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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE’
20, 4 (1979)

REAL AND IMAGINARY CLASSES IN THE ALTERNATIVE SET THEORY
Karel CUDA, Petr VOPENKA

Abstract: This paper is meant as a contribution to the
deveTlopment of mathematics in alternative set theory. In the
first section we shall introduce the concepts of real and
imaginary classes. "Philosophical"™ reasons for this divisiom
are described. Some classes based on the axiom of choice and
the axiom of cardinalities are proved to be imaginary. In
the second section the notion of real equivalence and real
subvalence are defined and investigated. The ordering by real
subvalence is proved not to be linear.

Key words: Alternative set theo real class, imagina-
ry class, real equivalence, indiacemgility equivaieneo.

Classification: 02K10, 02K99

Various types of classes occur in the extended universe
studied in altermative set theory. We shall introduce the
concepts of real and imaginary classes (every class being
of one of these two typeé). Real classes are those ones that
may be seen when observing continuum. Imaginary classes are
used mainly for calculations on classes. The first sectiom
is devoted to the fundamental properties of real and imegi-
nary classes. It is proved e.g. that {. and selectors are
imaginary classes. The one-one mapping between two infinite
sets having very different cardinalities is an imaginary
class. On the other hand, set-theoretically definable
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classes, countable classes and classes definable with the
help of real classes, are real.

When studying various finer types of cardinalities, we
use equivalences based on one-one mappings of various types.
Keéping accordance with this procedure we study so called
real equivalence, i.e. the equivalence given by one-one map-
pings which are real classes, in the second section. It is
proved e.g. that there are two real classes incomparable by
ieal subvalence.

Our considerations follow those ones given in P, Vo~
pénka ‘s book, Mathematics in alternative set theory. We use
notions and notation used in this book and [V 11,

The work presented here has arisen in the Prague semi-
nar of alternative set theory on the basis of discussions

held between the authors.

§ 1. Basic properties of real and imaginary eclasses

Every our observation is characterized by an indiscerni-
bility equivalence (see Ch. III [ V]). The classes, we obser-
ve on the horizon of our observation abilities, are exactly
the figures in the mentioned indiscernibility equivalence.
These coqsiderations lead to the following definitions.

A class from the extended universe is called real if
there is an indiscernibility equivalence % such that X is a
figure in the equivalence ¥ | If the class X is not real then
X is called imaginary.

It is obvious that every set-theoretically definable

class is real. ’

- 640 -



Theoremn. For any sequence {Xn;nc FN} of real classes
there is a set u such that for every n € FN the class xn is
a figure in the equivalence{é}.

Proof: ILet i=n;ne FN} be a sequence of indiscernibili-
ty equivalences such that for every n the class X, is a fi-
gure in the indiscernibility equivalence =_. Using {V 1] we

n

can find a u such that is finer than ﬂ§=n;neFN}.

2
{1l
The following two theorems are immediate consequences.

Theorem. If X, Y are real classes then X-Y is real.

Theorem. If {Xn;ne FN} is a sequence of real classes
then UiX ;ne FN} and N{X ;n¢cFN} are real.
Especially, every countable class is real. Similarly

any 6-class (Jr -class) is real.

Theorem. Iet F be an automorphism. If X is a real class
then F"X is real.

Proof: If X is a figure in the indiscernibility equi-
valence R then F"X is evidently a figure in the indiscerni-
bility equivalence F"R,

Theorem. If X is a figure in the indiscernibility e-
quivalence -i%} and F is an _automorphism such that F(u) = u
then F"X=X.

Proof: Obviously it is sufficient to prove the asser-
tion for a monad in {é}. In this case there is a sequence .
§9n(x);neFN§ of set-formulas of the language FLg,; such
that X =N{{ x; ¢ (x)};ne FN§, If xe X then for any n the
formuls g, (x) holds. As F(u) =u(F1(u) = u) we have also
R (F(x))( ?n(F-l(x))). Hence F(x)e X(F-l(x)e X) holds.
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Iheorea. If ¢(x,X),...,X;) is a formula of the langu-
age FI‘V and !1,...,In are real classes then the class
{y; g»(y,Yl,..-,!n)i is real,

Proof: Let us choose u to have the following properties.
All the constants occurring in @(x,X;,...,X ) denote elements
of the class Det{u}. The classes Y;,...,Y, are figures in {53.
Let x be such that ¢(x,Yy,...,¥ ). If y {‘%} x then there is
an automorphism F such that F(u) = u and F(x) =y [V §1 Ch.V].
As @(x,Yy,...,Y,) holds, we aleo have @(F(x), F"Yy,...,F"Y ).
Using the previous theorem we obtain F"Y1==Y1,...,F"!n=1n and
thus we have @(y,¥y,...,¥,).

Theorem. Let @(X;,%,...,X ) be a formula of the langu-
age FLV. Let !1,...,In be real classes such that (312) ¢ (Z,
Yy4e00,Y). If Y is a class such that ¢(¥,Y;,...,Y,) holds,
then the class Y is real,

Proof: Obviously Y ={x;{3 X )(p(X,,Tq,..0,T)&xeX))i.

Now we use the previous theorem.

Remark. If 'ixn;ne FN% is a sequence of real classes then

{an'{ ni;neFNY is also a sequence of real classes and
U4iX,=ink;ne FN} is a real class. Hence a sequence of real

classes can be understood as a real class.

Theorem. - The class { F"X; F is an automorphism} is cod-
able iff X is a real class.

Proof: Let X be real. Let u be a set such that X is a fi-
gure in the equivalence {‘%}. If F, G are automorphisms such
that F(u) = G(u) thenF"X=G"X. (To prove it we note that G(u)=
=(Go!"1)F(u), @"X=(G o F~1)"(F"X) and we can use the above
theorems.) Let us put X = {y;(2F)(F is an automorphism %
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& F(u)=sv & (3 xeX).(y=F(x)))3. Obviously {X ;veV¢{ is a cod-
able class and {F"X; F is an automorphism} is a subclass of

the mentioned class.

To prove the converse implication we auppoaé that X is
imaginary. At first we prove that if Y+ X is an arbitrary
uncountable class and if F, is an at most countable simila-
rity then there are u, v such that Fou{(u,v>§ is a simila-
rity and ue X=v¢ Y holds. Let us choose g such that »
dom(F,) € Def 2. X is not @ figure in the equivalence -i%! be-
cause X is imaginary. Hence there are u, U such that ueX,
¢ X and u iél U. Let v be such that Fouid v,ud} is a simi-
larity. Foudi< v,u)} is a similarity, too. Now {v,u) or
{v,i) has the needed property.

Let {X ; « 6 L% be an enumeration of the class {F"X; F
is an automorphism} (bijection of £ onto the class). Let
4y, ;< €% be an enumeration of all sets. By the transfi-
nite recursion we construct a sequence {G‘;oc € 0% of at
most countable similarities having the following properties,
For every o« we have y, ¢ dom(G. ), y_ e rng(@,),(3ye
cdom(CG))(yeX=G,(y)¢X,) and f 6 N D=30, € G, . Let
us put G=U{ Gy ;¢ € 223 , G is obviously an automorphism

and for every o we have G*X#} X, - a contradiction.

Remark. Later we shall prove that there are imaginary
classes. Hence we shall see that the class of all automorph-

isms is not codable.

The following theorems serve as criteria for the deci-
sion if a class is imaginary. Using these theorems we can

prove for some frequently occurring classes that they are
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imaginary.

Theorem. If X is a real revealed class then X is &
oY -class.

Proof: Let ¥ be an indiscernibility equivalence such
that X is a figure in ¥ . In § 2 Ch. III [V] it is proved

that X is a closed figure in t and thus a & -class.

The last theorem is equivalent to the following asser-
tion., If a class X is revealed and if it is no i -class then

X is imaginary.

Theorem. If a real class XcN has the property
(Voo )(V(3 ) (e X & 3= =>BeX) then X is a ¢ -class or
a J' -class. '

Proof: We must consider two cases.

a) For any countable class Y¢ X there is & ¥ & X such
that Y€ 9+ . The class Y is revealed in this case and thus
Y is & ar-class.

b) There is a class Y& X which is countable and such
that for every 7y € X there is a 3e Y such that y € 3.

We have X=UY in this case and X is a 6 -class.

Theorem. If X is a real class such that for any set x
the intersection of x and X is a set then X is a set-theore-
tically definable class.

Proof: We prove at first that the class X is revealed.
Let Y be a subclass of X which is at most countable. Let
Ycu. Let us put v = Xnu. Obviously we have Y& v<X. Thus
X is a Jr-class (we use the last but one theorem). Using si-
milar arguments we prove even that V-X is a J-class. Thus
X is set-theoretically definable (see § 5 Ch. II L V1),
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Theorem. Let X be a real class, Let ¢ Y pincFNi be a
sequence of set-formulas of the language FL,, If for svery
uEX there is an n such that ¢,(u) ihen there are sequences
{X,;ne FN} of set-theoretically definsble classes and {ky; ne
€ FN§ of finite natural numbers having the following proper-
ties.

1) XcULKX ;ne FN3,

2) For every uSX, there is an mek, such that g (u).

Proof: Let X be a figure in the equivalence {éi' Remem~
ber that there are at most countably many clopen figures in
iéi' Thus there is an enumeration {)g,l;ne FN$ of clopen figu-
res in 45} such that for every X there is a k e FN such that
the property 2) holds. It is sufficient to prove that X &
cU{iX,;ne FN}. Let x¢X, let 1Y, ;ne FN} be a sequence of
clopen figures in {%} such that Y <Y and Mon(x) =ﬂ{Yn;
ne FN? hold. It is sufficient to prove that there is an n, e
¢ FN such that for every uc Yno there is an me¢ n, such that
@p(u) holds. If it is not this case then there is a sequence
{un;nsF!ﬂ such that uw &Y and for every ken the formula
7 @y (uy) holds. If we prolong the sequence iw,;ne FN§, then
there is an o € N-FN such that for every n< FN we have u <
€Y, and N gan(uw). Thus we have u & X and there is no ne

¢ FN guch that <,(u) - a contradiction,

The following theorem is a consequence of the last theo-

rem.

Theorem. For any uncountable real class X there is an
infinite subset of X.
Proof: We prove that if a real class X has only finite
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subsets then X is at most countable. Let g, (u) be the for-
mula u@n. Using the previous theorem we obtain sequences
{X ;ne FN{ of set-theoretically definatle classes and
{k,;n e FNi of finite natural numbers such that X€U{X ; ne
€ FN} and (VusX) (Emckn)(u%m). In this case &%kn
holds and thus X is at most countatle.

Theorem. The class {. is imaginary.

Proof: The class £l is uncountable. If we suppose that
£  is real then using the previous theorem we obtain an in-
finite subset u of ) . But uEN and thus u is not wellordered
by the relation i{w,3};ce fvec=[3% - a contradiction.

Theorem. Let I be a compact equivalence. Let v/2 be an
uncountable class, If X is a selector for % then X is imagi-
nary.

Proof: The class X is uncountable. If X is real then

there is an infinite subset u of X. As g_is compact there
are x,yeu, x+y, x;y. As X,y ¢ X the class X is not a selec-

tor for % _ a contradiction.

Theorem. Endomorphic universe is imaginary iff it is
no or -class.

Proof: Let A be a real endomorphic universe. A is ob-
viously uncountable; thus it must have an infinite subset.
In the paper [SV 1] it is proved that A is revealed in this
case, Hence A is a ' -class following the first of~our cri-

teria.

Fact: The class of all sutomorphisms is not codable.

In fact, we know that there are imaginary classes and thus

- 646 -



using the above remark we obtaim the assertion.

The following assertion is a special case of the above
theorem.

Let X be a real class. Let g(x) be a set formula of the
language FLy. If (VusX)g (u) holds then there is a sequen-
ce {xn;neFNE of set-theoretically definable classes such
that XcU<X ;ne FN} and for any finite natural number n we
have (Yus X)) ¢ (u). (Put ¢ (u)=¢ (u).) Especially, we ob-
tain the following theorem.

Theorem. For ary real function F there is a sequence
{Fn;n EFN§ of set-theoretically definable functioms such that
FSU{F ;neFNi. ’

Theorem. Iet o,y be infinite natural numbers such
that for every finite natural number n we have nw < 3 . If
F is a one-one mapping of o«c onto 7y then F is imaginary.

Proof: Suppose that F is real, As F & o= o there is a
sequence of functions {f ;ne FN} such that for every n we ha-
ve f, & yxx and FSU{f ;ncFN}. For every n we have
£ 00 Z o6 . Obviously 7= F"ou € U4 £ho¢ jne FN3, Thus there is
an n, such that y=U{ff;nen3. (See [V § 4 Ch.I).) But
Ufflowjnend X n,c - a contradiction.

Especially we have: Every one-one mapping F of oc onto
ooz is imaginary.

The proof of the following theorem is analogous. Hence
it is left to the reader. We only advise the readed to use

the properties of the geometric series in the proof.

Theorem. If o is an infinite natural number then the-
re. is no one-one real mapping of « onto {7 ;(V neFN)
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(ny<ec ).

Theorem. If F is an automorphism and F is not the iden-
tity mapping then F is imaginary.

Proof: - If for every o¢ the formula F(x)=cc holds, then
F is the identity, as there is a one-one mapping of N onto V
defined by a set-formula oi’ the language FL. Thus there is
an o« such that F(x)= o . The automorphisms F and F‘l are
both imaginary or both real and thus we can suppose cc+ 1 &
£F(x). Let us put  =F(e). Obviously F(«c™)= 7% (P is an
automorphism). If we suppose that there is an n such that

1?~< noc® holds then (of+1)**1

+ < s e«
P*leng® - a contradiction, because oo ¢ <

< ?,T< n«® . Thus we ha-
ve (cc+1
+1 : .
< (cc+1)°‘ « These considerations prove that we can suppose
that we have chosen o¢ such that for every finite natural num-
ber n the formula nec < F()=2* holds. If F is a real class,
then F Po¢  is also a real class, But Fto is a one-one map-
ping of o¢ onto o - a contradiction with the previous theo-

rem,

§ 2. Real equivalence and real subvalence

The above considerations lead to the following notions.

Real classes X, Y are said to be really equivalent (we
use the notation Xé!) iff there is a one-one function F such
that X=dom(F), Y=rng(F) and F is a real class., Analogously we
define Xé! iff there is a one-one real mapping F of X onto

a subclass of Y. XX Y iff XZY and -1 XNY.

There are plenty of obvious assertions holding for the

real equivalence. We will not formulate such assertions here.
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To show our approach we prove here only the Cantor-Bernstein
theorem in the following version expressing the essence of

the theorem,

Theorem. Iet X S XlS X, be real classes. If X, and X,
are really equivalent then X,, X2 (and thus xl, Xo) are real-
1y equivalent.

Proof: Remember that any class defined by a formula of
the language FLV with real parameters only is real. Cantor-
Bernstein theorem is usually proved by the definition of the
needed mapping. If we use only real claases in the defini-
tion, then the mapping is a real class. Especially, we con-
struct the needed mapping in the following manner. Let F be
& real one-one mapping of X, onto Xo' By induction we define
a sequence {Y ;ne FN% of real classes. We put Y =X-X, Y07
F"Y,. We put G(x)=F(x) for x eU{Y,;necFN§, G(x)=x for x€

n

3 xz-Uig;ne FN3}. G is obviously a one-one mapping such
that dom(G)=X,, and G is & real class.

Theorem. A real class X is really equivalent with a re-
al class X< FN iff there is a.codable class 71 having the
following properties:

(1) 7 ie countable.

() uvdt=x

(3) (VYY,,Y, e @l )(Y,,Y, are really equivalent real
classes),

(4) (VYy,Yy e @ ) (1% X, = 110 Y, = 4).

Proof: Let %! be a class having the mentioned proper-
ties. Let {X ;necFN{ be an enumeration of #! . Let «fx:; n,

mecFN¢ be an enumeration of 97 by the members of the class
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2 =
FN®, Let G: be one-ore function such that dom(G:)—)g,

rng G'.‘f(&x fm})., If xe X then there is exactly one X: such
that xe #. In thie case we put G(x)=G:(x). G is obviously
a one-one function such that dom(G)=X, rng(G)=X<FN and G is
a real class.

On the other hand, let G be a one-one real mapping of
X FN onto X. If we put X =G"(X~<im3}) and %% = {X ;neFN¥
then 771 has the needed properties.

Theorem. Every infinite set u is really equivalent to
the class ux FN,
Proof. It is sufficient to prove the assertion for eve-
ry infinite natural number o« . At first we prove that if (3
is an infinite natural number then there is a real class X
such that X,%3{$ and XXFN x (3 . To prove this we use the Vi-
tali’s idea of the construction of a nonmeasurable set. We
put Y={re BRN; (Jy e N)(r= T/(; vr = 3’/(3 )}. We define
an equivalence relation ~ on Y in the following menner.
x~y =(3 r e FRN) (x-y=r) (where = is the usual indiscernibili-
ty equivalence (Vne FN) (Ix-yl< 1/n ). Let 2 be a selector
for the equivalence ~» such that (Y xe¢ Z) (0<x<1), Now the
following properties hold
(a) (VyeY)(3!reFRN)(3Ixe 2)(ysx+r).
M) (YyeX)(VreFRN)(AlxeY)(r&x-y<r+(l/3)) %
B(VyeD(YreFRN)(J1xeY)(rs y-x<r+(1/3))).
For re FRN we put X,=i{ye¥; (3x¢ Z)(y%x+r)t. The codable
class {X,;re FRN{ has the following properties.
(1) r4e=> X.nX A
(2) Y=U{X,;re FRN3.
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(3) (Vr,scFRN)(X, and X, are really equivalent).

The property (3) can bte easily proved using the property (b).
Let us put X=U<{X ;rc FRN& 0£r< 1§, Now we have (VyeX)
(-1<y<2). Thus XZ3(3 . Obviously YA FN=[3 . Using the
previous theorem we obtain 24‘\5!.

Now let ¢ be an infinite natural number. Let (3 be a
natural number such that 3/(¥&.0¢ £33+ 2, We have XéJ[L%
X ot XFN > 3% o< FRX B« 45 FNR( = FNAX, Thus all classes
are really equivalent.

The following theorem is an easy consequence.

Theorem. If c¢ is an infinite natural number then the
following properties hold. ’

(a) o¢ and {3;(3n)(y< n«)} are really equivalent.

(b) If g is.a natural number such that (3n)( /m <<
<no) then 3 and ov are really equivalent.

Remember that infinite hatural numbers oc, 3 such that
(Vne PN)(cc > ny) are not really equivalent and {7 ;(V ne FN)
(yn< o )}-\-’{ o< -

The relation X is not a total ordering (as it is in the
case of ;X and 3 ). For any uncountable real class there are
two uncountable real subclasses incomparable by ;\3 .

As any real uncountable class has an infinite subset,
we obtain the mentioned fact as a consequence of the follow-
ing theorem. The proper*.x (3) of the theorem is not used in

this paper but it is important for other purposes.

Theorem. If 2% € N - FN then there are real subclasses
X, Y of % having the following properties:
(1) XnY = ”n ’
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(2) ~X3Y&-Y3X.
3) (VmedP)(m2X=> %ﬂ = 1) and the same pro-

perty for Y.
Proof: For (3, f3, € #» let us put (31 z ﬁzsg

t1e

)

¥
It is obvious that % is an indiscernibility equivalence on

A . The class 2 &+ is said to be a zero class iff for e~
very ne FN there is a set v such thét vg %&ZSV. Any monad
in the equivalence z is obviously a zero class, If -izn;neFN}
is a sequence of gero classes, then U{Z ;ne¢ FN} is a zero
class, If £ is a one-one mapping and if Z is a zero class,
then £"Z n % is a zero class. At last, if m& 2> and
] %‘1(—"‘1 2 0, then m is no zero class. Let {{f:;nemf; < e

€ L% be an enumeration of all sequences of one-one functions
and let im ;o € 0} be an enumeration of all subsets of 2%
not being zero classes. We construct sequences {X,  ; o € 13 |
£Y, ; © € 2% of zero classes by transfinite recursion in the
following msnner. We put Xo=!°=¢. We put X = U ({Xﬂu Y,;8¢€
exniu i ((f:)'l)"Yﬁ ; neFN, fecc n MLy ), The class
X, 1is obviously a zero class. Let x, be the least ele-
ment of m, - X, in a fixed ordering of V of the type (L. Let
us put X, =UiX, ; Be < n L3 v mon(x, )vFigltfX(x); ne
€ FN}). Analogously we put -fw = fwu X, v U 'i'((tn“)'l)"(ic v
UXy)ine FN§, let y be the least member of the classm . -
- Y, and Y, =U{Y, ; e o n Q3umon(y, v Figl£¥ (3, );-
ne FN}), It is obvious that for every o we have X n Y = #;
X, y¥o @are figures in the equivalence % and pexn =
= (Xg & X )&(¥y & Y ). et usput X =U{X ; c € 03,
Y=U{Y ;< € 2}, It is evident that X,Y € &% , X, Y are re-
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'al classes and XnY=g, If F is a one-one real mapping of X
into Y then using § 1 we obtain the existence of an o such
that FEU4f ;ncFN}, But we have x <€ X, £ (x_)e X for e-
very né& FN. Hence we have F(x )& X - a contradiction with
F(x, )6 Y and XnY=@g. The proof of - Iéx is analogous. If
m is a subset of 2% such that m2 X% &'%%JEQ £ 1 then the-

re is an ot such that m = 1% - m, But we have x_e Xnmn_,
hence x & m - a contradiction with m o= 2% - m. The proof

of the last property for Y is analogous.
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