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A METHOD FOR CONSTRUCTING SOME ENDOMORPHIC
UNIVERSES
A. VENCOVSKA

Abstract: In this paper there is introduced a method
of constructing endonorphge universes satisfying certain con-
ditions dealing with their location in the universal class,
for instance endomorphic universes separating two classes.

Key words: Alternative set theory, endomorphic univer-
se, pro*ongaﬁ' on, revealed, d efinable, reserve.

Classification: Primary 02K10, 02K99
: Secondary 02H13

We assume the reader to be familiar with the first two
chapters of the book [V], When using results from elsewhere,
we recall them.

We are going to study endomorphic universes, introduced
in the last chapter of [V]., A class A is an endomorphic uni-
verse iff there is an endomorphiam F such that F"V = A, the
function F being an endomorphism iff its domain equals V and
for each set-formula 9(‘:1,...,xn) of the language FL and each
Y19ee+¥y, the following holds

P(Fyreee¥y) B g (Flyy),eccFlyy ).

Endomorphic universes observed from inside can play the

role of the universal class and are variously located in it.
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For our methed the following equivalent characteriza-
tion of endomorphic universes, which can be found in the pa-
per [ S-V 1], will be essential.

A class A is an endomorphic universe iff the conditions (EUa)
and (EUb) are satisfied
(EUa) If ¢(z2) is & set-formula of the language FL, then

we have (3Ix) ¢ (X) —> (Ix e A) o (x) .

(EUb) For every countable functiom Fc A there is a set-func-
tion f in A prolonging F, i.e. Fcf,

We shall concern us with the location of endomorphic uni-
verses in the universal class. In the first section we introdu-
ce the concept of reserve and we present all that is necessary
for our method. We demonstrate this method by constructing an
endomorphic universe separating two classes X, Y if the reser-
ve of the former with respect to the later is revealed. In the
second and third section we deal with conditions under which
the reserves are revealed and we show some applications of the
possibility to separate classes by an endomorphic universe. In
the' end we present two more complicated examples, namely a con-
struction of a non-revealed endomorphic universe intersecting
the class y-FN for each infinite 9 and a construction of a
monotonous countable sequence of endomorphic universes having
Def as its intersection.

) Now we recall for convenience some frequently used con-
cepts from the Alternative Set Theory.

A class X is called revealed if for each countable sub-
class Y there is a set u such that YsucX, Each set-theore-
tically definable class is revealed. If 9(x,X) is a normal
formula of the language FL; then the class iz; 9(2,2)} is re-
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vealed for each set-theoretically definable Z.
An interaéction of at most countably many revealed classes
is a revealed class, If-ii%;ne FN% is a sequence of non-empty
revealed classes such that 1&‘_1_&_ % for each n, them N -iln;
ne FNY is a revealed and non-empty class.

The set y is said to be definable from the class X iff
there is & set-formula <(3) of the language FLx'euch that

(3¢ 3) 9(z) & g(y).

The class of all sets definable from X is denoted Defy. An

ordered pair is definable from its elements and conversely.

If{M_ ; * e T} is a sequence of classes, where T is either

FNorfl and M c lﬂ ifc £ 3 , then Defumadace.m=

= U{Def“dl;oo e T%. A
We suppose that W is a fixed well-ordering of the type

£l of the universal class V. Each proper initial segment

with respect to such ordering is countable.

I.

Theorem 1. Let 9(:) be a set-formula of the language
FLy. Then the class ix; ¢(x)} is either finite, in which ca-
se it is & subclass of Defy, or it contains at least count-
ably many elements from Defx.

Proof. Let F be a one-one mapping of N onto V definab-
le by a set-formula of the language FL. The sets x, aatiaf}-
ing

9 (xa) & (¥ 7 g (y) — (Im<n)(g=xg)v (Fy)z Fl(x,)))
are definable by a suitable set-formula of the language Fly.

The theorem follows.
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Corollary. Let X-Defx. Then X satisfies the condition
(EUa).
We define the reserve of X with respect to Y for each X, Y as

follows:
Rev (X,Y) ={x; Dei’xu{xin! = 0%,

Theorem 2. The following statements hold:

(a) Bsvy (X,Y)nY =0,

(b) I!U{Yg;gc K{ — Bsv (X,Y) = N {Ravy (X,Ig); § € K%,
(¢) DefynY = 0= Rev (X,Y)4@ = Rsv (X,Y)2 Defy,

(@) XsX;%YecY,—> Rev (X,,Y;)c Rev (X,Y),

(e) xe Rev (Xuisg},Y) = <(x,2> ¢ Rsv (X,Y),

(f) Let X=U{X ;ne FN{, Y=U{Y ;ne FN{ with X Xpag0Tns Ypeg
for each ne FN, Then Rsv (X,Y) =N{Rsv (Xy 0%, ) sne FNE.
Proof. The statements (a)~(e) are trivial. (f) follows

from the fact that for each x

Defxu{x}nYSU{Dcf U{x}ﬂyn;némit

This can be seen by considering de Morgan laws because m<n

implies
Defy uix3” T,lefy o ix3n Ype

Theorem 3. Let Rsv (X,Y) be a revealed class and z an
element of Rsv (X,Y). Then Bsv (Xu<{z},Y) is a non-empty re-
vealed class.

Proof. The classes Defy ;g3 and Y are disjoint because
g is an element of Rsv (X,Y). By the theorem 2¢ Rsv (X oy is},Y)

is non-empty.
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By the theorem 2e¢ Rsv (Xu{s3},Y) = (Rsv (X,Y))"{s}. This is a

revealed class bécause Rsv (X,Y) is revealed.

We note that the part (b) of the following theorem is

dispensable in this first section.

Theorem 4. (a) Let Rsv (X,Y) be a non-empty revealed
class, «« € 1. and H a function defined on <« n £2  such that
H(3) is either O or an element of Rsv (XuH"3,Y) for Bexn
nf . Then the class Rsy (Xu H"x ,Y) is non-empty and revea-
led.

(b) Let Rsy (X,Y) be a non-empty and revealed class and
Rsv (X,i{y}) revealed for each y. Let oc be an element of Q.
and H, G functions such that dom (H) = n Q0 , dom (G) ¢
e N, H({3) is either O or an element of Rsv (XuH"j3 ,Yu
UGB ) for 3 e <N and G(B) is not an element of the eiaqn
DequH"((& +1) whenever G is defined for (3.

Then the class Rsv (Xu H"« ,Yu G"c¢c ) is non-empty and revealed.

Proof. We proceed by transfinite induction.

(a) For y =0 the class Rsv (Xu H"y ,Y) equals Rsv (X,Y) and as
such it is non-empty and revealed. Let us assume that it is true
for <y £ x ’ *

If y is a limit number in O , let {B incFN}< O be a
sequence such that Uifl, N0 ;ne FN} = yn 4 , By the theorem
2f Rsv (Xu H"y ,Y) is the intersection of the monotonous sequen-
ce of non-empty and revealed classes Rsv (Xv H"[sn,Y) and the-~
refore it is non-empty and revealed, too.

If 7 is a successor then the desired property of
Rsv (Xu H"7,Y) follows from the inductive assumption and the
theorem 3 because H(/~1) is either O or an element of
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Rsv (XuH"(y -1),Y).
(b) The steps for O and a limit number )~ are the same as
above. Let o be a successor and Rsv (XuH"(y -1),TuG"(y -1))
a non-empty and revealed class. The same is true about
Rav (XuH"»,YuG"(y ~1)) by the theorem 3. If G is not defi-
ned for 9 - 1 then the proof is complete.

In the other case G(73*~1) is not an element of DequH"y'
The theorem 2c¢ implies non-emptiness of the class
Rsv (X,{G(y -1)%) which is moreover by our assumption reveal~
ed. Obviously, H(B) is an element of Rsv (Xu B"f(3,iG(3 -1)})
for each 3 €y n L ., Thus the class Rsv (XuH"y ,{G(y -1)%)
is non-empty and revealed by (a). By the theorem 2b the class
Rsv (XuH"y ,YuG"p ) is the intersection of the reserves of
XuH"y with respect to YuG"(~1) and {G(y -1)¢. Consequent-
ly, it is non-empty and revealed. (Each non-empty reserve con-

tains Def.)

let iF, ;¢ € (17 be a fixed sequence of at most count-
able functions such that each such function F<V occurs here
uncountably many times. Actually, there is no such object in
the extended universe, but we can imagine that we are working
with a suitable coding pair because the system of all countab-

le classes is codable. In the same sense we use sequences of

classes elsewhere, too.

Theorem 5. LetiM_ ;o s L} be a sequence of classes,
M, = Def.w for each ¢ and M_ < ll,_, if «c 2« 3 . Suppose that
for each o« the following holds: if E_ is a subclass of M,
then F, has a prolongation in M .y, i.e. there is a set f in

k41 such that £f2F_, .
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Then the class M =U{M_ ;o €Nl is an endomorphic uni~-
verse.

Proof. By the corollary of the first theorem M satis-
fies the condition (EUa), because M = Defy. Let FcM be a
countable function. Obviously, there is «c e ). such that Fe
cM_ and B2« with F = Fﬂ . Consequently, F has & prolon-
gation in Mﬂ‘,’s—.u. We have proved the condition (EUb},

Theorem 6. Let Rsv (X,Y) be a revealed and non-empty
class, Then there is an endomorphic universe A such that XcA
and YNnA = O,

Proof. We shall define a function H for « ¢ 2 such that
H(x) is the first element (w.r.t. W) in the class Rsvy (X v
U H"« ,Y) prolonging E, if F, is a subclass of Defxvn.;w and
H(e¢) = O in the other case.

It follows immediately from the theorems 2c¢ and 4a that
we can proceed by transfinite recursion, because the classes
Rsv (XuH"x ,Y) remain revealed and contain Defy jume ©

The class A = Defy VHO. is an endomorphic universe by the
theorem 5 (we set M = Defy gw.)+ By the theorem 2a the clas-
ses A and Y are disjoint, because A is constructed to be a
subclass of Rsv (X,Y).

II. This section is devoted to some important properties
of the classes Rsv (X,Y) and Defy. We shall use a lemma des-
cribing the structure of these classes. The lemma is rather
technical and requires the following notation.

For each set-formula ¢ (¥,X;,X5ye..X,) of the language FL let

T '{(y,xl,oooﬁ>; 3’(3.!1y---§1)&(Vl)(g(z,xl,...
Y )—> z=y)3.
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-Let us recall a broperty of ordered n-~tuples:
(’,xl,xa'ooulﬁ) = (”, <x1,x2,?oc%>> .

Note that each class r:, is a function and a set-theoretical-~
1y definable class and that the class & of all set-formulas
of the language FL is a most countatle.

lemma, For each X, Y we have the following
(.) D.fx = U{ Tg "Xn; ?(y'xl’vocﬁ)s é},
(d) BRev (X,Y) =V~ U{ (l';l"!)"xn'l; @(FoXypeooXy)e Bi=
= n‘t Ve~ (T;,l"!)'xn-l; é:(y,xl,...xn)e 9} .

Proof. Both the assertions can be seem from the fact
that & set £ is an element of Dsfz iff there is a set-formu-

la 9(y,x1,...rh) of the language FL and 3,,3;y¢¢.8, in 2

such that
P(B,y8y50008,) K (Vy)( cy(y,sl....zn)—» y=z).

Theoren 7. Let wu be a set, o¢ the number of its ele-
ments and «< ¢ N-FN. Then for each 7y in N-FN there is a set
v set-subvalent to ocf and containing Defu as a subclass.

Proof. By the previous lemma Def, is the union of coun-

tably many sets Ty'un, each set-subvalent to o« for some
neFN,
The pmloﬁgation axiom implies the existence of a set w set-
subvalent to < and such that each T@"un is an element of w
and for each xew is x 2@ "1, Setting v = Uw, we obtain &
set with the desired property. -

Theorenm 8. (a) Let X, Y be set-theoretically definab-
le classes or - more generally - let the pair (i,!) be fully
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revealed. [See [S-V 11.) Then the class Rsv (X,Y) is reveal-
ed.

(b) Let X, Y be &-classes. Then the class Rev (X,Y) is
revealed.

Proof. By the lemma the class Rsv (X,Y) is an intersec-
tion of countably many classes, each definable by a x;oml
formula of the language FL with the only class parameters X‘,!.
Under the assumption made in (a) such classes are revealed.
Consequently, Rsv (X,Y) is revealed. The assertion (b) follows
from (a) and the theorem 2f,

Corollary. Let X satisfy any of the following conditionms:
(a) X is a set-theoretically definable class (more generally:
X is fully revealed),
(b) X is a &-class.
Then the class Rsv (X,iy}) is revealed for each y.

III. Now we shall concern us with applications of the

theorems 6, 7 and 8.

Theorem 9. Let Rsv (X,{y}) be a revealed class for each
set y. Then the intersection of all endomorphic universes con-
taining X is the class Defx.

Proof. Each endomorphic universe containing X contains

frool
Defy by the condition (EUa). For each y#Defx there is an en-
domorphic universe containing X and not {y} by the theorem 6.

Theorem 10. (a) lLet wé¢ Def . Then there is an endomor-
phic universe A such that wsS A and wégA.
(b) Each infinite set u has a subset w such that w¢ Def,.

Proof. The first assertion is an easy consequence of
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the theorems 6 and 8.
Let o« be the number of elements of the set u. The power-set

of u, P(u), has 2% elements. There is an infinite f3 such
that 2%> « |, because the class if3 ;2%¥>ccfP? is set-
theoretically definable and each finite number belongs to it.
Suppose that each subset w of u is definable.from i';a ele-
ments: we Def SDef,. Then (u)SDef . By the theorem 7 the-
re is a set v set-subvalent to oc® enc{: that Def < v. Bﬁt
$(u) cannot be a subset of v because of the number of its

elements,

Theorem 11l. There is an endomorphic universe A such

that the initial segment R,

Ry = {we N (VB £c)(BeA)

with the usual addition and multiplication is not a model of

PA (= Peano axioms).
Proof, If an J‘_.nitial segment R is a mode)l of PA then it

is closed under the operation IM

IM(c) = min{P; B4 0&(Vy)(y £ < —>y|B )i,

This is easily verified from the fact that the ordering and
divisibility in R coincide with the restriction of the corres-
ponding relations in N and that the following formula is pro-
vable in PA

(Ve )@ARI B0 &(VPIy £« «—>I1pB)).

Let < be an infinite number. We shall show that there
is an infinite (3 with IM(c) > «” . For each n, k from FN
IM(x) is divisible by (¢ -n) and (¢ ~k). The greatest common
divis'or of these numbers is less or equal to In-kl. It fol~
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lows that for each n
- - - 41 m+1
IIQ::)ZOC--%I]‘-%EE ...'%‘2?_ (f) '(%T) >dln¢

The class {3 ;LM(cx) > ocﬂﬁ is set-theoretically definable,

each finite number belongs to it and consequently an infinite

number, too. .
Let o¢,3 be infinite numbers such that IM(«) > <l . By

the thearem 7 there is a set v such ‘that Def, = v and v is

set-subvalent to o« . Thus we cen find a number o in

LM(ec) - Def . ’

By the theorems 2c, 8 and 6 there is an endomorphic universe

A such that << A and o'¢ A, Clearly, R, is not closed un-

der thé operation IM and 8o it is not a model of PA.

Iv.
Theorem 12. There is an endomorphic universe A such that

(Vy € N-FR)(I Ly 0p ey ~FN)(by e A & ap ¢A).

Proof. Let S be a one-one mapping of £ onto N-FN. We
shall define functions H and @G for <« € L , H(x) =
= {H;(«),H,() > , such that Hy(x) is the first element (with
respect to W) in the class Rsv (H" ,G"c ) prolonging the func-
tion E if F, S Defya and Hy(x)=0 in the other case:
Kz(oc) is the first element (with respect to W) in the inter-
section of Rev (H"x U{H;(x)},0"¢) and S(x)- FN
(it follows by the theorem 3 that H(x) is an element of
Rsv (H"o ,G"c¢ )); G(cc) is the first element (with respect to
W) in the class S(x) = FN - Defgu(.,1)e
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We can proceed by transfinite recursion, because by the
theorem 4b and 2c the classes Rsv (H"< ,G"c ) remain revealed
and contain Defa..«‘ s+ by the theorem 3 andA 2c also the classes
Rev (H"c u{Hy(x)},3%c ) remain revealed and contain FN and
the class 3(05 = FN - Defpa(.41) is ‘always non-empty, beceau-
se it is a complement of a countable class to an uncountable
one.

Let A = D"B".Q. o Then A is an endomorphic universe by
the theorem 5 (we set M_ = Defy, ). The classes
Bsvy (K", ,G"x ) are non-empty for o € L and so AnG"Q= O,
Moreover A2H; Q.

Clearly, A has the desired property.

Theorem 13. There is a countable sequence of endomorph-
ic universes iA ;ne FN} such that A 24, ., for each n and
NiA ;ncFNY = Def.

Proof. We shall use the following notatiom.

If H, are functions defined on L , let

A(cc,n,k) = DeLULRY; 3 v 1B () m>32K3
Rlx,n) =N{Rsv(A(cc,n,k+1), Alx,n,k) = A(c,n,k+1); k<n}

(R( oc,0) equals V.)
Let < be the lexicographic ordering of the class £l < FN,

{Pp:13><2<x,m> = either B < or'(f& = and j<n).
Kote that it is a well-ordering.
Bach class R(x,n) is an intersection of finitely many reserves
of countable classes and comsequently by the theorem 8 a re-
vealed class. Moreover by the theorem 2c each class R(c,n)
contains Alx<,n,n), because for each k we have A(x,n,k+l) = .
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= D.rk(d,,n,bbl) and for k<n Alo,n,k+1l) contains the class
‘(dgn,n)o

It follows that we can define by transfinite recursion
a function H on 0 x FN such that for functions HyHp ) =
= H(xc,n) the following holds: Hy(x) is the first element
(with respect to W) in the class R(cc,n) prolonging E. if
E S Alxyn,n) and Hy(«) =0 in the other case.

Let Ay = UiA(«yn,n)jc € 03 . By the theorem 5 each
class A, is an endomorphic universe (we set M = A(<,n,n)).
Obviously ApaS A, for each n.

Let ueA, - Def and < ocy,n,> the first {cG,n) in.
Q> FN such that u is an element of A{c,n,0). Clearly
{otgiByd ¥ < 0,0> amd n + 0, because for each k we have

(1) ot + 0 —> Al,0,k) = UTA(B,3,K); <f3,3 2<<0,073.

Consequently, u is not an element of the class A(aco,no,no)

because
Al cgsmg,ny) = Alo,0,n)) < Al y,0,0)

and so there is k, such that ue A(ccy,n ,k,) - A_(cco,no,k°+1).

We shall prove by transfinite induction that u is not an
element of A(x,n,k +1) for each {c¢,n) . Then u is not an ele-
ment of ‘k°+1 and our assertion concerning the intersectiom of
{A;;n e FN{ follows.

For <ct,n>=3 {otyrny? it is true, because for each k we

have
) (@) 2 (B3> —> Ale,n,k) € A(B, k).
Let (yn ) & {etgsB,) and assume that u is not an element
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of A(f,J,k,*1) if (B ,5> < {(,n) .

By (1) u is not an element of Alx,n,k +1) if n=0.

If n40 then u is an element of Alx,n-1,k)) - Alec,n-1,k +1)
by (2) and the inductive assumption. Either (n£k +1) or
(Hp_; () = 0) implies that Alec,n,k +1) = Alec,n-1,k +1),
For (n-1>k,) and (H,_,(c«)#0) we have

Hp_3(x) e Rev (A(x,n-1,k +1), Alx,n-1,k;) = Aleyn=1,k +1))

and by the definition of reserves

Aletyn, k +1) N (Alegyn-1,k;) = Alx,n-1,k +1)) = O.

In either case u is not an element of the class A(cc,n,k°+1).
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