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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROUNAE' 
20, 4 (1979) 

REAL AND IMAGINARY CLASSES IN THE ALTERNATIVE SET THEORY 
Karel CUDA, Petr VOPENKA 

Abstract: This paper is meant as a contribution to the 
development of mathematics in alternative set theory. In the 
first section we shall introduce the concepts of real and 
imaginary classes. "Philosophical• reasons for this division 
are described* Some classes based on the axiom of choice and 
the axiom of cardinalities are proved to be imaginary* In 
the second section the notion of real equivalence and real 
subvalence are defined and investigated* The ordering by real 
subvalence is proved not to be linear* 

Key words: Alternative set theory, real class, imagina­
ry class, real equivalence, indiscernibility equivalence* 

Classification: 02KL0. 02K99 

Various types of classes occur in the extended universe 

studied in alternative set theory* We shall introduce the 

concepts of real and imaginary classes (every class being 

of one of these two types). Real classes are those once that 

may be seen when observing continuum. Imaginary classes are 

used mainly for calculations on classes. The first section 

is devoted to the fundamental properties of real and imagi-* 

nary classes. It is proved e.g. that XL and selectors art 

imaginary classes. The one-one mapping between two infinite 

sets having very different cardinalities is an imaginary 

class. On the other hand, set-theoretically definable 
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classes, countable classes and classes definable with the 

help of real classes, are real. 

When studying various finer types of cardinalities, we 

use equivalences based on one-one mappings of various types. 

Keeping accordance with this procedure we study so called 

real equivalence, i.e. the equivalence given by one-one map­

pings which are real classes, in the second section. It is 

proved e.g. that there are two real classes incomparable by 

real subvale nee. 

Our considerations follow those ones given in P. Vo~ 

penka's book, Mathematics in alternative set theory. We use 

notions and notation used in this book and [V 11. 

The work presented here has arisen in the Prague semi­

nar of alternative set theory on the basis of discussions 

held between the authors. 

§ 1. Basic properties of real and imaginary classes 

Every our observation is characterized by an indiseerni-

bility equivalence (see Ch. Ill [ V ] ) . The classes, we obser­

ve on the horizon of our observation abilities, are exactly 

the figures in the mentioned indiscernibility equivalence. 

These considerations lead to the following definitions* 

A class from the extended universe is called real if 

there is an indiscernibility equivalence £ such that X is -a 

figure in the equivalence » . If the class X is not real then 

X is called imaginary. 

It is obvious that every set-theoretically definable 

class is real. 
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Theorem. For any sequence ix^ncFft} of real classes 

there is a set u such that for every neFN the class X^ is 

a figure in the equivalence <»->• 

Proof; Let 4-*n .jn6FN$ be a sequence of indiseernibili-

ty equivalences such that for every n the class X^ is a fi­

gure in the indiscernibility equivalence » • Using £V 11 swe 

can find a u such that ,& •» is finer than O ^ ^ j n €FN?. 

The following two theorems are immediate consequences. 

Theorem. If X, X are real classes then X*Y is real. 

Theorem. If "fXn;neFH$ is a sequence of real classes 

then UiX^jns FN? and n-fX^jnfiFNj are real. 

Especially, every countable class is real. Similarly 

any tf-class (jf-class) is real. 

Theorem. Let F be an automorphism. If X is a real class 

then F"X is real. 

Proof: If X is a figure in the indiscernibility equi­

valence R then F*X is evidently a figure in the indiscerni­

bility equivalence F"R. 

Theorem. If X is a figure in the indiscernibility e-

quivalence ,g, and F is an automorphism such that F(u) = u 

then F"X=X. 

Proof: Obviously it is sufficient to prove the asser-

tion for a monad in *•*• In this case there is a sequence 

4 9>n(x) jjn^FNi of set-formulas of the language ^^xnt such 

that X *C\ii x; yn(x)}jn€ FNj. If x e X then for any n the 

formula 9>n(x) holds. As F(u) =» u(F
-1(u) » u) we have also 

9?n(P(x))(yll(F"
1(x))). Hence F(x) e X(F"1(x)e X) holds. 
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Theorem. If 3?(x9%»t...9Xn) is a formula of the langu­

age Fly and *i»---,*n are real classes then the class 

i n 9>(y»Y19...9Yn)$ is real. 

Proof: Let us choose u to have the following properties. 

All the constants occurring in ^(x9X^9...9Xn) denote elements 

of the class ^t<ni» ^»e classes X^f.*mfXn are figures in ,gj. 

Let x be such that g>(x9Y19...9Yn). If j ^g. x then there is 

an automorphism F such that F(u) * u and F(x) * y [ V §1 Ch.V3. 

As 9>(x9r19...9Yn) holds, we also have 9>(F(x)9 F"Y-,9... 9F"Ya). 

Using the previous theorem we obtain F ^ ^ , . ..9F"Xn«-Xn and 

thus we have g>(y9Y19...9Yn). 

Theorem. Let ^X^Xp...,-^) be a formula of the langu­

age Fly. Let Ip...,^ be real classes such that ( .3lZ)gp(Z 9 

Yl9...,Yn). If Y is a class such that 9>(Y9Y19...9Yn) holds, 

then the class Y is real. 

Proof: Obviously Y » i xj(3 XQ)( y(Xo9Ylf... 9Yn)& x eXQH. 

Now we use the previous theorem. 

Remark. If 4Xn;n€FN5 is a sequence of real classes then 

-tX^-inifn 6 FN$ is also a sequence of real classes and 

U i Xn .x .4ni;ne FN^ is a real class. Hence a sequence of real 

classes can be understood as a real class. 

Theorem. The class 4 P"X; F is an automorphism! is eofl-

able iff X is a real class. 

Proof: Let X be real. Let u be a set such that X is a fi­

gure in the equivalence ^=|. If F, G are automorphisms such 

that F(u) • G(u) thenF"X=G"X. (To prove it we note that G(u)» 

a ( G o . f r l ) P ( u ) 9 G"X=(G«P""
1),,(P"X) and we can use the above 

theorems.) Let us put X^9 {yt(3P)(F is an automorphism 8c 
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t P ( t i ) « T i ( 3 x i X ) . ( y » P ( x ) ) ) ] . Obviously {\iv*Vi i s a cod-

able c lass and -fF"X; F i s an automorphism5 i s a subclass of 

the mentioned c l a s s . 

To prove the converse implication we suppose that X i s 

imaginary. At f i r s t we prove that i f T4=X i s an a rb i t r a ry 

uncountable c lass and i f FA i s an a t most countable s imi la -

r i t y then there are uf v such tha t F 0 u« t<u ,v>5 i s a s imila­

r i t y and u e X s v ^ X holds* Let us choose z such tha t 

dom(F0)c Def t^. X i s not a f igure in the equivalence <|> be­

cause X i s imaginary. Hence there are u , u such tha t u c X . 

u ^ X and u » | , u . .Let v be such that FQu-l< v f u>? i s a s imi­

l a r i t y . F 0 u 4 < v , u > 3 i s a simi .]arity, too . Now <v,u> or 

< v , l ) h a s the needed property. 

Let i\A <*> & £ll be an enumeration of the c lass -fF*X; F 

i s an automorphism ^ (bisect ion of H onto the c l a s s ) . Let 

ij^ ; oo €.£il b© an enumeration of a l l s e t s . % the t r a n s f i -

n i t e recursion we construct a sequence -iG^foC € £L\ of a t 

most countable s i m i l a r i t i e s having the following p rope r t i e s . 

For every oo we have y ^ c donUG^.), y ^ e rngCG^), (By e 

U o i f G ^ J X y e X s G ^ f y l ^ X ^ ) and (h <s ct s\ A. *> ftp £ G^ . Let 

us put G« U4. G^ JOC e -&? . G i s obviously an automorphism 

and for every oc we have G ^ X - ^ ^ - a contradic t ion. 

Remark. Later we shall prove that there are imaginary 

classes. Hence we shall see that the class of all automorph­

isms is not codable. 

The following theorems serve as criteria for the deci­

sion if a class is imaginary. Using these theorems we can 

prove for some frequently occurring classes that they are 
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imaginary. 

Theorem. If X is a real revealed class then X is a 

$f -class. 

Proof; Let = be an indiscernibility equivalence such 

that X is a figure in * . In § 2 Ch. Ill CV1 it is proved 

that X is a closed figure in - and thus a Jf-clas9. 

The last theorem is equivalent to the following asser­

tion. If a class X is revealed and if it is no 3f -class then 

X is imaginary. 

Theorem. If a real class XsN has the property 

( Vc* ) (V (* ) ( o & e X J t ^ a & ^ / J e X ) then X is a 6- -class or 

a tf -class. 

Proof; We must consider two cases. 

a) For any countable class Yc X there is a y & X such 

that Y £ f . The class Y is revealed in this case and thus 

Y is a or-clas9. 

b) There is a class Y£X which is countable and such 

that for every y 6 X there is a (Je Y such that y e j S . 

We have X=UY in this case and X is a 6"-class. 

Theorem. If X is a real clas3 3uch that for any set x 

the intersection of x and X is a set then X is a set-theore­

tically definable class. 

Proof; We prove at first that the class X is revealed. 

Let Y be a subclass of X which id at most countable. Let 

YSu. Let us put v = Xou. Obviously we have Y£v£X. Ihus 

X is a 3t-class (we use the laet but one theorem). Ueing si­

milar arguments we prove even that V-X is a 3t-class. Kius 

X is set-theoretically definable (see § 5 Ch. II LVl). 
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Theorem. Let X be a real c lass . Let { c$» jncFR? be a 

sequence of set-formulas of the language FL-y. I f tnr *rery 

n-sX there i s an n such that ^ C u ) t&*s th#r# are sequences 

•jX^neFNj of set-theoretical ly <?efimible classes and-il-^j ne 

6 FN5 of f in i t e natural numbers having the following proper­

t i e s . 

1) XSinx^nsFNi. 

2) For every ̂ --C there is an ni^k^ such that <fm^)» 

Proof: Let X be a figure in the equivalence ,|>. Remem­

ber that there are at most countably many clopen figures in 

r*>. Thus there is an enumeration 4Xn$neFN$ of clopen figu­

res in ti> such that for every X there is a k & FN such that 

the property 2) holds. It is sufficient to prove that X £ 

sUiX n;n&FNj. Let x 6 X, let iYn;neFNjbe a sequence of 

clopen figures in £> such that Yn<f, £ Yn an3 Mon(x) = 0-lY $ 

nfiFN? hold. It is sufficient to prove that there is an n € 

€. FN such that for every u£Y there is an men such that 
o 

9m(u) holds. If it is not this case then there is a sequence 

{un;neFNi such that ^ - Y J J and for every ken the formula 

"l ̂ ^(UJJ) holds. If we prolong the sequence iun;neFN}, then 

there is an cC e N-FN such that for every n<£ FN we have u^ S. 

S Yn and n <pn^^ )• Thus we have u^S. X and there is no n 6 

eFN such that <yn(
u) - a contradiction. 

The following theorem is a consequence of the last theo­

rem. 

Theorem. For any uncountable real class X there is an 

infinite subset of X. 

Proof: We prove that if a real class X has only finite 
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subsets then X is at most countable. Let $>nM be the for­

mula u&n. Using the previous theorem we obtain sequences 

4Xn;n6FNj of set-theoretically definable classes and 

ik^neFN? of finite natural numbers such that XBUiX^; ne 

e FBI and (yuSX^) (3 mc k ^ H u ^ m ) . In this case xj$ k^ 

holds and thus X is at most countable. 

Theorem. The class & is imaginary. 

Proof: The class H is uncountable. If we suppose that 

SX. is real then using the previous theorem we obtain an in­

finite subset u of Jd.But u S K and thus u is not wellordered 

by the relation KoC, (S>joos fi voc* Q>\ - a contradiction. 

Theorem. Let ^ be a compact equivalence. Let V/* be an 

uncountable class. If X is a selector for s then X is imagi­

nary. 

Proof: The class X is uncountable. If X is real then 

there is an infinite subset u of X. As = is compact there 

are x,yeu, x4=y, x«y. As x yyeX the class X is not a selec­

tor for £ - a contradiction. 

Theorem. Endomorphic universe is imaginary iff it is 

no of-class. 

Proof: Let A be a real endomorphic universe. A is ob­

viously uncountable; thus it must have an infinite subset. 

In the paper CSV 13 it is proved that A is revealed in this 

case. Hence A is a 3f-class following the first of our cri­

teria. 

Fact: The class of all automorphisms is not codable. 

In fact, we know that there are imaginary classes and thus 
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using the above remark we obtain the assertion* 

The following assertion is a special case of the above 

theorem. 

Let X be a real class. Let <p(x) be a set formula of the 

language FL-j*. If (Vu£X)(p(u) holds then there is a sequen­

ce 4Xn|neFNi of set-theoretically definable classes such 

that X£ Ui-XLine FN$ and for any finite natural number n we 

have (VuSX^) <y(u). (Put yn(u)s<y (u).) Especially, we ob­

tain the following theorem. 

Theorem. For any real function F there is a sequence 

iFn;neFNj of set-theoretically definable functions such that 

F£U-CFn;n€FNS. 

Theorem. Let cc% <# be infinite natural numbers such 

that for every finite natural number n we have noO-<: f . I t 

F is a one-one mapping of o& onto nt then F is imaginary. 

Proof: Suppose that F is real. As YQyxcc there is a 

sequence of functions £fnjne FN} such that for every n we ha­

ve fn S y?<cc and F£U-£fn;ncFN}. For every n we have 

f i l
o 6 ^ 0 6 • Obviously T * -?"o&£ U-C f£o6$n€ FN5. Thus there is 

an nQ such that v^Ult^cC *tn& n0$ • (See [? § 4 Ch.l3.) But 

U-Cfnoo | n e n 0 ^ nQoo - a contradiction. 

Especially we have: Every one-one mapping F of oo onto 
2 cc is imaginary. 

The proof of the following theorem is analogous. Hence 

it is left to the reader. We only advise the readed to use 

the properties of the geometric series in the proof. 

Theorem. If cx> is an infinite natural number then the­

re is no one-one real mapping of cx> onto iy;(VneFN) 
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(n f< & )5 • 

Theorem. If P is an automorphism and P is not the iden­

tity mapping then P is imaginary. 

Proof; * If for every 06 the formula F(oc)9 00 holds, then 

P is the identityf as there is a one-one mapping of N onto V 

defined by a set-formula of the language PL. Thrxa there is 

an cc such that F(c£)-4- cc # The automorphisms P and F~ are 

both imaginary or both real and thus we can suppose oc+ 1 ~« 

.£F(o£). Let us put <?> *?(<£)• Obviously F(cCcC)« ^ (P is an 

automorphism). If we suppose that there is an n such that 

3"^«< noc* holds then (oG-KL)0^1^ yT< noc^ . Thus we ha­

ve (oc+1) <n«J - a contradiction, because 00 oc <r 

<: (oC+lr . These considerations prove that we can suppose 

that we have chosen 00 such that for every finite natural num­

ber n the formula noC-*F(a&)= #* holds. If F is a real class, 

then P iNo£ is also a real class. But Ft06 is a one-one map­

ping of 06 onto f - a contradiction with the previous theo­

rem. 

§ 2. Real equivalence and real subvalence 

The above considerations lead to the following notions. 

Heal classes X, X are said to be really equivalent (we 

use the notation X&X) iff there is a one-one function P such 

that X=dom(P), Xsrng(F) and P is a real class. Analogously we 

define X%X iff there is a one-one real mapping P of X onto 

a subclass of X. X^ X iff X^X and n X^X. 

There are plenty of obvious assertions holding for the 

real equivalence. We will not formulate such assertions here. 
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To show our approach we prove here only the Cantor-Bernstein 

theorem in the following version expressing the essence of 

the theorem. 

Theorem. Let X £ X-S Xg be real classes. If X and X2 

are reall.y equivalent then X-̂ t Xg ̂ and tnus ^i- Xo^ are real* 

ly equivalent. 

Proof: Remember that any class defined by a formula of 

the language FLy. with real parameters only is real. Cantor-

Bernstein theorem is usually proved by the definition of the 

needed mapping. If we use only real classes in the defini­

tion, then the mapping is a real class. Especially, we con­

struct the needed mapping in the following manner. Let F be 

a real one-one mapping of X^ onto X • By induction we define 

a sequence 4Yn;n&FN% of real classes. We put ̂  ^Xg-X-,, Y n + 1
 a 

* F-YJJ. We put G(x)«F(x) for x e U 4 l n ; n £FNJ, G(x)*x for x e 

6 Xg- U i Y^jne FN). G is obviously a one-one mapping such 

that domCG)5-^, and G is a real class. 

Theorem. A real class X is really equivalent with a re­

al class XxFN iff there is a.codable class 03t having the 

following properties: 

(1) *Mt is countable. 

(£) Ulft * X 

(3) (VY l fY2 £ Wt )(Y l fY2 are really equivalent real 

c lasses)• 

(4) (VY l fY 2 e Tfi )(Y1=I=Y2=» y r 2 =- 0 ) . 

Proof: Let '$t be a c lass having the mentioned proper­

t i e s . Let {Xn;neFBl be an enumeration of M • Let -f-X̂ j n, 

me FN? be an enumeration of <#t by the members of the class* 
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FN . Let ĜJ be one-one function such that dom(a£)-*xJL 

rng GJ^X^xIm}). If x e X then there is exactly one X^ such 

that x&X^» In this case we put 0(x)*G^(x). G is obviously 

a one-one function such that dom(G)»X, rng(G)-*X.xFN and G is 

a real class. 

On the other hand, let G be a one-one real mapping of 

XxFN onto X. If we put X ^ G M X ^ m l ) and M • ̂ X^jneFN.? 

then ffll has the needed properties. 

Theorem. Every infinite set u is really equivalent to 

the class ux FN. 

Proof* It is sufficient to prove the assertion for eve­

ry infinite natural number GO • At first we prove that if /3 

is an infinite natural number then there is a real class X 

such that X^3(^ and X^JFNx (*> . To prove this we use the Vi­

talise idea of the construction of a nonmeasurable set. We 

put Y*$ re BHN; U j c N)(r= T/p v r -» - T/p )}. We define 

an equivalence relation <v on Y in the following manner. 

x^vy *(3 re FRN)(x-y=r) (where • is the usual indiscernibili-

ty equivalence (VnfeFN) (lx-yl< 1/n ). Let Z be a selector 

for the equivalence A/ such that ( V ze Z) (0<x<l), Now the 

following properties hold 

(a) (VyeY)(3!rfcFRN)(3xeZ)(y&x+r). 

(b) (Yy£Y)(VreFHN)(3!x6XKri:x-y<r+(l/£ )) & 

&(Vy6Y)(Vr6F .RN)(atxfeY)(r .^y-x<xH-(l//3 ))). 

For r e FBN we put X *̂ 4 y e Y,# ( 3 x 6 Z) (y^x+r)}. The codable 

class {X^jrcFSN? has the following properties. 

(1) r ^ - ^ ^ n X ^ . 

(2) Y^UtX^reFHN*. 
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(3) (Vr fs6FRN)(Xr and %B are real ly equivalent). 

The property (3) can be easi ly proved using the property (b) . 

Let us put X»U{^;r 6 FRN&Q£r.6li. Now we have ( V y e X ) 

( - l < y < 2 ) . Thus X^3(3 . Obviously XASFRX/3 . Using the 

previous theorem we obtain X&X. 

Now l e t oC be an inf ini te natural number. Let fi be a 

natural number such that 3tfii&cc & 3|$+ 2 . We have X£5(l% 

% o t ^ B x / J ^ ocxFBi^fix 4 x F N $ £ . x FN&X. Thus a l l c lasses 

are real ly equivalent. 

The following theorem is an easy consequence. 

Theorem. If oo is an infinite natural number then the 

following properties hold. 

(a) cC and ̂ i ( 3 n ) ( y < no?)]- are really equivalent. 

(b) If v is a natural number such that (3n)( <**/& <2T< 

^xicc) then y and ot> are really equivalent. 

Remember that infinite natural numbers oo , y such that 

(VneFN)(o6> n^)are not really equivalent and 4 ^ j(V ne FN) 

Cr» -* °° )l%oC * 
The relation ^ is not a total ordering (as it is in the 

case of x and j£ )• For any uncountable real class there are 
v 

two uncountable real subclasses incomparable by X . 

As any real uncountable class has an infinite subset, 

we obtain the mentioned fact as a consequence of the follow­

ing theorem. The property (3) of the theorem is not used in 

this paper but it is important for other purposes. 

Theorem. If ># e N - FN then there are real subclasses 

X, I of 1) having the following properties: 

(1) XnX * 0. 
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(2) -iX^Yfc-iY^X. 

(3) ( V i g * ) ( m 2 X ^ c a ^ ( m * « 1) and the same pro­

perty for Y. 

Proof: For fa9 fa e i9» l e t us put fa = fa^-^r = "T # 

I t i s obvious that *- i s an indiscernibil ity equivalence on 

$> . The class Z & & i s said to be a zero class i f f for e-

very n e FN there i s a set v such that v# —-Sx. Z £ v. Any monad 

in the equivalence - is obviously a zero c lass . If 4 2 jnsFN} 

i s a< sequence of zero classes , then U4Zn;n6FNi i s a zero 

c lass . If f i s a one-one mapping and i f Z i s a zero c lass , 

then f"Z n # i s a zero c lass . At l a s t , i f m s t?» and 

-, ca^Vm7 s o, then m is no zero c l a s s . Let iit*;ne Wi; cc & 

6 11$ be an enumeration of a l l sequences of one-one functions 

and l e t -Cm̂  ;cc e £1} be an enumeration of a l l subsets of i^ 

not being zero c lasses . We construct sequences iX^ ; oc e D-l , 

-xY**, t °° e &l °? zero classes by transfinite recursion in the 

following manner* We put XQ=Yo=0. We put XA » U (iX^u t^; (3 €. 

€oOn.CLi u { ( ( f * ) * " 1 ) ^ ; n € F N , / 3 c o c ^ i l } ) . ! E h e class 

X^n n$> i s obviously a zero c lass . Let x^ be the least e l e ­

ment of m^ - X^ in a fixed ordering of V of the type D- . Let 

us put X^ =UiX^ ; fi e cc rs $11 u mon(xc6 ) u F±g(\f^°(xaC); n a 

eFH\). Analogously we put Y^ = X^u X^ u U { ( ( f * ) " 1 ) " ( ^ c u 

uXc0);ne W8l$ l e t y^ be the least member of the c lass m^-

- Y^ and Y^ -IKY^ ; (& * <* A Mummlj^ )u Fig(4f^(y c 6 ) ; 

n&FN}). I t i s obvious that for every oo we have X ^ o l ^ 8 0; 
ait 

X^ jY^ are figures in the equivalence * and (3 e oc A IX =-> 

s ^ U p f i X ^ J i (Y^ £ Y^ ) . Let us put X =-UiX^ ; oc e £L\ , 

YaUiY^ ; oC £ n i . I t i s evident that X,Y £ <# , X, Y are re-
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al classes and Xr.Y»0. I f F i s a one-one real mapping of X 

into X then using § 1 we obtain the existence of an oG such 

that F£lMfn .jn£FN$. But we have x^e X, f ^ x ^ l e X for e-

very ne FN. Hence we have Ftx^ ) e X - a contradiction with 
v 

F(xoC )& Y and XnX=0. The proof of i T ^ X i s analogous. I f 

m i s a subset of i9» such that m2X&n c a f f i ° ^ » 1 then the­

re i s an oO such that m^-- a? - m. But we have x^ e X o i ^ f 

hence x^ c m - a contradiction with - t ^ - i£ - m. The proof 

of the la s t property for Y i s analogous. 
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