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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

20,2 (1979) 

A NOTE ON RING EPIMORPHISMS AND POLYNOMIAL 
INDENTITIES 

B. J. GARDNER 

Abstract: The following question is considered. If A 
is a ring (associative) satisfying a polynomial identity (or 
a family of identities) and f:A—• B is an epimorphism, must 
B also satisfy the given identity (or family of identities)? 
It is well-known that the question has an affirmative answer 
when the identity in question is xy =- yx. In this paper, am­
ong others,nthe standard identities and the identities of the 
form x^ = x are treated, both for rings with identity ele­
ments and for rings in general. 

Key words: Epimorphism, polynomial identity. 

AMS: 1600, 18A20 

Introduction. An epimorphism in a category is a morph-

iam f with the property that if gf * hf for morphiams g, hf 

then g * h. (Here gf means "first f, then g".) In categories 

of rings, epimorphiama need not be surjective, but f :A —^ B 

ia an epimorphism exactly when the inclusion Im(f)—* B la 

an epimorphism, so in treating non-aurjective epimorphiama 

we often need only to consider those of the form X — > Xt 

x t-* X. Ifader such circumstances, X is called an epimorohic 

extension of X. 

All rings discussed in this paper will be associative, 

and we shall work in two categories: the category of all 
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rings and the category of rings with identity elements. The 

latter, to avoid any ambiguity attaching to multiple uses of 

the word "identity", will be called unital rings. 

If (in either of our categories) A is a subring of Bf 

tfte dominion dom(A,B) of A in B is the subring 

tb€B|(VC)(Vg,h:B-* C)(g(a) * h(a)V'a£A=-> g(b) =- h(b) 

Thus B is an epimorphic extension of A if and only if 

dom(A,B) = B. In the category of all rings, dom(A,B) consists 

of all elements of B of the form a + XPY, where a c A, X is a 

row vector (of suitable size) over B, Y is a column vector 

over B and P is a matrix over the standard unital extension 

of A, such that XP and PY are matrices over A. In the catego­

ry of unital rings, dom(A,B) consists of all XPY where every­

thing is as above except that P can be any matrix over A it­

self. (For details see, e.g. Isbell £31.) Hence if B is an 

epimorphic extension of A, then B = A • AB (or, in the unital 

case, B + AB). 

It is well-known that every epimorphic extension of a 

commutative unital ring is commutative (see, e.g., 9 , Pro­

position 1.3). Because of the intimate connection between epi-

moronisms of rings and epimorphisms of unital rings (see, e.g., 

12] § 1 or C31 § 1) we can easily deduce that epimorphic ex­

tensions (and thus arbitrary epimorphisms) preserve commutati-

vity in the category of rings. (A nice direct proof of this 

result has been given by Bulaszewska and Krempa (CI], Theorem 

D). 

It is therefore natural to ask for which polynomial iden­

tities f = 0 (families <$ of polynomial identities) it is true 
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that if a ring A satisfies f = 0 (satisfies each identity in 

$ ) then the same is true of every epimorphic extension of A. 

Ihis is equivalent to asking when the variety generated by 

f = 0 (by $ ) is closed under epimorphic extensions or, equi-

valently, under arbitrary epimorphisms. 

In this note we shall look at some polynomial identities 

from this point of view. In §1 we work in the category of all 

rings. Here we show that a large family of "composite" poly­

nomial identities fail to be preserved by epimorphisms. These 

include all proper powers of all standard identities. Some in­

formation is also obtained about the standard identities them­

selves, the identities xm = x n ani a couple of others. In §2, 

we turn our attention to the category of unital rings, and he­

re give a complete account of the epimorphic behaviour of the 

standard identities and the identities xm = x11. 

We shall use the following notation: Z denotes the ring 

of integers, Zn the ring of integers mod n,
 sn^xi»x2,##*,a[:n^ 

the standard polynomial % (-1) xg(i)x6(2)###xff(n)* £xiy3 s 

s xy - yx; var (f-^O,... ,fn=0), var(R), var (C) denote, respec­

tively, the variety generated by a set -Cf,=-0, ...,f =0} of iden­

tities, a ring R and a class C of rings. 

Acknowledgment. I am grateful to Jan Krempa ani Bogdan 

OsZowski who put to me, in a conversation in Warsaw in July, 

1977, the question pursued in this paper. 

1. The general case. In this section we shall work in 

the category of all rings. We begin by proving a result which 

enables us to present many examples of polynomial identities 
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which are not preserved by epimorphisms. The construction 

used in the proof was suggested by an example of Isbell C3J 

(p. 268). 

Proposition 1.1» Let A be an idempotent ring, S a semi­

group with identity. Let A LS3 denote the corresponding semi­

group ring. Then f A CS1 A CSJ] is an epimorphic extension ГA CSl A CSJÌ i s 

LACSJ ACSІJ 

] • 
, le t R » Г A 0 ] 

LACSl AJ 

ГALS] ACSГl. 

І A C S J A C S l J 

of T A 0 

LACSJ A 

Proof. For brevity, l e t R * f A. 0 ] and 

T = f A C S ] A CSll 

We denote by C a3
r s
 the matrix whose (r,s) entry is a and who­

se others are all 0. 

2 

Let a be any element of A. Then sice A = A
 f
 we can wri­

te a s 2
 u
i

v
i

w
i» where u*

 f
v

i f
w* € A. We then have 

C a ] 1 2 = [ 2 u . V i w . ) 1 2 = 2 t u - v ^ J ^ . 2 L u£J 12 ^ V ^ L w ^ ^ , 

where Cu^ 22 andCw^^^T, -v^2i^
Rf *-ur* 12̂ vî 21 s 

- C U | V * 1 I : L C R and t ^ i ^ l ^ i 3 12 s t v i w i ^ 22 Q R* H e n c e ^-a^i2 6 

&dom(R,T). Now l e t c6 be in S and l e t a = -2 b.*c . y b- ,c . € A, 
o o %} o 

Then 

C a * l n - - S b ^ - c ^ . , - 2 C b j c j o e : 3 : a - 2 I b ^ ^ C c ^ J 2 1 

where Cb^3 l2 (as shown above) i s in dom(R,T) and Cc.ocjg., i s 

in R. Thus CaoCl-QC dom(R,T). Similarly CaocJ22 = 

= S t^4oC^21 tcj"312 <~dom(R,T). Finality , 

Laot ] 1 2 s ^ C u ^ . w . a ] ^ = ^ C u ^ ^ L v ^ J ^ C w ^ ^ 6 dom(R,T). 

- 296 -



It follows that dom(R,T) -= T. // 

In the following theorem all variables are distinct. 

Theorem 1.2. If Z satisfies the identities 

(*) -VŕjU^, ^ln^ = °*" # , fm = fm^ xml , # #* , xmn * = ° 1 m 

and if all zerorings satisfy g = g(x1,...,xm) = 0, then 

g(f-,,... ,fm) = 0 is not preserved by epimorphisms. The same 

conclusion holds if some Z satisfies (#) and there is at 

least one Z -algebra which does not satisfy g(f,,...,f) = 0. 

Proof. Let R - Z or Z , as appropriate, and let Ri X} = 

= R-vx̂ XpjX-j,.. ,\ be the polynomial ring over R in # non-

commuting indeterminates x-,,Xp, 

fies g(f-i> • • • ,-?m) = 0, since 

satisfies f-, = 0,...,f 

But by Proposition 1.1, 

R 

R Ш 

0 and 0 

RÍXÎ 

R 01 has 

LR{X5 R 

Then ' R 01 s a t i s -

RiXS Rl 

0 0~~R @ R 

RtXJ 0. 

01 s a t i s f i e s g = 0 . 

. ] / 

R[X$ R{X}1 as an 

RiXi RiX\\ 

epimorphic extension, while the latter contains x* = 

for each i. But then Ŝ î x-,-, , 
Пn. 

),...,f(x 
m

v
*ml'

#,< 

)) = diag(g(f
1
,...,f

m
)) + 0. // 

Taking account of the commutativity of Z and the fact 

that Zp satisfies x = x for every m, n, we get the follow­

ing examples. 

Examples 1,3. The following identities are not preser­

ved by epimorphisms. 

- 297 -



(i) Cxfy3 U f w l « 0; 

(ii) txfy3
n * 0, n>l; 

(iii) £Lxfy3f CzfwJl « 0; 

(iv) i x,yJtt - l.x,y]n « 0, m,n>lj 

(v) Sm(xlf...fxm)Sn(y:if...fyn) * 0, m fn>l* 

(vi) S^x-,,...^) 1 1 » 0, m,n>l; 

(vii) s
m<S t...,S ) = 0, mfn1,...fnm>l; 

(viii) (x* - x n ) k « 0, n 2 1 f k > l . 

The identities described in (i) - (vii) can be regarded 

as generalizations of commutativity. In view of the "classi­

cal" result that commutativity is preserved by epimorphisms, 

they are of particular interest, and suggest the problem of 

finding epimorphically closed varieties properly containing 

the variety of commutative rings. There is a gap in the list 

above: we have said nothing of the standard identities them­

selves when the degree is > 2. We shall partially remedy this 

in our next result, but we need some notation first. 

Por any ring A, we denote by M^A) the ring of n x n mat­

rices over A, and by A n(A) the subring consisting of matri­

ces whose non-zero entries occur only in the first column and 

on the main diagonal. 

Theorem 1.4. The standard identity S^x-,,...,xm) « 0 

is not preserved by epimorphisms if m > 3 . 

Proof. Consider Aj,.(P)f where P is a field. In examining 

this ring with regard to standard identities, it is enough to 

check the matrix units e.jj. Hie relevant ones are eiite2l**** 

**• ekl* e22#e33»***»ekk* T n e ^ o n5 e a - t non-zero products with­

out repetitions are eiieiient i 2 2f...,k. It follows that 
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A k(F) satisfies S.(x1,x2,x3,x.) = O. But for any j, we have 

6ij = eijeoieij • (eijeji)eij • • lj<«ji
eu ) 

ell eij elj ejj 

so e^i4 domCAjf.(F)lMk(F)) and then for any i, j, it follows 

that eij = s-̂ e-i . ̂  dom(.Ak;(F) ,Mk(F)), so -\(F) is an epimor-

phic extension of ^ ^ ( F ) . (Compare this with Example 2.6 of 

Isbell C3J; it is asserted there that Mk(F) is an epimorphic 

extension of the subring A k(F) consisting of matrices (a^^) 

for which a*^ = a-- for every i,j>l, but this is not clear.) 

Now as shown, .Ak(F) satisfies S^Cx^x^x-pX.) = 0, and the­

refore also Sm(x-L,x2, ...,xm) = 0 for any m:>3. But if k> mf 

then any polynomial identity satisfied by MjAF) must have de­

gree >2k>k >:m. (See, e.g. Procesi [81, p. 22.) Hence for 

m > 4 , the standard identity of degree m is not preserved by 

epimorphisms. // 

The case of the standard identity of degree three re­

mains open; to settle it, as we note in §2, non-unital rings 

must be used. 

We next examine the identities x = x , m > n. 

Theorem 1.5. (i) The identity xm = x is preserved by 

epimorphisms for every m. 

(ii) If n > 2 and m - n is even then the identity TF = 

= x is not preserved by epimorphisms. 

Proof, (i) Rings satisfying x01 = x are regular, and 

therefore, as we showed in [21, have no proper epimorphic ex­

tensions. 

(ii) Let m>n>:2 with m - n even. Now for any k,A^(Z2) 
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has an ideal I (the set of zero-diagonal matrices) satisfy­

ing xy = 0 and 7Lk(Z2) / I2-Z2 €> ... © Z2 satisfies x
2 = x. 

2 2 

Hence Ak(Z2) satisfies (x - x) = 0, and therefore (since 

it has characteristic 2) x = x . Consequently the ring sa­

tisfies the identities 
2 4 2 2 2 4 6 2 4 2 6 a 2jw. x = x^ = x x = x x^ = x = x x^ = x x = x = ... = x ̂ V j . 

2 In particular, since m - n is even, A, (Z2) satisfies x = 

= xm-n+2 and hence also 

xn = x2xn-2 = xm-n+2xn-2 = xm# 

But as we saw in the proof of Theorem 1.4, M, (Z2) is an epi-

morphic extension of .Ak(Z2) and moreover, if k is large e-

nough, ̂ (Z-j) does not satisfy an identity of degree m; in 

particular it does not satisfy xm = x . // 

As we noted above, no examples appear to be known of 

non-trivial epimorphically closed varieties properly contain­

ing the commutative rings. There are non-commutative epimor­

phically closed varieties, however. 

Example 1.6, For each n, the identity x^x2 ... x = 0 

is preserved by epimorphisms, since nulpotent rings have no 

proper epimorphic extensions (C3J, p. 267). 

Another example worth mentioning, consisting of nil, but 

not necessarily nilpotent ringa, is the following 

2 

Example 1.7. var(x =0, 2x = 0) is epimorphically clo­

sed. Any ring A satisfying these two identities is commuta­

tive; so therefore is any epimorphic extension, B. The ele­

ments of B = A + AB have the form b = a + 2J a'b',a,a'€A, 

b#€ B. Now 2b = 2a + .2$ C2a')b' = 0, and B is commutative, 

so b2 = a2 + (S a'b')2 = a2 + S (a')2(b')2 = 0. 
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A variety V is the product of varieties 1/^,..., 1T 

(notation: V = 1/^x ... x V ) if every ring A in V is uni­

quely expressible as a direct sum A = A-, © ... © A , where 

Ai e ^i **or e a c n *• A n example of a product is the variety V 

generated by the class of all zeroririgs (xy = 0) and a fini­

te set & of finite fields: 1/= var(xy = 0) x var(?) (see 

Lee Sin-Min 151). 

Both the component subvarieties are epimorphically closed in 

this case. 

Proposition 1.8. For any finite set 7/ of finite fields, 

var(xy = 0) x var(^) is closed under epimorphisms. 

Proof. Let A = A, © Ap, where A-,6 var(xy = 0) and Ap € 

e var(30, and let B be an epimorphic extension of A." Then 

everything is commutative and we have 

B = A + AB = A-J+ A2+ (A1+A2)B = (A-ĵ +A-̂ B) + (Ag+AgB). 

Now A-B = A1(A1+A1B) + A^Ag^ A2B) = 0, so A-j, is an ideal of 

B. Also, A2B = A2(A1+A1B) + A2(A2+A2B) = Ag+AgB, since A2A]l = 
p 

= 0 and A2 = A2. Thus B = A-,+A2B. Now we have the following 

commutative diagram, where every map is an epimorphism: 

inc. 

-*- B 
nat. 

A/A, 
JЛÛ 

nat. 

-> Ђ/kг -̂ (Â +AgBÌ/Â  

Al® A2/Al 

*г 

Since A
2
 is in vart^O, it has no proper epimorphic exten-
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sions £2] and t h u 8 ^ ^ s (Â AgBJ/A-ĵ . This means that 

^1 ® ^2 s ^ ~ ̂ i4*^® s B# T n u s A c a n -*ave n o proper epimor-

phic extensions and therefore var(xy » 0)x varOO is closed 

under epimorphisms. // 

As a special case (see £43) we have 

Corollary 1,9* For every n> var((x+y)n = x11 + yn; (xy)n* 

- xy * xnyn) is closed under epimorphisms. // 

It wouB be interesting to know whether, in general, the 

join of two epimorphiccally closed varieties is epimorphical-

ly closed. 

2. Unital rings. In this section we consider the stan­

dard identities and the identities of the form xm * x11 for 

unital rings. It is possible, in this context, to say exactly 

which of these identities are preserved by epimorphisms. 

Theorem 2.1. For unital rings, the standard identity 

Sm(x-j ,Xp,... ,x ) is preserved by epimorphisms if and only if 

m = 2 or 3. 

Proof. As Leron and Vapne (£6 J , p. 130) have noted, any 

unital ring which satisfies the standard identity of degree 

2n +• 1 must also satisfy the standard identity of degree 2n. 

Thus if A satisfies Sj(x,y,z) = 0, then A satisfies S2(x,y) = 

« 0, i.e. A is commutative. But then every epimorphic exten­

sion B of A is also commutative (see Introduction) and must 

therefore satisfy S^(x,y,z) * 0. The rings used in the proof 

of Theorem 1.4 are unital, so the argument used there shows 

that the standard identities of degree .2 4 are not preserved 

by epimorphisms. // 
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For unital rings, odd-degree standard identities are 

largely irrelevant, and this simplifies the epimorphic pre­

servation problem for standard identities in general. Some­

thing similar happens with the identities J* * xn. We need 

some lemmas to prepare for our theorem concerning these iden­

tities. 

Lemma 2.2. (i) Let p be an odd prime. If Z ̂  satis-
m r\ P 

fies x * x*\ then m - n is even. 
(ii) If Z v satisfies J* » x11, then m - n is even or 

2* 
k = 1. 

Proof, (i) If Z v satisfies x
11 = xn, th#* in particu-

P* 
lar (pk-l)m a (pk-l)nmod pk. But 

r Q if m and n are even 

I 0 if m and n are odd 

Thus for odd p, we have (pk-l)ms (pk-l)nmod p if and only if 

m and n are both odd or both even, i.e. m-n is even. For p » 

-= 2 and k > 1 we have the same conclusion while for p « 2 we 

always have equivalence. // 

Lemma 2.3* If a unital ring R satisfies xm - x11 with 

m>n then its additive group R+ is bounded. 

Proof. Let e be the identity element. Then 2me * (2e)m» 

« (2e)n m 2ne, so (2m- 2n)e • 0 and hence (2m-2n)a • 

s (2m-2n)ea = 0 for every ac R. // 

Lemma 2.4. For unital rings, var(xm s x11) « V p x ... 

... x V where Pp...,Pn are primes, and 1fp • <A. € 
Pn

 Fi 

C var(xm-xn) | A* is a p^group | , for each i. 

Proof, By Lemma 2.3, every ring in var(x = * ) has a 
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bounded add i t ive group. The s e t of prime d i v i s o r s of a d d i t i ­

ve orders of elements of r i ngs i n v a r ( x m = x11) i s f i n i t e , 

s ince otherwise var(x = x ) would contain a r i n g of the form 

TT f tR(p), where S i s i n f i n i t e and R(p) i s a non-zero p-group. 
•ft <* b 

But such a r i n g would not be bounded. / / 

Lemma 2 . 3 . Let var(xm = x n ) = VL x . . . x fn for 
P1 P n 

primes p-f-»*tPn» Then var (x = x ) i s closed under epimorph-

isms i f and only i f each V i s . 
pi 

Proof, (i) Assume each V n is epimorphically closed. 
pi 

If A€var(x = x ) and B is an epimorphic extension of A, let 

A = AJs>.».©A . Then since B = AB (see Introduction), the or-
pl pn 

der of each element of B is a product of powers of p-,,...,p 

and we can therefore write B = B © ... <2> B . For each i, 
pl pn 

every map in the diagram 

m c . 
A *- B 

*i proj. i i proj. 

A . >> B 
p. m c . p.-

is an epimorphism, whence it follows that B e V . Hence B 
pi pi 

is in var(xm = x ) and the latter is closed under epimorphisms. 

(ii) Assume var(xm = x ) is closed under epimorphisms. 

If A e 1r and B is an epimorphic extension of A, then since 

B = AB, B is a p^-group. A3s o B is in var(xm = x11) (since A 

is) so B is in V . // 
pi 

This completes the preliminaries. The following two pro­

positions provide all the information needed for our theorem. 

- 304 



Proposition 2.6. If a unital ring R satisfies xm = x n, 

with m^ n, then either R has characteristic 2 or m - n is 

even. 

Proof. Let e be the identity element of R. By Lemmas 

2,3, 2.4 and 2.5, we may assume that the characteristic of R 

is p for some prime p. Then the subring <e> generated by e 

is isomorphic to Z . and satisfies x m = xn. 
P* 

By Lemma 2.2, if p is odd or k > l , m - n must be even. // 

Proposition 2.7. Let R be a unital ring satisfying x m -

= x where m - n is odd. Then R has characteristic 2 and has 

no proper epimorphic extensions. 

Proof. Proposition 2.6 takes care of the characteristic. 

For any a 6 R, we have (denoting the identity element by e 

again), 

/ \ffi. /. . 2 m"-*l\ m 
(e+a) = e+ma + (terms in a ,...,a ) + a 

= (e+a)n = e+na + (terms in a2,...^11"1) + an 

and therefore, since am = a , 

ma + (terms in a ,...,am~ ) = na + (terms in a ,...,an" ). 

Since m - n is odd, just one of m, n is even, and we lose no 

generality by assuming that n is even and m is odd. But then 

(characteristic = 2) ma = a and na = 0, sowahave 

, ̂  . 2 n-1 m-lx 
a = (terms in a f...,a ,...,a ). 

""Jrl i "fe1 i 
Writing this as a = .-S k^a and writing f(x) = . 2 ^ k^x , we 

have a polynomial identity f(x) = x satisfied by R. If f = 0, 

then R = 0, while if f + 0, it follows from Theorem 13.2, p. 

321 of Osborn L71, that R is periodic (with no nilpotent ele­

ments) and therefore regular. As shown in C2l, R then has no 
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proper epimorphic extensions. // 

Theorem 2.8. For unital rings, the identity xm = x*1 

(m>n) is preserved by epimorphisms if and only if either n * 
88 1 or m - n is odd. 

Proof. Rings satisfying x m = xP have no proper epimor­

phic extensions since they are regular 2 . If m - n is odd, 

thenty Proposition 2.7 we have a simila* conclusion. The case 

n > 1 and m - n even can be settled as in the proof of Theorem 

1.5, since all rings used there are unital. // 
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