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THE MEASURE EXTENSION THEOREM FOR SUBADDITIVE
PROBABILITY MEASURES IN ORTHOMODULAR & — CONTINUOUS
LATTICES
Beloslav RIECAN

Abstract: The assertion stated in the title of the ar-
ticle 1s proved. ’

Key words: Probability measures, logics, orthHomodular
lattices.

AMS: 20A60

Although the measure theory on logics (orthomodular lat-
tices or posets) is topical (see [5]), no measure extension
theorem is known. D.A. Kappos presented in [2] as an open
problem the possibility of such extension.

There are some results in [11,13),(41, but for modular
lattices only. P. Volauf in [ 7] showed.that the proof of the
extension theorem in [ 3] works in orthomcdular lattices, and
he proved the extension theqrem for orthocomplemented latti-
ces and probability measures using Carathéodory measurabili-
ty. Bu as P, Vclauf as the author assume that the given mea-
sure is a valuation. As it is known, measures on logics need
not be valuations.

In the paper we prove an extension theorem for subaddi-

tive probability measures. Of course, every non-negative va-
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luation is subadditive, hence our result is a little better

than the previous known ones.

Notations and notions. If H is a lattice, we shall wri-

te xn/'x, if x, & Xp+1 (n =1,2,...) and x =m§1 X,; 8similar-
ly for xn\ X. A 6 -complete lattice will be called 6 -conti-~
nuous, if x, 7x, y, Ay implies y Ay, /xAy and dually.

A lattice H with the least element O and the greatest
element 1 is called orthocomplemented, if there is a mapping
L :a— a‘L , H—> H such that the following properties are
1yl = 5 for every a€H., (ii) If a%b then

1

. (iii) ava— =1 for every aeH. An orthocomplemen-

satisfied: (i) (a
blsad
ted lattice is called to be an orthomodular lattice if the
following condition is satisfied: (iv) If a%b then b = awv
v(baal), Two elements a, beH are called orthogonal if
afblor equivalently bé‘a'L « A subset A of an orthocomple-
mented ;attice H is called an orthocomplemented sublattice of
H if a, be A implies avb<A, ateca.

Iet A be an orthocopplemented sublattice of an crthomo-
dular lattice H. A mapping @A — {0,c0? is called a measu-
re if the following statements are satisfied:

) «(0) =0

) If aj€A (n=1,2,...) and a, are pairwise orthogo-

w ©
@Y1 B) =,y @ (ay)e
A measure w:A —» <0,00) is called a prcbability measure if
@ (1) = 1. A measure w:A—><0,00> is called subadditive
if @(avb) £ w(a) + @ (b) fer ;avery a, beA.
It is not very difficult to prove (by the help of (iv))
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that every measure is non-decreasing and upper continuous
(i.e. a,a = (4«(9.‘,)/"(4.4.(3)).

Construction. We start with an orthocomplemented sub-
lattice A of an orthomodular, 6-continuous lattice H and
a subadditive probability measure @w:A —> < 0,17, We want
to extend it to the 6 -complete orthocomplete lattice S(A)

generated by A.

lemmg. Let ay, b eA (n =1,2,...), a,7a, b, /b, afb.
!henﬁ}ir:o &‘%’f,}_i,':, @(dby)e.

"Proof. Evidently a A b fa,Ab =a, (m— o), hence

lay) = 1im w(a,Ab )€ lim @ (b,) and therefore

1i ( lim e
i wlag) € lin w(dy

Now put AY = {beH; 3 a,€4A, a, /bl, The preceding lem-
me gives a possibility to define a mapping (L+:A+——y <0,0>
by the formula

+
= (a)), a /b,
@ (b) = lin @lay), &,
Then we can put
@*(x) = inf { @*(b); beA’, BEx}, xcH
and by such a way we obtain a mapping g.* tH— 0,17 . Simi-
larly they can be defined A™, & , (4x + The last step of our
construction is the set
L=ixeH;@ (x) = «"(x) .

Later we prove that LoS(A) and w?/S(A) is the asked exten-

sion.
It is easy to prove that y:+, @~ are extensions of @&,

("«+ is upper continuous, non-decreasing and subedditive.

Further (L* is an extension of Q&+, CL* is non-decreasing,
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subadditive and (w"’(x) ?=(u-*(x) for every xe€H.

Main theorem. Iet H be a 6-continuous, orthomodular
lattice, A its orthocomplemented sublattice, w:A—><0,1>
a subadditive probability measure. Let S(A) be the 6 -comp-
lete orthocomplemented sublattice of H generated by A. Then
there is exactly one measure @:S(A)~9< 0,17 that is an ex-
tension of @ . The measure (4: is a subadditive probability
measure.

Proof. Our main result will be proved by a sequence of

propositions.

Proposition 1. Iet x¢H, yel, y£x. Then «*(x) =

@ (y) + (-b*(XAy-L ).

Proof. 1. let first ae A, beA+, a4b, Then @' (b) =
A—)'

«(a) + §~+(b/\a Namely, aZa,7b, a €A implies
@ (ay) = @(a) + (a(an/\a“'). Since a b, an/\a‘L/’bAa‘\',
we obtain (w+(b) = w(a) + (u,+(bAa'L).
2. If b, deA”, @%b, then ' () 2 w'(@) + u¥(baat).
Indeed, d,-"d, d ¢ A and 1 imply m'(b) = s(d)) +
+ (w+(b/\ dn‘L ) Z i) + (a"‘(b/\dl),which gives (!»+(b) =
= @w'@ + wrvaat).
3. IfbeA", ceA™, c£b, then @' (b) 2 w (c) +
+ (u.+(b/\cl'). Take ¢ €A, c Nc. Since bAac ¢ A+, bre £D
we have by 2

@0 2 @wibacy) + wWrdAamac)T)Zu Ay +
b = >,

+@¥(dae ™) = whbacy) + wtibac
Taking n —» 00 we obtain
¢b+(b)=’=ﬂ3._i,’mo° @f(b/\ cy) + lim (4«+(b/\cn’\‘) z @ (c) +

+ (b+(b/\<:'L).
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4. let xeH, ceA”, c£x. We prove that w*(x) 2
z w (e) +¢L"‘(XA<:-L). Namely, if be A+, bZ x, then
@02 @)+ wtbacd) 2 wTe) + wWHixact),

hence (u’(x)g @ (e) + (u.*(xAC"L), too.

5. Finally we prove the assertion stated in Proposition.
Let x¢H, yeL, y£x. Take c£y, c<A™. By 4 we have
@*x)2 @w le) + wF(xact)z @w(e) + wWFlxayL), hen-
ce w¥(x) - @*(x,\y"‘) 2 @ (¢). Therefore

(tL”(x) - (u,“(x»\y"') 2 @, (y) = (u"(y).

The opposite inequality follows from the subadditivity of
@™

Proposition 2. If ye L, then y'i'e L.

Proof. Evidently (u,+(b) + (ot-(b'L) = 1 for every b e

¢ A%, Let bZy. Ten blsg yl, hence

1= @)+ @ oty g @ o) + w ()
therefore

1- ) g @)
Proposition 1 gives (x =1) 1 = (u*(y) + ,‘.u,*(y“'), hence
@) e 2= W) W)

which implies @ (y+)2 @«X(y+).

Proposition 3. If z €L (n = 1,2,...), z,/'z (or z Nz

resp.), zeH, then zel and w*(z) =m'1_31‘1c\0 @iz,

Proof. Let z Az. Put z, = 0. By Proposition 1

(u“ (zp) = @ (z) 1) = @™ (zyn za’-_l), n=1,2,000 &

To every € > O there is y € A+, ynZ Z, A z;‘;l such that



€
(a"‘(zn/\ z!‘:'_l)> (&+(yn) - -—2-!-‘— y D= 1,2, so0 o
By adding these i:nequalities we obtain
* + € +, M [
@rag) > 2 (@) -z @Y 52 o
ard therefore
*(2)2 lim _ 4*(z ) = lim +(\”> :) =g =
@ EE e @ P TS Y Y
@
= @'Y, ) - €2 ut () -

and the equality @*(z) = lim «™(z,) is obtained. Further
g

@y (2) & («,"(z) =n3;’i1$ (L"‘(zn) =”1in:v (u*(zn);-‘ G (2)

hence z € L. The second part of Proposition (for non-increas-

ing sequences) follows from Proposition 2 and the first part.

Proposition 4. @ = w*/L is an additive mapping, i.e.
x, yeL, xgyt implies w*(xvy) = u*(x) + w*(y).
Proof. First take'c, deA”, c&d~— . Then by Propositi-
on 1 ’
1- @@ = @@t = @*@t) = ¢ @) + w¥@atael) =
=@ e) + ¢tave)t) = @ (e) + 1 - w (eva).
Now let x, y¢ H, x$yLl, ¢, dcA”, c%x, a4y such that
Ux(x) - €< @ (e), @, y) -g< @ (d).
Of course, chéylg at » hence
“u(xvy) & @* (xvy) £ @* (x) +@*(y) = g (X) #+ (c,(y)<
<@ (e)*r@w (@) +2e = @ (cvd) +2e% @, (xvy) + 2¢

Proposition 5. Let S(A) be the G -complete orthocomple-
mented lattice generated by A, M(A) be the least set over A
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closed under monotone sequences. Then S(A) = M(A).

Proof. It can be proved by a standard way. (See e.g.

(3], lemma 1.)

Proof of Main theorem. 1. Existence. Evidently S(A) =

= M(A)C L. Put @ = w™/S(A). By Propositions 3 and 4 @ is

a measure. @& is a subaaditive probability measure since w

has these properties.

2. Uniqueness. Let » :S(A)—> R be a measure »/A = .

Put K = {xeS(A); @ (x) = »(x)}. Evidently KD 4, K is clo-

sed under limits of monotone sequences. Therefore Ko M(A) =

= 5(A).

[11

£2]

[4)
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