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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
20, 4 (1979)

VALUATIONS OF STRUCTURES
J. MLCEK

Abstract: This paper is a contribution to the develop-
ment of the alternative set theory. A typical special result
among those presented is the following: Iet A= {a,f) be a

set-semigroup and let Q/Q = <Q,f/02> where QSa is a ¥ -
class be a substructure of 4 . Then there exists a set-map-
ping h:a — RN(Z 0) (RN(= 0; is the class of non-negative ra-
tionals) such that h(f(x,y))4h(x) + h(y) and h(x)éOnx_‘lQ
holds for each x,ye a. (As usual, we write 2=0 if |zi<n
for all finite natural numbers n.)

We present more general results; namely, they concern
some richer structures than that of a semigroup, deal also
with proper classes, and the universe Q of the substructure

Q/Q is a 6= or J-class. .
As a consequence of our results we obtain a metrization
theorem.

Key words: Structure, valuation, & -class, 7 -class,
metrization,

Classification: 02K10, 02K99, O8A05, 54J05

§ 0. Introduction. Great numbers of important structu-
res are constructed in the alternative set theory by using
d'-classes. For example, real numbers are constructed as fac-
tor-classes of the & -equivalence = on the class RN of ra-
tional numbers. (See LV].) The topological structure is com-
prehended as a i -equivalence on a set-theoretically defin-
able class. In this paper we study structures which are des~-
cribed by using ©'-classes and J-classes only. Let us explain
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our problems .u more detail on the structure (az, ~ > , whe-
re a is a set and ~ ie a 9 ~equivalence on a. Using some ide-
as of the proof of the classic metrization lemma, we can pro-
ve that there is a set-mapping h:aa—-:» RN(2>0) (RN(=0) deno-
tes the class of non-negative rationals) such that h(x,z) £
£h(x,y) + h(y,z), h(x,y) = h(y,x), hix,y)20=x~y, hix,y) =
= 0=x = y hold. (h is called metric of ~ on a.) We can say
that h is a valuation of a2 in RE(2 O) such that h respect
(in the sense mentioned above) the following couples of ope-
rations: the operation o (the composition of pairs) and + ;
the operation Cn of converse and the identity mapping Id. Mo-
reover, the values of all elements of ~/ are exactly in
fZ0] ={xeRN(>0);x=03, We shall describe a class of struc-
tures of the type <A,F,E> , where F is a binary function and
E is a unary function, such that the following statement holds:
if Q is a set-structure of this class and (./Q is a substruc-
ture of QU with the universe Q, which is a o -class, then the
pair {@,Q/Q> is valued in <{REN(Z 0),+,1a> ,<{ [ = 0],+,Ia >
by a set-mapping similarly as a set-metric of ~ on a values
«a2,0,n>, < ~,o,nd)in KEN(=0),+,IaY ,{[ > 01,+,IaM.

Note that we do not work with set-structures only but
the structure (. mentioned can be generally a structure from
a standard system %% and the universe Q of the substructure
Q/Q can be a ¥ -or a 6M-class. Then we construct a valu-
ation of the pair {Q,(./Q) as a class of #L.
(For the notions of the standard systems and o _gna g%l
class see [M1].)

Let us mentione one consequence of our general results.
Recall that x2y iff for each set-formula ¢ (z) in FL we have
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cf(x)ag(y). The following statement holds: there is a met-
ric of = on V which is an element of a revealment Sd: of
the codable class Sdy of all set-theoretically definabls
classes (i.e., roughly speaking, there is a "formally set-
theoretically definable" metric of = on V. (For the notioa
of the revealments see LS-V 11,) ‘

Further results concerning the problems of valuations

will be presented in another paper.

§ 1. Preliminaries

1.0.0. We use usual definitions and notions of the al=-
ternative set theory and definitions, notions and symbole
introduced in [M1]. We shall use results obtained in LM11.

1.0.1. Throughout this paper let %! denote a standard

system.

§ 2. e-structures. Valuations

2.0.0. By a structure we mean a mtn+l-tuple (I, =
=<8, 750857 e, je .
a(i)-ary function, dom(F)=a%1) pma8(1)c ) a(i)e py ana,
for each je m, RjSLb(J), b(j) € FN.

n» Wyn€FN, where, for each i€m, Fy is a

We say that a class B A is a universe in Q iff, for

each i¢m, F;E’(i)s B holds. A substructure of the structure

. b3 A

Q. is a structure {B,F; B‘(l),thB (J)> iem, jen where B

is a universe in QU . We denote the substructure presented by

Q./B. If there is no danger of confusion, we write <s,ri,nj>
a(i) b(j)

instead of <(B,F;/B yRynB >i€m’j€n.

2.0.1. A covariant (contravariant resp.) e=-structure

T ————

is a structure (A,F,E) where F is a binary function, E is a
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unary function and the following holds: (1) F is associa-
tive on 4,
(2) EcE=1I4
(3) F(E(x),E(y)) = E(F(x,y))
(F(E(x),E(y)) = E(F(y,x)) resp.)
holds for each x,y¢ A.
An e-structure is a covariant or a contravariant e-struc-

ture. An e-structure & =<A,F,E> is a commutative e-structu-

re iff F is commutative on A.
Then (I, is covariant and contravariant simultaneously. An e-
structure {(A,F,Id) is covariant. It is contravariant iff it
is commutative. Let (L =<A,F,E> be an e-structure. We defi-
ne the binary relation on A as follows:
x <, y=(3z€A)(Flx,2z) = y).

If there is no danger of confusion, we shall write simply <1-
instead of <, .,

Proposition. The relation <3, is transitive on A.

2,0.2, Examgleé. (1) A structure {A,F)> is a semigroup
iff {A,F,Jd) is a covariant e-structure.

(2) < N,+,1a is a commutative e-structure.

(3) Let RN(20) = {xeRN;x20%, RN(>0) = f{xe RN;x>03.
{ RN(Z 0),+,Id)> and {<RN(>0), ,'1> are commutative e-struc-
tures.,

(4) We put, for X&N, X, ={2"; <€ X3. {N,, * ,Id) is
a commutative e-structure.

(5) let a be a set, a+ 0. Then {P(a),u ,1d> , {P(a),n,Id)
are commutative e-structures.

(6) We define the mapping F°:(V2u £03)2—> v2y {0} as

follows: F°(<x,y»,<u,v)) =<x,v) (O resp.) iff y = u (y#u
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resp.) and FO(,0) = P°(0,W) = O for each We V2u {03,

F° is an associative function on Vzu«i 03 and, consequen-
tly, (,Vzu 4103,F°,14) is en e-structure, which is not commu-
tative. Let R be a tramitive relation. Themn (R u{03,F°,Ia)
is an e-structure and the following holds:
(VueRuiO})(a<0)& (VueRUIO})(O=au=u = 0).

2.0.3. Lemma. Let <A,F,E) be an e-structure. Let 4,

A, be classes such that A S A cA and [F,EA ,A;) hold. Let
Qi = E"Ain Ai for 1 = 0,1.

Then Q< AOE QleAl and, for i
€Q;.

Proof. The relation Q;€4;, i = 0,1, is obvious. 1) We

0,1, Q3 q), E"Qq<

prove that A € Q;. Let xcA . We have E(x)€4,, xcAy and x =
= E(E(x)). Thus xcAjNE"Ay. 2) We prove that F"Q3<Q;, Let
x,y€Q,. Thus x,y€ A, and x = E(u), y = E(v) hold with some
u,ve A . We have F(x,y)< Ay, F(u,v) €A, and F(v,u)€ 4. Thus
F (x,y) = F(E(u),E(v))< E"A, holds. We deduce from this that
F(x,y)eAln E"Al. 3) Let us prove that E"Q; € Q; holds for
i=0,1. Let xeQ;. Then x€A; and there is a y< A; such that
x = E(y). Consequently, E(x)e¢ 4;n E"A; holds.

2,0,4. Iet (O be an e-structure. Let Q, B be universes
in @ . The triple <O, A/Q, Q./B? is called a triad over Q@ .
Let Q.(Q,B) denote this triad. A triad of the type 6% (or a
6% _triad) is a triad Q(Q,B) such that Qe @ , B e @t

and Q is a Gm-clasa, We define a triad of the type arm (or
a qrm -triad) analogously.
Examples. (1) <N,+,Id> (FN,{0%), <N,,e ,Id)> (FK,,{1%)
are 6 °-triads.
(2) .I.et. a be a set, a+ O and let Q be an ideal on P(a).
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Then {P(a),v ,Id> (Q,{0%) is a triad. Suppose, moreover, that
Q is a & (of resp.)-class. Then the triad presented is a 6 -
triad (or -triad resp.).

(3) The equivalence 2 on RN is defined as follows:

(Vx,ye BN)(x2y=(V n)(lx—yi<%v(x>n&y>n)v(x<-n&y<-n)).
We put [Z 0] = {y < RN(= 0);y=0%. Then
{RN( Z0),+,Ia> ([ z01,{0%) is a a° -triad.
2,1.0. Let O = <A,F,E>, a-= <E,F,E> be e-structures.
A mapping H:A — % is called yaluation of @ _i_.gl& iff for

each x,y< A holds:
H(F(x,y))dd F(H(x),H(y))
H(E(x)) = B(H(x)).
Let ((Q,B), Fu’a’,ﬁ) be triads. A mapping H:A — % is called
valuation of the triad Q(Q,B) in the triad ,d(a’g) iff H is

a valuation of @ in & and we have for each x<A:
xeQ=H(x)e Q, xeB=H(x)cB.

Example. The mapping H:N —> Nz sending o to 2% is a
valuation of (N,+,Id > (FN,103) in <N, s ,Id)> (FN,,{1}).

Proposition. ILet 4 be am e-structure and let <i; be
reflexive on 4. Let (L(Q,B) be a triad over (L and let A A
be an universe in Q, .

(1) @W/A°(QNA°,BALA°) is a triad over Q/A°.

(2) Identity mapping Id is a valuation of (L/A'(QNA°,
Bni’) in Q,(Q,B). )

Proof. (1) follows from the fact that QA" and Bna’
are universes in Q/A°. (2) Identity mapping is a valuation
of Q/A° in Q. (by using of the reflexivity of <ip ).

Proposition. Let & =<{X,F,E>be a commtative e-struc-

ture and let &(5,3) be a triad. Suppose that there exist
- 686 -



pointe a, q, beX such that b= q<a and beB, qsﬁ-ﬁ, ae
< iQ.

Then, for each triad 7’ , ‘there is a valuation of 7 in
%.@,B.

Proof. Let H be a mapping, éfined as follows:
H(x) = b=x<B, H(x) = q=q€ Q-B, H(x) = a=x¢€A-Q, where

{A,F,E> (Q,B) = 7’ . The H is the required valuation.

§ 3. Valuation lemmas

3.0.0. We shall prove two lemmas which have the impor-
tant role for the construction of valuations of ¢ ®_triads

and 'er

-triads. At first, we introduce the following defi-
nition: let Q.= {A,F,E) be an e-structure and let B be an uni-
verse in O . A 6-string (a"-string resp.) R is called 6 (ar
resp.)-string in O, over B iff B = R(0), A = R(dom(R)-1) and
ITF,F3] (R(¢),R(ec+1)), E"R(c¢ )= R(cs) holds for each « &

€ dom(R)-1 (A = R(0), B = R(dom(R)~1) and IF,F3',R (R(c+1),
R(c¢)), E"R(oc)E R(cs) holds for each oLe dom(R)-1 resp.),
where 1‘3:A3 —> A is the funct.ion satisfying 1’3(x,y,z) =

= F(F(x,y),z).

3.0.1. 6'-valuation lemma. The following holds in the
sense of %1 : Let O be an e-structure and let B be an univer-
se in . . Let Q be a & =-string in L over B and let £+1 =
= dom(Q),

Then there is a valuation H of the triad (@ (B,B) in
{N,+,1a> ({0%,10}) such that Q(cc)s{x€A;H(x)42%3 S
€Q(cc+1) holds for each o« € § .

Y -valuation lemma. The following holds in the sense of
M : Let O be an e-structure and let B be an universe in 4 .
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Let Q be & 97 -string in Q. over B and let g+l = dom(Q).

Then there is & valuation H of the triad Q(B,B) in
{RN(Z 0),+,Ia) (10%,£03) such that Q(c+l)={xecAj; H(x) £
€212 ¢ q(c) holds for each o € € -

The & -valuation lemma follows from the & -valuation
lemma. Really, let G be a valuation of (L(B,B) in
{N,+,1aY (403,403) such that ng-&)s{xc A; G(x)4 2%} e
Sq(g-(wl)) holds for each o € § . We put 3=§f-oc . Thus,
AUpP)sixel; G(x)ézf’ﬁ}QQ(ﬁ-l) holde for each 14 B< § .
The required valuation is the mapping H = 27 §-(}.

3.0.2. The proof of the & -valuation lemma.

I. A path in A is a function t such that dom(t)« N and
rng(t) € A. We coms truct the function [F) with domain

U432 { <0, 305 = B & (3 € dom(t)}; t 8 & path in A%

by induction over N: '

[(PI(t,{ct,e0d) = t(x)

LRI(t,<ec, 3+1)) = F(IPI(t, (e, B7),t(B+1)).
We shall write more simply [FJ(t,cc, (3) instead of
[F1(t,<ec, B ). '

Lemma 1. Iet t be a path in A, £ g +1 £ 3 edom(t).
Then

[PI(t, e, 3) = F([FI(t,cc, 9),[F1(t,+1, 3))
holds.

This follows by induction on (3-ct .

Let t be a path in A, dom(t) = 2*+1, We define the path
T with dom(%) = 1§ +1 &8s follows: t(x) = t(F-x).
F:42_5 A is the function so that f"(x,y) = F(y,x) holds for
each x,y €A, [¥1 is defined similarly as [F).

The following lemma can be proved by inductionon -cc¢.
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lemma 2. Let t be a path in A, dom(t) =} +1. Then
LFI(t,e,@) = [FI(t, H=(3,4-c)
holds for each oc < (3 £ % . A

II. We put for each x€A: Gg(x) = min{i« 4 §;x€Q(0).
Thus, Gy is a function, Gqy:A—> N, and we have Gq(x)éms xe
6Q(c0), x< Gq(x)ax¢Q(oé) for each ocsg . We shall write
more simply G instead of G,. The index Q denotes only that GQ
is constructed from Q and this notion will be used in 3.0.3.

We define the function G* G*:A —> N, as follows:

G*(x) = 0 iff x¢B, G¥*x) = 2%(X) yee xea-B.
Let t be a path in A, We put

’VQ(t) = 5§ 6%(x);xe rng(t)3.
We shall write more simply 7' instead of 7’,. 7 is a function,
rng(V ) N.
We deduce from the definition of 7 that 7'(t) = O=rng(t)scB
and V(t) = 0 — (Vec, B € dom(t))(c & 3 —> [FI(t, =, 3)€B).

Let t be a path in A, dom(t) = J"+1. Writing [FI(t)
(LF1(t) resp.) we mean [F1(t,0,4°) (IF1(t,0,d") resp.). Note
that whenever [FJ(t,x, () appears, then we assume that
{t,<c0, (3>> is an element of dom([F]). We use the similar con-
vention for the terms [F)(t), [f](t,cc,(s), IF1(e).

lemma 3. Let z<A and suppose that [FJ(t) = z. Then
(x) vty #0— 282 L2, ar(e)
holds.

Proof. By induction on dom(t).

(i) Suppose that dom(t) = 2, Assume, for example that
G(t(0))£ a(t(1)). Thus G(z)4G(t(1)+1 holds and we have
2%(2) 2 5, 20(t(1)) 1¢ £ (1) B then G(t(1)) = O and, conse-
quently, G(t(0)) = O. We deduce from this that t (0) ¢ B, which
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is a contradiction. Thus, t(1)¢ B holds and we have
2.200t (1) 5. (g¥(t(0)) + 28(t11D)) = 2.9e).

(ii) Suppose that the statement (%) holds whenever
dom(t) £ 3 +1 and (3+12 3 is fixed. Let t be a path in A and
let dom(t) =[3+2. Let [F1(t) = z and assume that 7' (t)#0. We
shall prove that 29(2) £ 2. %(¢) nolds.

We put ¢ = 7 (t). Let J”° be the maximal natural number
such that 24 c. If o 2 § -1 then 28(®)s 2622200k
£ 2.c and, consequently, the statement in question is proved.
Assume J'< £-1.

(<) Suppose that G*(t(0)) £ 5. Let %€ N be a maximal

number such that

r . e
Yt Ag+1) = 2 Tl NE 5 .

Obviously, 0% y & [ . Moreover, 0% G¥(t(y +1))< ¢ and
p+1
g (€€ F . We put z) = [FI(£,0,5), 23 = [FI(t, 7+

+2, p+1).

Suppose that acéo G*(t( )) #£0. We deduce from the induction
hypothesis that 26(‘)42.§ = ¢. Thus, the following relation
holds:

(*) Glz1) €9” 14 is easy tnat
(% %) G(t(7+1)) £ | ye geduce as above that
(k%) G(z3) £ o

p+1

follows from d=§+2 a*(t(cc)) 0,
The relations (*),(x*),(*fﬂé hold too in the case if

I'e _ pr "
a?’o G™(t()) = 0 or ‘szﬂlc (t(xc)) = O. We have g = [FI(t) =

= F(F(2q,t(7+1)),85) = F3(z),t(7 +1),5,) and F{Q (s Q*1).
We deduce from this that z €Q(d +1). Consequently, G(z) £J"+1
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holds, and
28(8), ¥ & 5092 2 ¢ = 2.U(1)
follows immediately. '

() Suppose that G*(t(0))>35. Then G*(t(B+1))£ 5 .
Thus, G*(t(o)) = aXi(p +1))é§'ho]da. We have [FI(t) =z =
= LPI(t) (by using the lemma 2). We deduce similarly as in the
case () that 2%(Z)< 2.¢ nolas. l

III. The following definition of the function H:A— N
is justified:

H(x) = min £7°(t); LFI(t) = x3.
We shall prove that H is the valuation in question.
(a) H(x) = O=x€ B. Suppose that H(x) = O. Then there exists
a path t in A such that H(x) = 7/(t) and [F](t) = x. Thus, x<B
holds. Suppose that xe B. We have G*(x) = O and H(x) = O fol-
lows from the relation H(x) & V({<x,0>3) = a¢¥(x) = 0.
(b) Q(ev)E4xeh; H(x)4 2%} ¢ Q(oc+1) holds for eachoc e § »
At first, we prove that
(x9) xe&A-B —> 271 28X, g(x) 220(X) yoqs,

Proof. Let t be a path in A such that [FI(t) = x and
1H(t) = H(x). We have V(t)#+0 and, consequently, 2% . 28(X)
4V (t)£H(x). The statement (<) follows from this and from
the relation H(x) < V'({<{x,0>3%) = @¥x) = 2%(X) | e are pro-
ving (b). Let xeA be such that H(x)4 2 and x €B. We have
20(x)-1, H(x) 4 2 and, consequently x€ Q(cc+1) holds. Conver-
sely, let xe Q(oc)-B, We have G(x) £ «c . We deduce from this
that H(x)< 28X 2% -

(¢) H(F(x,y))&H(x) + H(y) holds for each x,y€A. This fol-
lows immediately from the construction of H.
(@) H(E(x)) = H(x) holds for each xeA.
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We shall prove (d) by using the following lemma.

Lemma 5. Let t be a path in 4, dom(t) =2%+1, and let
wefeah, (1) WEot) £ D (t).

(2) If Q is covariant then [FI(Eo tyoop) = BIEI(t,ap).

(3) If @ is contravariant then [FI(Bel,x,p) =
= B([FN(t, 3 -3 ,%-c)). )

The proof of this lemma is straghtforward gnd we omit it.

- We prove that
(g) H(y) £ H(E(y))
holds for each y« A. Suppose that E(y) = x. Let t be a path
in A such that [FJ(t) = x and 7'(t) = H(x). Assume covariant
Q . ™en [FI(Eet) = E(LFI(t)) = B(x) = y. Assume contrava-
riant O . Then [F)(E~t) = E(LFI(t)) = E(x) = y. We have
V(Eot) £ V(Eot) £ V(t) = H(x) and, consequently, (o) is
proved, We deduce from (0 ) that

H(y) £E(E(y)) £ H(E(E(y))) = H(y).

Thus, the statement (d) is prove&.'The proof of the & -valu-
ation lemma is finished.

3.0.3. Remark. (1) The valuation H from the previous
proof is defined as follows: {x,y>cH=yecd&x = nin{’lfQ(t);
[F1(t) = x}. Thus, there is a noimal formula &‘(x,y,X,Y) of
the language FL such that

| {(x,y>eH =3 (x,y, 0, V).
The function 7, Q is comnstructed by a normal formula again.
We deduce from this that there exists a normal formula
® (x,y,X,Y) of the language FL, satisfying
(x,y)eH = ¥ (x,7,0,Q).

(2) Let Q, Rbe G-artings in 4 over B, where B is an

universe in an e-structure ( = {A.F.E> . Let doniQ) = dom(R)
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and suppose that Q(e )< R( <) holds for each o¢ € dom(Q). We
put
H? = <x,55; & (x,y, A,Q)%, BR = {<x,%>; & (x,¥, A,R)}.
Then HR(x) £ H9(x) holds for each xe€A.

Proof. Let x be an element of A. Then GR(x)éGQ(_x).
(For GQ see the previous proof.) We deduce from this that
Vo(t) 4 'VQ(t) for each path t in A. The required propoai‘tiom

R
follows from this immediately.

§ 4. Scales for G¥'-triads and n®-triade

4.0.0. A triad J° is called scale for the type
(7@ resp.) iff J° is a 6°(a° resp.)-triad and, for each

triad ’3"‘4 of the type go (oW resp.), there exists a valua-

e P

tion H of & in 7 such that He @ .

4.0.1. Theorem

(1) The triad {N,+,Id"> (FN,i03) is a scale for the type
L

(2) The triad {RN(2=0),+,Id> ([= 01,{0%) is a scale for

the type er .

Proof. let  =<A,F,E) be an e-structure and let
& (Q,B) be a 6% _triad over A . We have [F,ET (Q,Q). Thus,
there is a 6 -string S of Q, S eM , and B€S(0)s S(c) <A,
[ F,E] (S(«x),S(cc+1)) holds for each oc+le€dom(S)e. (This fol-
lows from [M1] 2,1.0). Put, for each < dom(S),

{x,c>c P=x€S(cc )N E"S(cc)

We deduce from 2.0.3 that P'is a 6 -string of Q and
BeP(0)sP(c)E A, PP () e P(ec+1), E"P(c )= P(oc) hold for
each o« +1 € dom(P), Evidently, P is an element of 72¢ . Let

d’e N-FN be such that 2d°< dom(P). Let R be a relation, satis-
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fying: dom(R) = d'+1, R"{0} = B, R"{’} = A, 14 <d—>
— R} = P(2«). It is easy that Re % and R is a 6 -
string of Q. Moreover, R is a G -string in @ over B. We de-
duce from the 6 -valuation lemma that there is a valuation
He M of A(B,B) in <N,+,Id> (10%,{0%) and x€Q=(3 n)
(H(x) £ 2) holds. Consequently, H is a valuation of A.(Q,B)
in {N,+,Ia> (FN,{03}) and the part (1) of the theorem is pro-
ved. The part (2) can be proved quite analogously as the part
(1).

4.0.2. Remark. Let ((Q,B) be a triad and suppose that
Q € Sdy, Be Sdy. Assume that Q is a 6-class which is not a
6°%-class. Then there exists a valuation H of a(Q,B) in
{N,+,Ia) (FN,{0}) and He Sd%. But no valuation of 4(Q,B) in
{N,+,Ia> (FN,{0%) is an element of Sdy. .

Proof. The existence of a valuation, which is a Sd’;-
class, follows from the previous theorem (because Q.(Q,B) is
a ¢ '~triad). b

Suppose that there is a valuation of A(Q,B) in
{ N,+,Ia) (FN,{0}) and let Hc Sdy. Let § & N-FN. Then R =
= x,0t?; H(x)< v &xe§ ¢ is a 6 -string of Q and Re Sdy.
Thus Q is a &°-class, which is a contradiction.

4.1.0. Let Q be an equivalence on a class A, The map~

ping H:A2~—> RN(2 0) is called metric of Q on A iff the fol-

lowing holds for each x,y,z € A:
H(x,z) £H(x,y) + H(y,z), H(x,y) = H(y,x), H(x,y)2 0=<{x,y>eQ,
H(x,y) = 0= x = y.
Metrization theorem. Let Q be an equivalence on A,
A e , and let Q be a @' _class. Then there exists a met-
ricHof Qon A, He WL.
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Proof. Let E°:V2u4{0% —> V2u {03 be the mapping defi-
ned as follows: E°(<x,y>) =<y,x?, E°(0) = 0. Then A =
=<a%ud 03, F°, E°) is a contravariant e-structure and J =
= 4(Qu403, I{x,x?;x€Atui0}) is a P triad. Let G B
be a valuation of J° in {RN(z 0),+,Id> (L201,10}). A met-
ric in question is the mapping G/‘Aa.

Corollary. (1) There exists a metric H of = on V so
that He sa¥.

(2) There is no metric of £ on V which is an element
of Sdy.

Proof. (1) follows from the metrization theorem. (2)
follows from [M11, 1.0.7 and from 4.0.2. (For the equiva-

lence = see also § 0.)
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