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COMMENTATIONES MATHEMATICAE UNIVERSITAT1S CAROLINAE 
20, 4 (1979) 

(P)-SETS, QUASIPOLYHEDRA AND STABILITY 
Jiří REIF 

Abstract: In this paper the property (P) of convex 
subsets of normed linear spaces defined in 173 ia characte­
rized in terms of the relative openness of affine maps. As 
an immediate consequence we obtain that any finite dimensi­
onal compact convex (P)-set K is stable, that is (see e.g. 
£41) the midpoint mapping (x,y)—> \ (x • y) is relatively 
open on K x K . Also, we characterize in the class of normed 
linear spaces l-^-products which are (P)-spaces. 

Keywords: Normed linear space, (P)-set, stable set, 
quasipoiyrie<-,:ra..L set. 

Classification: 46B20 

If it is not stated otherwise, our notation and termi­

nology is that of i 5J• 

Let X, Y be topological spaces, f : X — > Y a mapping, A c X a 

subset and x € A. The mapping f is said to be relatively open 

on A in x if f maps each neighbourhood of x in A onto a 

neighbourhood of fix) in f(A). The mapping f is relatively 

open on A [relatively open respectively! if t is relatively 

open on A in each x e A C f is relatively open on X 1 . 

Brown 131 characterized normed linear spaces for which 

the metric projections onto all finite dimensional subspa­

ces are lower semicontinuous and called them (P)-spaces. 

- 757 -



For a list ©f (P)-spacea we refer the reader to £2]. 

According to Wegmann L7J a normed linear space X is a 

(P)-space if and only if the closed unit ball K of X has the 

property (P)f i.e.: for any xcK and zeK such that x + acK 

there exists a neighbourhood U of x in K and c>-0 such that 

y + c* e K for any y e U. 

We present here 

(-») Theorem. Let K be a closed bounded convex subset 

of a normed linear apace X* Then K has the property (P) if 

and only %t for any normed linear apace X and any relative* 

ly ©pen linear mapping T:X—> * such that dim T-„1(0>< +oo, 

f ±B relatively open on K. 

Before proving we formulate 

(2) Lemma. Let K be a closed convex subset of a normed 

linear space X. Then K has the property (P) if and only if K 

has the following property (we denote if (P^))* -for any xeK 

and s c K such that x + z £ K and any e ;> 0 there exists a 

neighbourhood U of x in K such that y + (1- e)zGK for any 

ycU. 

Proof. Suppose that K satisfies the condition (P) but 

not the condition (P^). Thus there exists some xQe K and ascX 

such that 

( i ) X-, ••» z eK 

<%QO 

and a aequence <-*-,!*jjsi of elements of K such that xn tends 

to x0 but for 8n * sup itSOjXa + t a c K } there i s 
( i i ) lim sup aw * s < l . 

•a n 

By choosing a subsequence we can suppose that sn con-
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verges to 8. Them for u^ « x^ + (1-* )•„» *• -*••• ***£* by 

definition of an and u^ converges to xQ +. sz. By virtue of 

(i),(ii) and the property (P) of K (applied to x « x0 + sz) 

there is o O such that u]ft + c(l-s)zeK for large n which ie 

the same as xw + [vl-n"
1^ + c(l-s)l zeK. However (ii) im-n n 

plies (l-n~ )s11 + c ( l - s ) . > s for large n which contradicts 

the definition of Bn* 

The proof of Theorem (1). Let K have the property (P), 

T be as in (1) and x £ K be arbitrary. Suppose T is not re­

latively open on K in xQ so that there exists a neighbour­

hood U of x in K and a sequence ^ e K such that T(xn) tends 

to T(x ) but T(x) ham no inverse image in U for any nil. 

Since T is relatively open on X there exist ̂ X such 

that T(x^) * T(xa) and x^ converges to xQ. As T-:L(0) is fi-

mite dimensional we can suppose x^ - xfi to be converging to 

some icT ,(0), hence x converges to x - z£K (K is clos­

ed). By virtue of Lemma (2) we can apply the property (P-,) 

to x = x - z so that xa+ cnz eK for some sequence c^ con­

verging to one. The sequence xn+ c z converges to xQ but 

x + c z is an inverse image of ^(x^) in K, a contradiction. 

For proving the other implication suppose xcK and zcX 

be such that x + z€K. Of course we can suppose z*f*0. Denote 

6- « j R z I , N the linear span of z and T:X —•> X/N the fmc-

torization mapping. Since T is relatively open on K by our 

assumptions the image of the e-neighbourhood of x + z in K 

contains a c/'-neighbourhood of T(x+z) * T(x) in T(K) for so-

me 0 < <f «< S/ « 

Let U be o^-neighbourhood of x in K. Then for any y eU 

we have J T(y) - T(x) II < oT since U T II » 1. Hence T(y) has 

-759 -



an inverse image u in K such that II u - (x+z)il -^6 .Of 

course u * y + cz for some constant c because of the defini­

tion of T. 

Hence \\ cz - a II < s + 11 x-y II so that 3 & il-c I < fc + cT< 2 e 

which implies c>i. Thus y + izfeK and the proof is finished. 

(3) Corollary. Let K be a closed bounded convex subset 

of a finite dimensional space such that K has the property 

(P). Then K is stable (see the introduction). 

Proof. The subset K x K of X><X is easily seen to have 

the property (P). 

For example any finite dimensional polyhedron of any 

convex body the boundary of which contains no non-trivial 

segment has the property (P> (cf. £31 and t71). Also any 

(QP)-space in the sense of i 13 is a (F)-space (ill). 

We present here a definition of a (OP)-space which is 

equivalent to that of (.13, however more convenient for our 

aims. 

(*' Definition. Let X be a normed linear space, Kc X 

a convex subset and xcK. We shall say that K is (qp) in x 

(quasipolyhedrai)if there exists of > 0 such that if x + 

+ hcK for some heX\-£0,3, then x + <? pj-j 6K. We shall say 

that K is (qp) if it is (qp) in any x€K. A normed linear 

space X is said to be a (QP)-space if the closed unit ball 

of X is (qp). 

It can be seen easily that a convex set K is (qp) if 

and only if it is locally conic in the sense of C6J. 

Clearly (closed) halfspace is (qp) and the intersecti­

on of a finite number of (qp)-sets is again (qp). Compact 
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(qp)-sets are exactly finite dimensional polyhedrons since 

the extreme points of a (qp)-set K have clearly no cluster 

point in K. 

For any set I the space cQ(I) is a (QP)-space and also 

the product of (QP)-spaces in the sense of cQ is again a 

(QP)-space (til). 

Now we formulate 

(5) Theorem. Let ^ - ^ ^ j . b e a fa-<-i--y of normed linear 

spaces, card I>1, dim X.£ 1 for any is I and let X be the 

product of tig £6l in the sense of l^CD* Then X is a (Pi-

space if and only if the set I is finite and X^ is a (QP)-

space for any iel. 

Proof. If the set I is finite and X^ is a (QP)-spaca 

for any iel, then X is a (QP)-space (Cll) and thus X is a 

(P)-space (t7J). 

On the other hand suppose X is a (P)-space. Then the set I 

is finite (C23). The rest of the proof is an elementary cal­

culus using the definitions. 

Thus Theorem (5) gives examples of normed linear spa­

ces which a re not (P)-spaces. 

As to the stability of (qp)-sets we have 

(6) Proposition^ Any bounded (qp)-subset of a normed 

linear space is stable. 

The proof follows immediately from 

(7) Lemma. Let Xf X be normed linear spaces. T:X—>Y 

a linear mapping, Kelt a bounded convex set and xeK. Suppo­

se T(K) is (qp) in T(x). Then T is relatively open on K in 

x. 
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Proof. Denote y = T(x). Let cT> 0 be such that 

y + cT J| hB "1h6T(K) whenever y + heT(K) for some h=fc-0. We 

can suppose the diameter of K i s pos i t ive . Let e > 0 be ar­

bitrary such that & < diam K. We show that T maps s -neigh­

bourhood of x in K onto at least oc-neighbourhood of T(x) 

in T(K) for o<5 = let (diam KJ"1. 

Let v€.T(K) be within oo from y, v4-y. Then for w « y + 

+ of || v-y II (v-y) we have w eT(K) ty the definition of of. 

Let J^ be an inverse image of w in K. Then xv = x + of"11| v . 

-yll (x^ - x) i s an inverse image of v in K since of~ II v-

-ylt < oT^oc a e(diam K)"X< 1. However II x^ - x II k 

£ of~1o£ diam K -< €> • 
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