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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
20,3 (1979)

TENSOR PRODUCTS IN THE CATEGORY OF TOPOLOGICAL
SPACES
Juraj CINCURA

Abstract: The category of topological spaces is known
to be a closed category. We prove that there is (up to iso-
morphism) precisely one structure of closed category on the
category of topological spaces and also on the category of
To-spaces.

Key words: Closed category, tensor product, uniform
filter, ultraspace, coreflective subcategory.

AMS: 18D15, 54B30

Introduction. The category T of all topological spa-
ces and continuous maps is well known to be a closed cate=-
gory, namely for arbitrary topological spaces X, Y the ten-
sor product X ® Y is obtained by proving the set X=xY with
the "topology of separate continuity" and J°(Y,Z) equipped
with the topology of pointwise convergence is the value of
the corresponding internal hom functor [ -,-)at (Y,2)
(f®g =fxg, [g,hl(t) =he teg). In this paper we shall
prove that ( ® , [ -,-]) is (up to isomorphism) the only
structure of closed category on the category 7 and also on
the category J, of all T -spaces.
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l. Preliminaries and notations. We shall always use

the following notations:
@ (X,Y) denotes the set of all (1 -morphisms X — Y. C2 deno-
tes the Sierpinski doubleton on the set {0,1% where c£{0} =
= {0%, cg{1} = £0,1}. The forgetful functor J—» Set is de-
noted by U, We shall often write X instead of UX. If A, B
are sets, Mc AxB, acA and beB, then aM ={yeB:(a,y)e M}
and Mb = {xe A:(x,b)e M}. Let A, B, C be sets, f:AxB—>C
a map. Then £* is the map A — B given by £*(a)(b) = f(a,b)
for all ae A, beB. If g:A——>CB is a map, then g, is the
map Ax B —> C given by gy(a,b) = g(a)(b) for all ac A, beB.

Let X, Y be topological spaces. Then the topology of
the space X® Y i.e. the topology of separate continuity ¢
on UXxUY is defined as follows: T is the initial topology
with respect to the class ¥yy of all maps £:UXxUY—> UZ,
Z €% , such that f(a,-):Y—> 2 and £(-,b):X—> Z are con-
tinuous maps for each ae X, be Y. Equivalently, « is the
initial topology with respect to the set of all maps f:UX x
= UY —» UC, belonging to yXY’

The notion of closed category is used in the sense of
L7; p. 180) and it coincides with the notion of symmetric
monoidal closed category used in [ 3]. Recall that a triple
(L,0,H) is said to be a closed category provided that
(Q,a) is a symmetric monoidal category [7; p. 180], H:
:0°P x @, —» @ is a functor (called an internal hom func-
tor) and there exists a natural equivalence y'= (TABC):
:A(A0B,C) — A(A,H(B,C)). A tensor product is a symmet-
ric monoidal structure extendable to a structure of closed

category (= closed structure).
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Cgrdinals are initial ordinals where each ordinal is
the set of its predecessors.

Any coreflective subcategory of J' and T, (see [4]) is
supposed to be full and isomorphism-closed. If B ¢ {T,‘J‘oi
and I is a class of J3 -objects or a subcategory of J3, then
the object class of the coreflective hull of @& in B con=-
sists precisely of J -extremal quotients of J -coproducts
of objects belonging to @ . Recall that any non-trivial co-
reflective subcategory of the category Be {7, 33 is bico-

reflective, i.e. coreflections are modifications (see [4]).

2. Closed structures on the category 3’ . The following

theorem considerably simplifies the study of closed structu-
res on J° . Recall (see [7; p. 26]) that a concrete category
is a pair (% ,V) where ¥ is a category and V: X —> Set is

a faithful functor.

2,1, Theorem £8]. Let (J{,V) be a concrete category
with the following properties:

(1) For every constant map c:VA —> VB there exists a
¥ -morphism k:A—> B with Vk = c.

(2) For every bijection f:VA—> X there exists a X -
isomorphism 8:A—> B with Vs = £,

(3) There exists a ¥ -object A with card VAZ 2,

If there is a closed structure (O ,G) on ¥ , then the-
re exists a closed structure (O,H) on X isomorphic with
(O,G) with the following properties:

(a) Card VI = 1 where I is a unit of O .

(b) VAxVBcV(AQn B),

(¢) for amy r, s:Ag B—>C, Vr|VAx VB = Vs|VAx VB
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implies r = g,

(@) V(fo g)|VAx VB = VEx Vg,\

(e) VH(B,C) = X (B,C),

(£) if 4 : A (A0 B,C) —> K (4,H(B,C)) is the natural
equivalence corresponding to (O ,H), then Vg (r) = (Vr)* and
V’y-l(s) = (Vs), for arbitrary K -objects A, B, C and ¥ -mor-
phisms f:A—> A", g:B—>B",

If, moreover, ¥ satisfies

(4) XcVA implies that there exists a I -morphism j:
:B—> A such that VB = X and Vj(x) = x for each x€ X,

(5) for every X -epimorphism g Vg is a surjectionm,
then

(g) VAxVB = V(An B) for any X -objects A, B.

The category J° fulfils (1) -~ (5) of 2.1 so that with-

out loss of generality we can adopt:

2.2. Convention. All closed structures on J will be as-

sumed to satisfy (a) - (g) of 2.1l.

It is obvious that a closed structure (o ,H) on J° sa-
tisfying (a) - (g) of 2.1 has also the following property:

(h) The natural isomorphisms ry:X 0 {x3 —> X, 1y:
:ix} 0 X— X and the symmetry eyy:X 8 Y— YO X correspon-
ding to O are given by (x,% )r—> x, (% ,x)+— x and (x,y)+>
—> (y,x) respectively for any topological spaces X, Y.

If (o ,H) is a closed structure on J¥ , then the temsor
product O preserves J -coproducts and J -extremal epimor-
phisms (which coincide with the regular ones in J ). There-
fore if A is a class of topological spaces such that the co-

reflective hull of Q coincides with J , then any tensor pro-
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duct (more exactly its object function) is uniquely determi-
ned by its wvalues on & x A -
It is obvious that the coreflective hull of the tlass

of all ultraspaces in J coincides with 7.

2.3. Definition [2). A filter ¥ on a set A is said to
be uniform provided that for all Fe ¥ card F = card A.

By [2], if YU is an ultrafilter on a set B, then there
exists a uniform ultrafilter 7 on a set A and a surjective
map f:A —> B such that U = {£[V1:Ve ¥} . In fact, if U
is principal, then it is evident. If % is a non principal
ultrafilter, then take an arbitrary uniform ultrafilter %~
on B. Then U+W (see [2; p. 1561) is a uniform ultrafil-
ter on Bx B (see [2; 7.21(a), 7.20(c)]l) and U=4{pLV1: Ve
€ U-W3% where py:BxB—>B; (x,y)+—> x is a projection
(see [2; 7.21(b) and 7.19(a)]). Hence, any ultraspace is an
extremal quotient of a uniform ultraspace (an ultraspace is
said to be uniform provided that its corresponding ultrafil=-
ter is uniform) so that the coreflective hull of the class
of all uniform ultraspaces in 3’ coincides with J° . Denote
by &£ the class of all uniform ultraspaces defined on cardi=-
nals., (Let o¢ be an infinite cardinal, % a uniform ultrafil-
ter on o¢ . Then the corresponding ultraspace is defined on
o + 1 as follows:4ix} is open for all x e « and {V U4} :
'V € Uy is the family of all neighbourhoods of o€ .) Then we

have:

2.4. Propogsition. Any tensor product m on J is uni-
quely determined ty its values on f = &£

Let A be an infinite set and ¥ a free filter on A (i.e.
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N% = g). Let a¢ A. Define the topology on A U{ia} in the
following way: Vc A U4 a? is open if and only if Vc A or
a6Vand V~-f{at e F . Such topological spaces we shall
call filter spaces and denote by (4,a,3) or only by (A,a).

2.5. Proposition. Let (A,a), (B,b) be filter spaces,
ct, ¢£,, c£y closure operations of the spaces
(A,a) ® (B,b), (A,a), (B,b) respectively and Mc (A U{al )x
x(B U4b} ). Then

(i) If (x,y)e AxB, then (x,y)e c£M if and only if
(x,y)e M,

(ii) If ye B, then (a,y)e c£M - M if and only if
ac clAuy.

(iii) If xeA, then (x,b)e c£M - M if and only if
bcelsxll.

(iv) (a,b)e cZM if and only if (a,b)e M or aeckt Mb
or be cLpgaM or aec £,C where C ={xeA:be cLxh} or
be c LD where D = {yeB:aec £,Mys.

Proof. Easy to check.

It is easy to see that if (p ,H) is a closed structure

ldXxY
on & , then for arbitrary spaces X, ¥, X® Y —> Xo ¥

is a continuous map (it is evidently separately continuous).

lac r
Obviousl y, the projections p,:Xp ¥ —— XD{*E—-—)-(—? X;

kol ].Y
(X,¥)—> x, py:X0 ¥ —— {x¥o Y—= ¥; (x,y) > y are

continuous 8o that idyy,yy:X 0O Y—> X=<Y is a continuous map.
-Hence X® Y£X 0 Y£ XY for all spaces X, Y, where (X,c2y)%
€ (Y,c£y) if and only if X = Y and ¢ £ Mc c£ M for each
McX (X<Y if and only if X&Y and X4+Y), and then, evident-
ly, H(X,Y)& [X,Y] for 811 X, Y e T.
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Let now (A,a), (B,b) be filter spaces and (x,y) €
e ((AU4a¥)=<(BUEDbY)) - §(a,b)}. Then (x,y) echM in

(A,a) @ (B,b) if and only if (x,y)e c£M in (A,a)x (B,b).
Hence we obtain

2.6, lemma. (A,a) ® (B,b)<(A,a) o (B,b) (£ (a,a) x
x (B,b)) for a tensor product o on 7 if and only if there
exists Mc (A U{fal)x (BULb%) with (a,b)e c£M in (A,a) o (B,b)
and (a,b)& c£ M in (A,a)® (B,b).

let «« be an infinite cardinal and A ¢ « x ¢ a sym-
metric reflexive relatiom on = such that for each x e «
card xA < o¢ , Define the o -sequence a: c¢c —» oc as follows:
a, = 0; let M, =4x € & : there exists y € ¢ , yéat such
that (x,y)e A%. Then a,,, is the smallest element x eoac with
M,cx. If t e is a limit ordinal, then &, = supfa :x< t3.
Obviously, (a ) is an increasing o -sequence. Put Rx =

x'xex
=lag,a,,,) =iye o e & y< °x+1§‘ Then we have:

2.7. lemma. If (Ryx= Ry)nA*ﬂ, then x = yorx=y + 1
ory =x+ 1.

Proof. let x<y and (b,c)e (Ryx rs)n A. Since be R,
b<a,,, and then ¢ €iz €  : there exists t<a,,, with
(t,2)e A}, i.e. c<a,, - Hence °y+1é 8,., 80 that y£x + 1,

If y<x, then we consider (b,c)e (IS" R)NA (A is symmetric
so that (!&x RN A is non empty).

Let now o« be an infinite cardinal and ¥ the generali-
zed Fréchet filter on « (A e ¥ if and only if card (a=- A)<
< o ). Denote by C(o¢) the corresponding filter space defi-
ned on o~ + 1, Let O be a tensor product on J° with
Cl¢) 0 C()>C(cx) ® C(c¢). Then by 2.6 there exists
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Mc (acc+ 1)x (oc+ 1) for which(eac,c)ech M - clg M (cby ,
cle are the closure operations of C(c¢ ) o C(cc) and

C(ow) ® C(o¢ ) respectively). It is easy to see that then

o« M and Moc are closed in C(oc) and therefore {ecd x o M
and Mo < {c} are closed in C(ec) O C(cc ), Hence (ec,et) €

cchy M’ - clg M’ where M" = MO (o < o). Since O is sym-
metric (o, c)echy M° - c Ly M’ if and only if (x,x) €

€cl, mumHY - clg (M°U (M")"Y), Thus we obtain:

2.8. lemma., If O is a tensor product on J° , then
C(ec)® C(o)<C(ec) O C(o¢) if and only if there exists a
symmetric subset M c o < o¢c (i.e. M = M'l) with (x,ec) €

ecl M- cla M.

2.9, Prop'osition. Let (o ,H) be a closed structure on
3 and « an infinite cardinal. If Cle)n C(x )4 C(ax) ®
8 C(x), then (x,xc)eclyd, (A, =4{(x,x)ixex$,
cly , cl® are closure operations of C(oc )@ C(oc) and
C(e¢) ® C() respectively).

Proof. Let C(o¢) O C(ow)4 C(ow) ® C(cc). Then by 2.8
there exists a symmetric subset M'c o = o¢ with (oc,¢) €
ecly M - clg M. Since (¢,0) g clg M7, the set A = {xe
et tocechdxM’ =dxew : x€ cfM’x3 is closed in C(ec)
so that (ec,c;c)ecln M- c/e@ M°’ where M°” = M" -

- ((UxeA(ixlx(xM'))U (U“A(M'x)x{x}))). Hence for each
xew card xM’ "< o< .

Suppose (o¢,x)dcf A, . Put M= A U M. Then

(ot,x)eChy M - cE@ M and M is reflexive symmetric rela-

tion on o »x o¢ with card xM < o¢c for eack x € ¢ ., Put E =

= Uxe.{,“&" R,) (see 2,7), Then E is an equivalence relati-
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on on « . Denote by e the natural projectiom oc —>» ¢ /E.
Define e’: ¢ + 1 —> (/B Udxt) by e > , el = e,

If C'(o¢) is an extremal quotient space determined by the map
e’:C(cw)—> (¢/E U{x?), then C (o) is isomorphic with
C(e<). Themap e’ @ e :C(ex) 0 Clec)—> C'(e¢) O C'(ec) is
continuous and the set W= (e‘me”)[ M) has the following pro-
perty: For each X € w /E WMciX = 1,%,x +1§ if X = y+1

Rx for
each x ¢ & . Since (ot ,c¢) € cf M, (¢, ) eck M in

C'(cc) D C'(ec ). But W = M{UM, U A ,p where Myc{(x + 1,%):

~ —
and XM c4iX,x +1} if x is a limit ordinal where X

X e «/E}, M, = 4(Xx,Xx + 1):X e /E} and this implies that
(Lyoc)ecl A pin C’(ec) @ C'(ec) - a contradiction,

g

The filter & on o¢ corresponding to C(«) is the inter-
section of all uniform ultrafilters on o« (see [2]). Therefo-
re C(e¢) is an extremal quotient of the J’-coproduct of the
family Pe of all uniform ultraspaces on o¢ + 1 (correspond-
ing to all uniform ultrafilters on o ) and the map e:
:USG%CS-»C(cc)with els=1,, forall Se¥, isan
extremal epimorphism. Let C(a) O C(ec )+ C(e¢) @ C(o¢). Sin-
ce 103 e:C(oc)D(usd;S) = uSe'f‘, (C(ex) 0 S)—> C(ec) O C(oc)
is an extremal epimorphism there exists T € :fq., with (o¢,e¢)e
eck A, in C(e) B T (because (x,x)ecly By in

C(ec) o C(e¢)), Consider the bijection J(C(«)aT,Cy) —>
—> 7(C(a),H(T,Cp)); t—> t* . Since the map f£:C(e¢) O T—
—>Cy; £IL A, 1 =40}, f(x,y) = 1 otherwise is not continunus
((ocyoc)ec LA, ) the corresponding map ¥ :C(s) —> H(T,C,)
is not continuous (it is easy to see that £* is a map C(«c) —

—> H(T,C,)). Hence there exists a set KcC(o¢) with
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o€ € ¢£K in C(ag) and £% (c¢) ¢ cf£¥[K]. Let S be an arbit-
rary non principal ultraspace on o¢ + 1 for which K is a mem-~
ber of its corresponding ultrafilter and S#T. Then £* :S —»
—_ H(T,cz) is not continuous. But the bijectiom

J'(s p 1,C;) —» J°(S,H(T,Cp); t+—> t* implies that f:

S n T—>C, is not continuous so that (one can easily see)
(e,ot) € c£A in S O T. Evidently, S&7T implies (¢, o) &
dcl A, in S<T so that S T4SxT - a contradiction.

Thus we have proved:

2.10. Proposition. If (g ,H) is a closed structure on T,
then for any infinite cardinal ¢ C(es) O C(cC) =
= C(o6) @ C(ec).

2,11, Lemma. If D is a discrete space and (o ,H) a clo-
sed structure on J , then for any space Y H(D,Y) = [D,¥] .

Proof. Immediate from the fact that X oD = udw(x ]
o{4d}) for any space X.

Denote by 7, the coreflective hull of the space C(c¢) in
T . Evidently, X belongs to J; if and only if the topology
of X is determined by a convergence of <« -sequences. Clearly,
C, belongs to J, and J, is closed under the formatiom of

subspaces. Therefore if M is a subspace of the space X and

x'—E% X, u'._ifﬂu are the J  -coreflections of X, M res-

pectively, then M’ is the subspace of X° on the subset UM,
let X be a topological space such that C(oc) D X =

= C(cc)® X. Then, obviously, J'(C(oc),H(X,C5)) = T (Clec),

[x,C51). Denote Wy Hi(X,C,) the J -coreflection of H(X,Cp).

Since H(X,C;)£(X,C,) and J7(C(),H(X,Cp)) = JF'(Clec),

[X,C51), Be(X,Cp) is also a T -coreflection of [X,C,). One
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can easily see that the family :B‘; of all sets [ .y V4
where V, are open subsets of C, and card{xsx:vx = {133«
< o6 1ie a base of the topology of the J -power (Cf‘,)Ux
)ux. Since
[X,C,] is a subspace of all continuous maps X —> C, of the

which is @ T -coreflection of the J -power (C,

J -power (Cz)m, H&(X,Cz) is a subspace of all continuous
maps X—> C, of the T, -power (Cz)ux.

2.12, Proposition. Let o¢ be an infinite cardinal, K
a uniform filter space on o« + 1 and C(os) O K = C(ex )® K.
Then H(K,C,) =L[K,C5].

Proof. If X is a countable space, then [X,C,] is &
first countable space so that Hy (X,C,) =[X,C,] and there-
fore H(X,C,) =[X,C,]. Let < be a cardinal with H(K,C,) #
#[K,Cpl. Denote by Ug the topology of the space H(K,C,),
U the topology of [K,Cy1 and B the base of U for which
BeP if amnd only if B = ( nxex V) ﬁT(K,Cz) where V  are
open subsets of C, and the set {xeK:V, = 113% is finite.
The family J}¢={B|"\T(K,Cz):3e8¢x} (see .’B; above) is a
base of H (K,Cy). Let Ve Uy - U . Then there exists a col-
lection Fc B, with V=UpyB, Put 4 =SNB and ¥, =
= - ‘.'fl. Then there exists B € ¥, with Bod: UBe:!’l B (ot-

herwise V€ U ). For each Be ¥ put By ={xeK:it(x) =1 for
all t¢B} and B3 = E. Let e¢ E and p:K—> EU{e} be the map
°

given by p(x) = x for each x¢ E and p(x) = e otherwise. Let

L denote the extremal quotient space (factor space) on EU{e}
corresponding to the map p. If oc ¢ E, then K - E is a neigh-
bourhood of o so that L is a discrete space. If o € E, then

the subset {c¢,e ¥ is open and closed in L and the subspace P
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of L on the set {« ,e} is isomorphic with C,. Hence L = PLID
where D is a discrete space (on E = {c% ). The functor
H(-,C,), [-,C,): g°P_, T’ preserveslimits so that

H(PUD,C,) is isomorphic with H(P,C,)=<H(D,C,) = [P,CZ] bl
=[D,C,] and this space is isomorphic with [ PLID,C,] (P is
countable and D discrete). Thus, H(L,C,) =[L,C,). Now consi-
der the map H(p,1):H(L,C,) —> H(K,C,) and put W = H(p,1) V).
Let te W with t(x) = 1 for each x€ E and t(e) = 0. If Be ¥
and BpB , then Ey - E+f so that H(p,1)(t)&B. If B5B , then
Be ‘D’z. let O be an arbitrary neighbourhood of t belonging
to B3 . Then there exists a finite set Ic E such that 0 =
={8cH(L,Cy):s(x) =1 for each x€ 1%, The element o € U for
which o(x) = 1 for all xe I and o(x) = O otherwise does not
belong to any B e ¥ with Bo Bc‘ Thus O' cannot be a subset
of W so that W is not open in H(L,C,). But H(p,1) is a conti-

nuous map - a contradiction.

2,13, Corollary. For any infinite cardinal o« ,
H(C(e¢),Cy) = [C(e),C5].

2,14, Corollary. For any topological space X and any
infinite cardinal «« , X 0 C(¢) = X @ C(oc).

Proof. From 2.13 it follows that J (X 0 C(e«),Cy) =
=T X C(x),Cy).

2,15. Corollary. For any infinite cardinal o« and any
uniform filter space T on <« + 1 H(T,C,) =1LT,C,l.

Proof. Immediate from 2.12, 2.14 ard the symmetry of
a.

2.16. Theorem. There exists (up to isomorphism) exact-
ly one structure of closed category on the category J.
Proof. Let X be a topological space and T a uniform fil-
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ter space. Then by 2.15, J (X 0 T,C,) = J(X® T,C;) and the-
refore X0 T = X® T. Thus the tensor products o and & co-
incide on € x&£ and by 2.4 O = ® -

2.17. Remark. Note that we have proved 2.16 without us-

ing the associativity of O .

3. Closed structures on the gategory :r‘c. The category

:I“o is an extremal epireflective subcategory of the category
T (see e.g. [41,[51). Therefore I is productive and mono-
morphism-closed (i.e. if m:M —> X is a monomorphism and X €
eJ,, thenMe ‘.T,'o). Hence, if X,Y are T -spaces, then X® Y
(see [61) and [X,Y] are T -spaces and it is easy to see that
the restriction of ( ®,[-,-]) to the category 3’0 is a closed
structure on (I’o. This closed structure on .T'o will be agaim
(inaccurately) denoted by (®,[-,-1).

The category J°, fulfils the conditions (1) - (3) of 2.1
so that without loss of generality we can suppose all closed
structures on .’I'O to satisfy (a) - (f) of 2.1.

Similarly as in J we can show that in the category J
the coreflective hull of the class & of all uniform ultraspa-
ces is precisely 3'0. Hence, any tensor product on ‘To is uni=-
quely determined by its values on &£ =< .

Recall that for any filter space (A,a,F) the filter ¥
is supposed to be free (i.e. NF = @),

3.1. Proposition. Let (a ,H) be a closed structure on
J,and ¢, infinite cardinals. Let K, L be filter spaces
on «+ 1, (3 + 1 respectively. Then U(K o L) = UKx UL (U:

: To —> Set is the forgetful functor).
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Proof. Let x € ¢ . Then {x} is an open and closed sub-
set of K so that K = {x3}LIK’, But then Ko L = ({x3UK')al=
= ({x}olL) U (K"0 L). Hence, £xj= (3+ 1) is an open (and
closed) subset of Ko L for each x e < , Similarly, for each
yep (t+ 1)x4iy} is an open subset of K o L. Consequently,
P=((cc+ )= (B+1)) =~ {(ec,P )y is an open subset of Ko L
amd Q = (Ko L) - P is a closed subset of Ko L. Put Q° =
= cf4(ec,)3. Clearly, Q'c Q. Define the maps £:Kk n L—>C,
by £(t) = O for each te Q’, £(t) = 1 otherwise and g:Kka L—
—> C, by g(t) = O for each teQ, g(t) =1 for each teP.
Then £lUK<UL = glUKxUL so that ly 2.1(¢c) f = g. Therefore
Q=Q". Let 2€Q - 4(ec,(3)} and Q, = cifz}. Since K0 L is
a T,-space, (o, 3 )4 Q,. The maps £:K 0 L—>C,; f[Qch{O},
f{(Ka L) - Qz] = {1% and g:K 0 L—C,; g(t) =1 for each te
€ K o L are continuous and £|UKx UL = g|UKxUL. Therefore f =
= gand Q = 4(¢,)}.

Since any To-space X is an extremal quotient of & copro-
duct of a.suitable family of filter spaces in the category
%os any extremal epimorphism in T, is a surjection and any
tensor product o on o Pbreserves coproducts and extremal

epimorphisms, we obtain:

3.2, Progc;sition. If (0 ,H) is a closed structure on J
fulfilling the conditions (a) - (f) of 2.1, then it fulfils
also (g) and (n).

Finally, one can ea8ily see that 2,5 - 2,15 remain valid
also for the category T’o (all spaces considered there are
T ,-spaces, To = N 5"0 and for any T -space X the

ff'ox-coreflection of X coincides with the J. -coreflection
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of X).

Thus, we can state:

3.3. Theorem., There exists (up to isomorphism) exactly

one structure of closed category on the category 3;.

[y

[2)

[3)

[4)

[5)
€32

(7

[8)

£9l

[10]
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