by the sum of lengths of questions asked
t>y the machine of its oracle during the computation, or by
the maximum of lengths of these questions.

For oracles of a minimal level, using a principle of
diagonalization we construct a complexity hierarchy for the
case of the third measure. The case of the first and second
measures is postponed in the following paper.

Key words: Diagonalization, Turing machine, oracle,
c omple xlty hierarchy.

Classification: 68A20

Introduction. One of the classical problems of the the­

ory of computational complexity is to find the least enlarge­

ment of the complexity bound which increases the computing

power. This work investigates this problem for the case of

three complexity measures of computations on Turing machines

(Til's) with oracles defined in Abstract. In our approach the

complexity of a computation depends neither on the amount of

+) An abridged version of this wo^k can be found in Pro­
ceedings of the symposium 14PCS 79.

11 -

the tape required by the computation nor on the number of

its steps.

For oracles of a minimal level which can decide the

acceptance of words on Turing machines without oracles, we

construct a hierarchy on the set of languages accepted by

the nondeterministic Turing machines with an oracle accor­

ding to the third measure (see Abstract). The hierarchy for

the deterministic case is the same.

Now, we give a brief description of our main result.

For an oracle A, for the third oracle measure and for t a

function on natural number we define: ORACLE(t) is the class

of all languages accepted by the nondeterministic Turing ma­

chines with oracle A such that if they accept a word of length

n then they also accept it by a computation of the complexity

not greater than t(n). The result is of the form: If the set

of pairs (T,u), where T is a Turing machine without oracle

and u is a word accepted by T, is m-reducible ([1]) to A and

if t is a recursive function with lim t = oo , then there is

a language L such that Lcl* , LeORACLE(t) and

L ̂ iHORACLEU^ | lim inf (t(n) - t1(n+l))|t>0}.

The author does not know any similar results in the li­

terature, and so we compare our result only with trivial pro­

positions which follow from a simple diagonalization.

The paper is a by-product of the work ([3D on the same

problem for the case of space cpmplexity of computations on

Turing machines and is based on the same principle of diago­

nalization. It consists of two chapters. The first chapter

is concerned with diagonalization and the second contains all

complexity result3.
- 12 -

Chapter 1. The aim of this chapter is to introduce a

principle of diagonalization. The first part of this chapter

contains a basic definition of a mapping called the result

of the testing process (rtp) and a theorem which exhibits

the logical structure of the diagonalization principle with­

out taking care of existence and complexity aspect3. The ae-

cond part of the chapter contains a lemma which ensuree the

exietence of the rtp-mappings and introduces first comple­

xity aspects. The proofs of the theorem and of two lemmas of

the chapter can be found in L3].

Let us first recall some usual definitions and conven­

tions. An alphabet is a nonempty finite set of symbols, all

alphabets are subdete of a fixed infinite aet containing, a-

mong others, the aymbol3 b, 0, 1, 2, S. A 3tring or a word

over an alphabet ia a finite 3equence of ite symbol3, iul is

the length of the word u. A language over an alphabet is a

set of string3 over thie alphabet. If X i3 an alphabet then

X* (X+,Xn) ia the language of all words (of positive length,

of the length n, respectively) over X. Two words may be con­

catenated which yields a similar operation for languages. N

denotes the set of natural numbers. If a is a symbol and ie N

then a1 is a string of a's of the length i. By a function or

by a bound we always mean a mapping of N into itself. The

identity function will be denoted id, and the integer part

of the binary logarithm will be denoted log. For two func­

tions f, g we shall write f-=g iff (Vn) (f (n)^ g(n)) and f4g

iff Gn0)(Vn.> nQ)(f (n)^g(n)). From time to time in the fol­

lowing text we shall use the if •• then •• elee conetruction

well-known from the programming languagea.

- 13 -

We shall call two languages I*, L* equivalent (iU^I^)

iff they differ only in a finite number of strings. If W is

a class of languages then EW will be the class of all langu­

ages for which there are equivalent languages in W.

By a program system we mean a pair (P,F) where P is a

language and F is a mapping of P into a set of languages over

an alphabet. In this context, P is called the set of progams

and its elements are called programs. In what follows if we

use the phrase HLet P be a set of programs", we implicitly

understand that P is the first item of a program system. Its

second item will have the general denotation L and J-u will

mean the language which corresponds to the program p€P. The

set of all such 1^ for all peP will be denoted ^C(P).

For a program p and a word u, we say that p accepts u

(p!u) iff u e L .

Definition. Let p be a program and Q a set of programs.

We say that p diagonalises Q iff there is a finite set F such

that (Vq€Q-F)(p!q<-> T q!q).

Lemma 1. Let p be a program and Q a set of programs. If

there are infinitely many programs from Q with the same lan­

guage as the program p then p does not diagonalize Q.

Definition. Let Q, R be sets of programs, e a function

and RTP a mapping of N without some initial aegment into the

eet Q. If for all qe Q the sets

Rq = {Tf R|RTP(e(lri)) = q Aitqtr <~* -7 r!r)|

are infinite then RTF is called the result of the testing

process with the function e on the sets Q, R in short, rtp

with e on Q, R. - 14 -

Theorem 1. Let Q, R be sets of programs, RTP an rtp

with e on Q, R, X a program and z a mapping from R into N.

If for all q £ Q there are infinitely many r € RQ such that

(1) X!rlz(r)«-^-i r/r,

(2) (Vj, 0 6j<z(r))(X!rlj<--->RTP(e(lrl))!rlj+1)f

then L - ^ E ^ Q) .

The next lemma concerns Turing machines and Turing ma­

chines with oracles, considered as accepting devices.

We say that a TM T accepts a word u if there is a com­

putation of T on u which stops in a final (accepting) state.

If T is a deterministic single-tape TM and accepts a word uf

then T(u) denotes the word written on the tape after the com­

putation of T on u has been finished.

A Turing machine with oracle A (AS N) is a Turing machi­

ne which has among its tapes a fixed one, on which a special

symbol S may be written. The set of states of the machine in­

cludes three special states q, YES, NO. If it enters the sta­

te q, then in the next step if the number of occurrences of

S on its fixed tape belongs to A, it must enter the state

YES, otherwise the state NO.

A function e will be called (A-)recursive if there is a

deterministic Turing machine T (with oracle A) such that for

all n£N T(ln) = le(n).

A language over an alphabet X is called recursively enu­

merable (A-recursively enumerable) if it is accepted by a Tu­

ring machine (Turing machine with oracle A) and it is called

(A-)recursive if moreover its complement in X*is also (A-)

recursively enumerable.

- 15 -

If P is a set of programs then !p is the binary rela­

tion 4(p,u)|pePf p!uj. - The graph of the binary relation

H on a set of strings is the set -fu2v|(u,v) e HJ.

Let A be an oracle. We say that a sequence ia^} of words

over an alphabet is (A-)effective iff there is a determinis­

tic Turing machine (with oracle A) rewriting the unary code

of any natural number i to the word a..

Let L be a language over an alphabet X and T a deter­

ministic Turing machine (with an oracle) which has two final

states f,, fg. We say that T decides L if for each u, ueX ,

T finishes its computation on the input word u in the atate

f, or fp according to whether u e L o r u e X -L, resp.

Lemma 2 (rtp-lemma). (a) Let Q,R be nonempty sets of

programs and e a function. If X $ Q and no program from Q

diagonalizes R and if e^id and lim e = oo then there is an

rtp with e on Q, R.

(b) Let A be an oracle. If, in addition, the sets Q, R,

Qc-ibtl$, are (A-)recursively enumerable languages and the

graphs of the relations !Q, !--, are (A-)recursive and also the

function e is (A-)recursive then there is a deterministic Tu­

ring machine T (with oracle A) with one tape and with one

head such that

(1) during the computation on the input word 1 , T uses

only the input cells aid two adjacent cells,

(2) T writes only the symbols 1, b (l,b,S),

(3) there is a constant c such that the mapping RTP =

- 4(k,T(lk))|k eN, k2cf is an rtp with e on Q, R.

In fact, we have two lemmas - the version without an

- 16 -

oracle and the relativized version.

Sketch of the proof of (a). Since no qe Q diagonalizes

R, R is infinite. Let \.rA be a sequence of all programs from

R and {<lj} a sequence of all programs from Q with infinitely

many occurrences of each of them.

Let us observe the following sequence of pairs:

(ql' rl)»-^

• •

(qi-l>rl}» (qi-l>r25 > (qi-l>r3 }' • • • • (qi-l' r j i . 1
) '

(q i ' r l) ' (q i ' r 2) » (q i * r 3) ' * * * » (q i » r : j .) »

(qi+l»rl)«(qi+l'r2)»(qi+l»r3)'---'(qi+l»r0i+1
)»

(qi+2»rl)>**-

«. •,

where for all i, r • is the first of those r.* such that

n (q^ir . «->-i r-!r .) Ae(lr-i)> maxilqkl + I r̂ i | the pair
(q k , r £) P r e c e d e s t n e pair (q̂ if1*!) ̂ n o u r sequence}.

We construct a mapping RTP from N into Q. For k c N , we

find the first pair (qifr.) from our sequence such that

iq̂ i + ir.l>k and we define RTP(k) = qi#

Let us try to find the value RTP(e(jr- 1)), i £ N . We know
Ji

that for each pair (qjj-»rp) which precedes the pair (q^fr-j)

in our sequence the inequality tqvl + IrJ ̂ e(lr. I)<lq t +

* z °i i
+ lr-1 holds. Thus according to the definition of RTP,

Ji
RTP(e(ir. |)) = q..

°i x

Let us define, for all q e Q , R^ = "t-^.W = Q-̂ J •

Since e=id and e(ir. I)>!qi(+ lr- \ the inequality
Ji+1 Ji

- 17 -

|r.« l>|r. I holds. Therefore the sets R' are infinite.

Let R be the sets from the definition of rtp. We have pro­

ved R Q £ K Q - Thus R are infinite and the mapping RTP is an

rtp with e on Q, R. Q.E.D.

The proof of (b) is based on the same idea, the only

change is made that the pairs (qs,r.) are embedded into so-

me complicated words.

Chapter 2. In this chapter, by an oracle machine we

shall mean a deterministic or nondeterministic single-tape

single-head Turing machine with an oracle such that its ta­

pe is infinite in both directions and input words are over

the alphabet (0,1] only.

We shall say that a machine M asks its oracle if M is

in the state q. By the length of such a question we shall

mean the number of symbols S currently written on the tape.

For an oracle_ machine M and for an input word u, we de-
1 2 3

fine oraclei(u) « oracle^u) -» oraclejg(u). = oo if M does

not accept u, and otherwise

oraclew(u) = the minimal number of questions asked by M of

its oracle during an accepting computation of M on u,

aracleM(u) = min-(s|s = sum of lengths of all questions asked

by M of its oracle during an accepting computation of M on uj,

oracle«(u) * min-lsls - maximum of lengths of questions as­

ked tiy M during an accepting computation of M on u}.

In short, the complexity of the acceptance of a word by

a machine is given by the complexity of the most modest ac­

cepting computation.

- 18-

In what follows, by a machine we shall mean a nonde-

teriflinistic machine with a fixed oracle A,

Lemma 3 (universal machine) • There is a recursive set

S, Ssi -{bfl}* f in a one-one correspondence with the set

of all machines, and a machine U such that for all 4*1 •• 3,

for all s £ S and for all input words u the equality

oracle i(su) = oracle^ (u) holds (where M stands for the ma­

chine corresponding to s),

Proof. Trivial. S is the usual set of codes of machi­

nes.

FOP the case of deterministic machines there is a de­

terministic universal machine UD and a recursive set S^,

SD£ S, in a one-one correspondence with the set of all deter­

ministic machines, such that an analogue of the lemma holds*

Let us fix the set S from Lemma 3. In what follows, the

language accepted by the machine Ms will be denoted L(Mfl) or

L(s). For i=l .. 3, we shall also write oracle* (u) instead

of oraclei (u) where seS and U G 4 0 , 1 } * .

Definition (for i=l,2,3h (a) If t is a bound and M8

a machine then by i-t-cut off of the language L(s) we mean

the set L*(s) = L|(M S) = -U|oracles(u)± t (1ml H .

(b) We say that a machine UQ accepts its language with­

in i-bound t if L(s) = L^(a),

(c) For a bound t we define

ORACLE^t) = ih |(3s €S)(L » L(s) = 1^(8))J,

CORACLK^t) = {l4<«> • « « ,

D-ORACLE^t) = 4Lj(3s eSp)(L « L(a) = J^{B))}9

B-CORACLBi(t) » {L^(s)Ja€S^*

- 19 -

We can easily see that D-ORACLE^(t) = ORACLE3(t),

E ORACLE1(t) * ORACLE1(t) and for each recursive bound t,

CORACLE1(t) = ORACLE1(t).

Let us repeat some standard definitions. For A,B£H,

we shall write A ̂ B iff there is a recursive function f

such that for all x, xeN, X € A <~> f (X) e B.

K will be a set of natural numbers,

K a {<T,u> | T is a TM without oracle, u €{0,1$*, T accepts u?

where < > is a standard coding.

Definition (for i=l,2,3). Let A be an oracle and f, g

functions. We say that f is (i,g,A)-recursive iff there is a

deterministic machine T with oracle A such that L(T) = 1 * ,

for all neN T(ln) = l f (n) and L(T) = L*(T). - We say that f

is (i,rec,A)-recursive iff it is (i,h,A)-recursive for a re­

cursive function h.

Lemma 4 (for i-2,3). If &^m* and if t is an A-recur-

sive bound then the language L = -Csulu e L^(s), 3eSj is A-

recursive.

If moreover t is (i,rec,A)-recursive then there is a

recursive function f such that the language L can be decid­

ed by a Turing machine D for which the equality L(D) * Lj(D)

holds.

Proof. We have to construct a deterministic Turing ma­

chine D with oracle A which decides whether the words from

\0,l,bj* belong to L. - Working on an input word, D starts

its computation with checking whether the input word is of

the form su where scS, u & -10,15* • Then D computes the num­

ber t(lul) and D asks of A each question of the length not

- 20 -

greater than t(lul) and lists all answers. Then D converts

the code s to the code s# such that (a) ueL(Ms,) -*-* u e

eIt|(Ms)9 (b) Ms, never asks A (this means that the state q

is not accessible in its finite control). The list mention­

ed above is incorporated in the finite control of such an

Mg/ • Mg/ computes on u in the same manner as Ms/does but

M0/ does not need to ask A, it has its list. After having

constructed the code s', D asks A whether MQ, accepts u or

not, and decides.

The existence of an appropriate recursive function f is

clear. Q.E.D.

A similar lemma holds for the deterministic case.

Remark, (a) If K^mA and t is an A-recursive bound

then the sets L^(s), i = 2,3, seS, are A-recursive. This

follows from Lemma 4.

(b) Lemma 4 yields also trivial separation result such

as for i=2f3 ORACLE
i(f) - CORACLE1 (t)*0. It seems that f

is not a small function (with respect to t).

(c) We also see that ORACLE3(t)^ ORACLE2(t) and that

for t a recursive bound ORACIE^t+D-p ORACLE1 (t) for i=2t3.

For a word u, a language L, a family of languages & ,

we define Shadow u = 1 , Shadow L * ̂ Shadow u|ueL} and

Shadow # = ̂ Shadow L|L 6 rf } .

Definition. Let L^, Lg be languages. We say that a

mapping h, hil^—> Ig, is (A-)realizable if there is a de­

terministic Turing machine T (with oracle A) such that for

all udl^ the equality h(u) « T(u) holds.

- 21 -

Now, we shall concentrate on the ease of oracle"* mea­

sure which is the simplest one.

Theorem 2. Let t be a recursive bound, lim t * oo .

If K ± A then there is a language L such that (1) L£l+,
m

(2) LeORACLE3(t).

(3) L^ Shadow ORACLB3(t'), where t'(n+l) = t(n) for

all neN.

Proof. First, we shall choose a set Q of programs

such that &(Q) = Shadow CORACLE3(t') and a set R of programs

both satisfying the conditions of the rtp-lemma. Secondly,

we shall construct a machine X such that X accepts its lan­

guage L(X) within 3-oracle bound t and this language has the

properties (1),(2) from Theorem 1. By application of this

theorem we shall get L(X)£E£(Q) =- E Shadow CORACLE3(t') 2

2 Shadow ORACLE3(t').

Let us write Q =- S and, for qcQ, L = Shadow L3, (q).

Q is a recursive set and, according to Lemma 4, the graph of

the relation !Q is A-reeursive.

Now, we are going to construct the set R. Let -Cs^ be

an effective sequence of programs from S in which each s,

seS, occurs infinitely many times. - There is a realizable

mapping h, h:S—* S, such that for all s, seS, L(h(s)) =
*j

= Shadow Lf/(s).

Let f be the function from Lemma 4. We define r^ = 1,

. I rA+z ir .)+l
z(ri)=min{njt(\ri\+n)^f(lh(si)rii)lf ri+1=-l

 x x .

The sequence r-̂ , z(r-j), r2, z(r2),. ..,rif z(r..) can be con­

structed recursively, therefore the set R =«tri|i£N} is re-

- 22 -

cursive. Let us define, for ieN, L * L * L(h(a.t)) *
i i

* Shadow I^/(s.). - We see that the graph of the relation

I-o is A-recursive. Moreover, no qcQ diagonalizea R - see

the construction of R, of ts^l and Lemma 1.

Let us define, for isN,

e(\r±\) = min (iir±\ } u itl\r±\ +j)|o £ j < z(r±)j)

and e(n) = n for neN such that n-̂ lr̂ l for each icN. We

see that e is recursive, e^id, lim e = co .

We have an rtp RTP with e on Q, R constructive in the

sense of the rtp-lemma.

Now, we are ready to construct the machine X. X starts

its computation with checking whether the input word is of

the form ln. Then X computes the number t(n) and will never

ask of A a question of the length greater than t(n). We ha­

ve L(X)£1+, and L(X) € ORACLE3(t). Then X recursively con­

structs the sequence r,, z(r,), rot z(r0),... •
1 V z<ri>

(1) If the input word ln is of the form r^l x then

X accepts iff n r^lr^ iff r^^ L(h(8^)) = Shadow L3(si).

The possibility to process in this manner is ensured by the

definition of the function z and by Lemma 4 - the machine

from that lemma decides whether ri^L(h(si)) without asking

of A a question of a length greater than f(lh(si)riD ^

4%(lril+z(ri)) = t(n).

If the input word ln is of the form r.-lJ, 0^j<z(r i)>

then X constructs a segment of the tape of the length

e(lr^l) and within this segment X tests. Let RTP(e(lr.I)) «

=- q e S = Q be the resulting program.
- 23 -

The possibility to process in this manner is ensured by the

definition of the function e - during the construction of

RTP(e(irii)) X is never required to ask of A a question of

a length greater than t(n); this follows from the construc­

tion of e and from the fact that X tests within the length

e(\r.I) - see the condition (1) of the rtp-lemma.

Then X nondeterministically rewrites the input word ln

to any word from 40,1$n and on this word computes in the

same way as the universal machine U (Lemma 3) according to

the program q. If there is an accepting computation of U on

a word from -fO,l$n according to the program q and this com­

putation does not require to ask of A a question of a length

greater than t(n) then X accepts. Formally:

(2) ln€L(X) <--> (3u€*0f 15
 n + 1) (oracle3 (RTP(e(\r±\))u)^t(n))

Now, we must prove that L(X)4-2&(Q) =

= E Shadow CORACLE3(t').

We shall apply Theorem 1. We have the sets Q, R and the map­

pings RTP, e, z. We prove that the language L(X) satiafies

the conditions of this theorem. The equivalence rl v ' e

£L(X)<~>~i r!r (condition (1)) holds for all programs from

R except a finite number of them. This is clear from the con­

struction of X - see (1). Now, we are going to demonstrate

that for all sufficiently large r, r e R,

(Vj, 0£;j-<z(r)) (rljeL(X)«-->RTP(e(lri)!rj+1)

(condition (2)) holds. Let us arbitrarily choose a suffici­

ently large r from R and a number j, 0-£ j<z(r), and let us

write n = Irl + j. We know that the following statements are

equivalent:

- 24 -

(i) r l j € L (X) ,

(i i) Gu6-tO,lJn+1) (oracle3(RTP(e(|rl))u)^t(n)) -

according to the fact that j < z (r) and to the construction

of X - see (2),

(i i i) G u d O , l i n + 1) (oracle3C'u)^t(n) = t'ln-KL) -

see Lemma 3 , q = RTP(e(irl)),

(iv) <3u*40 fl*
n+1> (u £ l ^ / (q)) ,

(v) ln+1€.Shadow l^Aq) * Lq,

(Ti) q! l n + 1 ,

(vi i) RTP (e (ir |)) !r l j + 1 .

The language L(X) satisfies the conditions of Theorem 1

and therefore L(X)$E#(Q) = E Shadow CORACLE3(t') 2

2 Shadow ORACLE3(t'). Q.E.D.

From the fact D-ORACLE3(t) = ORACLE3(t) follows that the

same theorem also holds for the deterministic case.

Remark. Condition (3) in Theorem 2 may be changed as

follows:

L^Shadow U^ORACLE3(t1)) lim inf(t(n) - t1(n+l))> 0}.

Example. ORACLE3(n+1) - ORACLE3(n) + 0.

R e f e r e n c e s

Ll] ROGERS H.Jr.: Theory of Recursive Functions and Effec­

tive Computability, McGraw-Hill, New York, 1967.

[21 SIMON I.: On some subrecursive reducibilities, Tech.

Rep. STAN-CS-77-608, June 1977.

T33 ZXK S.: A Turing machine space hierarchy, Kyberneti-

ka 15,2(1979), 100-121.

- 25 -

Ústav výpočtové techniky ČVUT

Horská 3

12800 Praha 2

Československo

(Oblátům 4.6. 1979)

26 -

		webmaster@dml.cz
	2012-04-28T05:14:38+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

