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(P)-SETS, QUASIPOLYHEDRA AND STABILITY
Jiti REIF

Abstract: In this paper the property (P) of convex
subsets of normed linear spaces defined in [7) is characte-
rized in terms of the relative openness of affine maps. As
an immediate consequence we obtain that any finite dimensi-
onal compact convex (P)-set K is stable, that is (see e.g.
{41) the midpoint mapping (x,y) —> 3 (x.+ y) is relatively
open on Kx< K. Also, we characterize in the class of normed
linear spaces 11-producta which are (P)-spaces.

Key words: Normed linear space, (P)-set, stable set,
quasipo%ﬁearai set.

Classification: 46B20

If it is not stated otherwise, our notation and termi-
nology is that of [5].
Let X, Y be topological spaces, £:X—>Y a mapping, AcX a
subset and x € A. The mapping f is said to be relatively open
on A in x if £ maps each neighbourhood of x in A onto a
reighbourhood of f(x) in £(A4). The mapping £ is relatively
open on A [relatively open respectivelyl if f is relatively
open on A in each x¢A [f is relatively open on X1.

Brown [3] characterized normed linear spaces for which
the metric projections onto all finite dimensional subspa-

ces are lower semicontinuous and called them (P)-spaces.
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For a list of (P)-spaces we refer the reader to [2].

According to Wegmann [ 7] a normed linear space X is a
(P)-space if and only if the closed unit ball K of X has the
property (P), i.e.: for any x€K and zcK such that x + 2 €Kk
there exists a neighbourhood U of x in K and ¢>0Q such that
y +czeK for any ye U.

We present here

(1) Theorem. Let K be a elosed bounded eonvex subset
of a normed linear spaes X. Then K has the property (P) if
and only if for amy normed linear space Y and any relative~
1y open linear mapping T:X—> ¥ sueh that dim T_,(0)<+ 00,
T fs relatively open on K.

Before proving we formulate

(2) Lemma. Let K be a closed convex subset of a normed
linear space X. Then K has the property (P) if and only if X
has the following property (we denote if (P;)): for any x€6 K
and 3¢K such that x + z€ K and any € > O there exists a
neighbourhood U of x in K such that y + (1-€)z ¢ K for any
yeU.

Proof. Suppose that K satisfies the condition (P) but
not the conditiom (P;). Thus there exists some x e K and ze X
such that

(1) x, + z €Kk

and a sequence {xn}:q of elements of K such that x, tends
to x, but for e = sup {tZ0;x, + tz€K] there is

(ii) lim sup 8, = 8<1.
n

By choosing a subsequence we can suppose that s, con~-
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verges to s. Thea for u, = x + (l-l'l)on: we have u <K by
definition of 8, and uw, comverges to x, + sz. By virtue of

(i), (ii) and the property (P) of K (applied to x = x_ + 8z)

°
there is ¢ >0 such that u, + c(1-8)z €K for large n which is
the same as x + [(l-n-l)l. + ¢(1-8)] 2 €K, However (ii) im-
plies (1--n"1)¢!n + c(1-8)>8 for large n which contradicts

the definition of 8,

The proef of Thecrem (1). Let K have the property (P),

T be as in (1) and x € K be arbitrary. Suppese T is not re-

latively open on K in x, 80 that there exists a neighbour-
hoed U ef x, in K and a sequence x, <K such that T(xn) tends
t; T(x,) dbut T(x,) has ne inverse image in U for any nZ1l.
Since T is relatively open on X there exist 'ine X such
that T(Qn) = Mx,) and ﬁn converges to x . As T_,(0) is fi-
nmite dimensional we can suppose i. - X, to be converging to

some €T_,(0), hence x, converges to x, - z€K (K is clos-

n °
ed). By virtue of Lemma (2) we can apply the property (P;)
tox=x, -2 80 that Xt ep2 €K for some sequence ¢, con-

verging to one. The sequence xn+ cLZ converges to X, but
X+ eni is an inverse image of T(\xn) in K, a contradiction.

For proving the other implication suppose x€ K ﬁnd z<X
be such that x + 2 €K. Of course we can suppose z+0. Denote
€= %-ﬂzl! , N the linear span of z and T:X —> X/N the fac-
torization mapping. Since T is relatively open on K by our
assumptions the image of the €-neighbourhood of x + z in K
contains a J’-neighbourhood of T(x+z) = T(x) in T(K) for so-
me 0<d < &. '

Let U be o'-neighbourhood of x in K. Then for any yeU
we have | T(y) - T(x) l < & since UTI= 1. Hence T(y) has
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an inverse image u in K such that llu - (x+z)ll < ¢ . Of
course u = y + cz for some constant ¢ because of the defini-
tion of T.

Hence flcz - e l< & + U x-yl s0 that 3ell-cl < ¢ +d'<2¢
which implies c>%-. Thus y + %z € K and the proof is finished.

(3) Corollary. Let K be a closed bounded convex subset
of a finite dimensional space such that K has the property
(P). Then K is stable (see the introduction).

Proof. The subset K=K of X=X ia easily seen to have
the property (P).

For example any finite dimensional polyhedron of any
convex body the boundary of which contains no non-trivial
segment has the property (P} (cf. {31 and L71). Also eny
(QP)-space in the sense of [ 1) is a (P)-space ([71]).

We present here a definition of a (QP)-space which is
equivalent to that of [1], however more convenient for our

aims.

(4) Definition. ILet X be a normed linear space, Kc X
a convex subset and x€ K. We shall say that K is (qp) in x
(quasipolyhedral) if there exists o > O such that if x +
+ heK for some h ¢X\103, then x +J' i €K. We shall say
that K.is (qp) if it is (qp) in any x€ K. A normed linear
space X is said to be a (QP)-space if the closed unit ball
of X is (qp).

It can be seen easily that a convex set K is (qp) if
and only if it is locally conic in the sense of (61,

Clearly (closed) halfspace is (qp) and the intersecti-

on of a finite number of (qp)-sets is again (qp). Compact
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(qp)-sets are exactly finite dimensional polyhedrons since
the extreme points of a (qp)-set K have clearly no cluster
point in K,

For ary set I the space co(I) is a (QP)-space anl also
the product of (QP)-spaces in the sense of c  is again a
(QP)-space ([11).

Now we formula te

(5) Theorem. Let {X;}; 1 be a family of normed linear
spaces, card I>1, dim X;2 1 for any i€ I and let X be the
product of {Xi'i j¢I in the sense of 1,(I). Then X is & (P~
space if and only if the set I is finite and X; is a (Qr)-
space for any ieI. '

Proof. If the set I is finite and X; is a (QP)-space
for any ie I, then X is a (QP)-space ([11) and thus X is a
(P)-space ([71).

On the other hand suppose X is a (P)-gpace. Then the set I
is finite ([2]). The rest of the proof is an elementary cal-
culus using the definitions.

Tims Theorem (5) gives examples of normed linear spa-
ces which are not (P)-spaces.

As to the stability of (qp)-sets we have

(6) Propositions Any bounded (qp)-subset of a normed
linear space is stable.

The proof follows immediately from

(7) Lemma., ILet X, Y be normed linear spaces, T:X —Y
a linear mapping, KCX a bounded convex set and x €¢K. Suppo-
"se T(K) is (qp) in T(x). Then T is relatively open on K in

Xe
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Proof. Demnote y = T(x). let & > O be such that
y +J lnli -]‘heT(K) whenever y + h e T(K) for some h4+0, We
can suppose the diameter of K is positive. let €& > O be ar-
bitrary such that & < diam K. We show that T maps € -neigh-
bourhood of x in K onto at least o¢-neighbourhood of T(x)
in T(K) for «= £d° (diam K)71,

Iet ve T(K) be within o« from y, v#y. Then for w = y +
+ I llv=yll 'l(v—y) we have w e T(K) by the definition of o,
Let x, be an inverse image of w in K. Then x, = x + o1y
-yl (x;, = x) is an inverse image of v in K since I ly-
il < ™ x = g(diam K)“1< 1. However hx, - x
£l giam Kk < © -

{13
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