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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

20,2 (1979) 

PURE SUBGROUPS SPLIT 
Ladislav BICAN 

Abst rac t : The purpose of t h i s note i s to c h a r a c t e r i ­
ze a c l a s s of mixed abe l ian groups G having the property 
t ha t each pure subgroup of G s p l i t s . For the groups of coun­
t ab le ( tors ionfreeT rank the problem i s solved completely. 

Key words: S p l i t t i n g group, general ized p -he igh t , i n -
c reas ing p-height o rder ing , general ized p-sequence, p- rank . 

AMS: 20K25 

By the word "group" we shall always mean an additively 

written abelian group. If M is a subset of a group G, then 

C M> denotes the subgroup of G generated by M. If g is an 

element of infinite order of a mixed group G then h (g) 

( x (g)) denotes the p-height (the characteristic) of g in 

the group G. The rank of a mixed group G with the maximal 

torsion subgroup T is the rank of the factor-group G/T. 

In what follows we shall deal with a mixed group G with 

the maximal torsion subgroup T and G will denote the factor-

group G/T. The bar over the elements will denote the ele­

ments from G. We say that a set M = i a A | & e A } of ele­

ments of G is a basis of G if the set M « -t a*. | X c A J is 

a basis of G, i.e. a maximal linearly independent subset of G. 
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A sequence g0tgp«*. of elements of a nixed group 0 is 

said to be a p-sequence of g0 if Pg i + 1
 s g^, i s 0,1,... . 

Let U be any torsionfree subgroup of a mixed group 0 and let 

g € Q \ U be an element of infinite order. If hp (g+U) =- a? 

then every sequence g = g0fg->»" of elements of G such that 

pCg-^+T+U) = gj+U, i « 0,1,..., is called a generalized p-se­

quence of g with respect to U. 

Let M a- ist^ \ 06 < (U,} ( ft is an ordinal number) be a 

well-ordered basis of a mixed group G. We define the genera­

lized p-height Hpte^ ) of the element a^ as the p-height of 

a + 22 <a*> in 0/ 2 <afl>. The well-ordering on M is 

said to be an increasing p-height ordering if H ^ a ^ )-= HZJCa^) 

whenever oo £ fl < (*, • 

It is well-known (see £.6 J) that if H is a torsionfree 

group of finite rank and K its free subgroup of the same rank 

then the number rp(H). of summands CCp**) in H/K does not de­

pend on the particular choice of K and this number is called 

the p-rank of H. 

Lemma 1: Let H - { i . j A c A l be a basis of a mixed 

group G with the torsion part T. Then G splits if and only if 

there are non-zero integers m ^ , X 6 A , such that 

(1) t®(&) - X (I) for each element a e S A < n u aa>, 

(2) for every prime p there is an increasing p-height 

ordering {m^ a | oc «< <al on M * -j m^ a^ | X e A $ such that 

H (m, a ) -= iw. < oo if and only if <& -c %> and for every 

oc «c V there exists an element x^ e G such that p ^ C x ^ * 

% ? « < */* a/a>} s aufl«c%?(.<< ° / J a * > anfl ever* e*en*nt 

B r a 7 » v --* T"* (** » n a s a generalized p-sequence with res­
pect t o U * < x o 6 | o c < V > . 
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Proof: See [1* Theorem]. 

The definition of p-rank of a torsionfree group H (of ar­

bitrary rank) can be found in £7.1. In this note we shall need 

only the following result. 

Lemma 2; If H is a torsionfree group, then r (H) * 0 if 

and only if r (K) « 0 for each pure subgroup K of H of finite 

rank. 

Proof: See t8; Corollary 2], , 

Lemma 3: let G be a mixed group with the torsion part T 

and p be a prime. Let \a^ |oc < (i\ be an increasingly p-height 

ordered basis of G such that H (a^ ) « n^ «< oo if and only if 

oC < V and let U « <xe0 | oC < v > where x^ € G are such that 

P ^(x^ + ̂ £^<a / J> >
 s *^ * ^ q 6 < */$> . If the p-primary compo­

nent T p of T is a direct sum of a divisible and a bounded 

groups then every element a^, V £ y<< (^ % h a s a generalized 

p-sequence with respect to U. 

Proof; Ely hypothesis, Tp « D © V where D is divisible 

and p'V = 0. Put hQ * a~, and assume that we "nave constructed 

the elements h0>h1,...,hn in such a way that h +U, ru+U,..., 

...,hn+U are of infinite p-height in G/U and pCh^-j+U) * h^+U, 

i * 0,l,...,n-l. 

Since hn+U is of infinite p-height in GA)t there exist 

elements h(s)feG, u(s)€ U, s = 1,2,...,, such that p m + sh ( s ) • 

- V u ( s ) . Then p m 4 l(p s- 1h ( s )-h ( 1 )) * u ( s )-u ( 1 ) and p*+1w(s)* 

« u*s'-u ' for some w^s'€ U, U being p-pure in G by £1, Lemma 

4J. Consequent!,, ps+1h(s)-.h(1)-w(s) - a ( s )
+ v

( s ) , d ( s ) e D , 

v x o /c v. From the divisibility of D the existence of elements 

d^s)£ D follows, for wnich p s - 1d ( s ) « d(s). Now, putting 
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hn +l ' P
B h ( 1 ) a m z8 - h

( s )-d< 8\ we have p h ^ = p B + 1h ( 1 ) = 

= h n +u
( 1 ), p*+»-\ - p m ( h ( 1 W 8 )

+ v
( 8 ) ) - h n + 1 + P \

( 8 ) and the 

assertion follows easily. 

Lemma 4: Let S be a pure subgroup of a mixed group G 

with the torsion part T. Let p be a prime and a^S be an ele­

ment of infinite order, £ * S/SnT, & = a+SnT. If h:f(a) « 

= h£(a) then h*j(a) = h®(») * h£(a). 

Proof: Obviously, h^(a) = h£(a) = h^(a)Ihp(a)l h^(a), 

as desired. 

Lemma 5: Let G be a mixed group of the form G = 
OP ** 

= „S < t.t > ® A = T © A where < 14 > is a cyclic group of or-

der p , £-_ < ^ 2 < •••» and A i s a torsionfree group of finite 

rank. If r (A)> 0 then G contains a non-splitting pure sub­

group. 

Proof: We shall divide the proof into several steps. 

a) If A contains a rank one p-divisible pure subgroup B then 

T © B is pure in G and T @ B contains a non-splitting pure sub­

group by C2; Lemma 12J. 

b) If *ai«a2»*"»an,an+l$ is a n increasinS--y p-height order­

ed basis of A then there is kin such that H^(a.)<. co for 

each i = 1,2,...,k and -v(a-) -(P for each i = k+1,... ,n+l. 

Obviously, we can assume that k = n, since in the opposite 

case we can treat the pure closure B of <a-,ta2» • • • *ak,ak+l^ 

in A instead of A. 

c) In view of a),b) and £l;Lemma 43 we can suppose that A 

contains no element of infinite p-height and that it has a 

basis -ia^^g,... ,an,a} such that <N> = <alfa2> •• •»
a
n^

 ia P" 

pure in A and h£/<!r>(a+<N>) = CO , h£(a) = 0. Thus, there are 
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elements b^e A with p xb^ = a+v^ T^ € < N > , i = 1,2,... . 

Put e± = b ^ t . ^ i = 1,2,..., U = <N O (s1f82»-»l> »n^ S = 

= {s£G|mscU for some integer m, (m,p) =1?. Obviously, S 

is ar'-pure in G where <jr'= *TN ip ? , ft being the set of all 

primes. 

d) Now we are going to show that S is pure in G. Suppose, 

at first, that the equation pkx = u, ueU, has the solution 
lb & 

x in G. Let x = ^ {"^i + a ' » a # * A» a n d u ~ v *i^j ^ i s i » 

V6<N> . Then J ^ P ^ i 1 ! + P * a ' s v + i?4 * i b i + if A ^ i V 

and so (G s p l i t s ) ^ijL P /O^t^ « ^ & i ^ t P a# = v + 
+ • 2 4 ^ i b i * H e n c e ^i s P k ( a i + P X ^ i f o r 8 o m e i n t e g e r P i f 

i = 1 , 2 , . . . , r . Let i . be such t h a t .i.t£k and put V = i?-.f i>±f 

JL H-k k # & ~ 
u ' - i r i ( * i s i * * P 8 j * a ! h e n P u *4*-f a i s i ~ 

- ,22. V «(a+v4) + D (an . j ) = u - v - ; ^ 4 ^> \Y\ • •« • Furt-
4 s * J X X :J 4 3 -) X X J 

her, pk (u # -x) = tf v j - v - » 2 V.JT.J. £<N> and p v # = p k ( u # - x ) , 

v # c<N>, <N> being p-pure in A. So, u = p x = p (u # -v # ) where 

u ' - v ' c U. 

Now the purity of S in G i s easy to prove. If p x = s , 

s 6 S, i s solvable in G, then ma = u c U for some integer m, 

(m,p) = 1 . So, there e x i s t integers p , € with mp+p 6*= 1 

and the preceding part y i e l d s the existence of u ' c U such that 
lr lr _• If 

p u' = u. Then p (mu +£s) = mps • p €f 8 = s and we are 

through. 

e) Now we shall prove that <tj>n S = 0 for each j = 1,2,... . 
If p t-cS for some k <.•€.? then there exists a positive inte-

u «i % 
ger m relatively prime to p such that mp t. = v +*2L X .s. = 

K, Jf. j ** i x x 

= v • .2. ^i^i *i A ̂ i*i» v € ^ N> . We can clearly assume 
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that r2T:j . The above equality yields A,̂  * p ^t/ f̂ i = 1, 

k a 4 V k 

2 , . . . , r , i £ j , mp = **— - p g ^ j and 0 = p u (v + 

• A AiV 5 P r (v • J?* c^i^V + m P k b j } * 
*rk £ , v ^ r k & 

a (p ° .-2* (^ i + ia)a+w, wc \N>. Hence p u - SL ^t^ + 
*\e--k 

+ m - O, p J | i • a contradiction showing that <t^>n S = 0. 
«J 

f) Suppose now that the group S splits, S = P © B, P torsion, 

B torsionfree* Obviously, there exists a positive integer k 

such that P alt p a2>.»»,P a^p a e B . Put N = 4 p a-pP a2,... 

...,p a_} and take an index j such that £->k. For each i> j 

the equality p 1b i = a+vi yields p
 J(p x Jbi-b.) = v.j-v. = 

is 
= p Jw.£, w^ c \N>, <N> being p-pure in A. Further, for each 

i k k i > j the equality p b^ = p a + p v̂ ,, v^e < N>, yields 
k+*i k k p c^ = p a + p v-, c-& B, B being pure in G. Hence 

p hp X jp kc i - p
k
c<.) = p

k(Vi-Vj) = p 3pK± and so p i *v*c±* 

k k k *** 
= p c- + p w^, B being torsionfree, p w i c < N > S B. We have 
shown that p c. +<N> is of infinite p-height in G/< N>. Si-

«J 
k ** 

milarly, the element p b- + < N > is of infinite p-height in 
J 

G/<N> and the same property has the element p b .-p c-+<N>. 
a d o 
-*-•. k k k k 

On the other hand, p' J(p b--p c.) = 0 shows that p b.-p c- + 
•J «J J J 

+ <N> lies in the torsion part T + <N>/<N>=-. T of G/<N> and 

so p b- = D V - C B , Consequently, pkt- = p ks 4-p
kb.€S - a con-

«J «J «j J «J 
tradiction (see e)) finishing the proof. 

Definition: We say that a torsionfree group G belongs 

to the class W if for each prime p with r (G) = 0 each line­

arly independent subset N of G can be increasingly p-height 
c 

ordered in such a way that N = ̂ a^ | oc < <tx } and H (a ) < co 
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for each co «c (A* . 

Theorem 1; Let G be a mixed group with the torsion part 

T such that G c W . Then every pure subgroup of G splits 

if and only if 

(i) G contains a basis M such that X (a) * *z (a) for 

each element a £ <M> and 

(ii) T is a direct sum of a divisible and a bounded 

groups for each prime p with r (G)>0. 

Proof: Sufficiency. Let p be a prime such that r (G) = 

= 0. Since G e Itf 9 there exists an increasing p-height or-
— — ft 

dering { a ^ , o c < ^ i on the basis M of G such t h a t H Or^)** co 
for each oo << (U, . In view of ( i ) , H~J fe^ ) <. co for each 

Let p be a prime with r p (G)> 0 and le t i a^ | oc <*£ <u} be 

an increas ing p-height ordering on M such t h a t - ^ ( a ^ ) =- n> < 

<: oo i f and only i f oc-< >> • By Lemma 3 , each element a ^ , 

y> £ Y -c fee , has a general ized p-sequence with r e s p e c t to 

U = < x^ | oc •<• v > where x^ c G a re such elements t ha t 
n 

p ^ ^ o c * A ? ^ a / 3 ^ " aoc + A<<*: ^ a/$ ^ • Consequently, G s p l i t s 
by Lemma 1, G = T€> A. 

Now le t S be a pure subgroup of G and N = - C a * j A e - A : f ; 

be a bas i s of S. Then there e x i s t non-zero i n t e g e r s m ^ f A € 
r>J> 

e A $ such that the basis N = { m a.. | 3. e A % of S is cont-
*** ained in A. Hence N satisfies condition (i) by Lemma 4. 

If r (G)>0 then T is a direct sum of a divisible and 

a bounded groups by hypothesis. However, (SnT) is pure in 

T by L" 2 ; Lemma 71 and (So T) is a direct sum of a divisib­

le and a bounced groups by C2; Lemma 9.1» 
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Finally, suppose that r (G) = r (A) = 0. iiace Q 6 W 

and N is a linearly independent subset of A, N can be increa-

singly p-height ordered in such a way that N ={ m^ a^ \oC <(li 

and H^Cm^ a^ ) =- Hpdn^ a^ ) =- Hp(m^ a ^ ) < <x> for each ac <<«,. 

Similar arguments as in the first part of the proof 

show that S splits. 

Necessity. Condition (i) is necessary by Lemma 1. As­

sume that G does not satisfy the condition (ii). Thus for a 

prime p with rD(G)>0 the p-primary component T is not a di­

rect sum of a divisible and a bounded groups. Without loss of 

generality we can suppose that T is reduced and that G = 

-= T'©B splits. Then rp(B) * r (G)>0 and Lemma 2 yields the 

existence of a pure subgroup A of B of finite rank with 

r (A)>0. Each basic subgroup of T is unbounded by £2; Lem­

ma 113 and so T contains a subgroup T pure in T' having the 

form T = . S w ( t.> where <t.j> is a cyclic group of order £*, 

Jt^< ^2< *•• * ^n a P P ^ c a t * o n °£ Lemma 5 finishes the proof. 

Corollary 1: Let G - T ^ A , T torsion, A torsionfree, 

be a splitting group such that A € VT . Then every pure sub­

group of G splits if and only if T is a direct sum of a di­

visible and a bounded groups for each prime p with rp(A)>0. 

Proof: Clearly, G satisfies condition (i) of Theorem 1 

by Lemma 1. 

Lemma 6: Every countable torsionfree group G belongs to 

the class W . 

Proof: Let p be such a prime that r (G) = 0 and let M 

be an arbitrary linearly independent subset of G. Choose a^ c 

C M in such a way that h^Ca^) s min{h!?(a)la€ M}. It is obvi-
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ous that o a ^ <x> (since -*p(G) « 0 ) . Suppose that we ha­

ve constructed the elements a l f a 2 , . . . .a^ suuh that H^a-^) £ 

f-H^(a2) § . . . * H ^ ( a n ) ^ H ^ ( a ) for each a€ M \ 4 a 1 , a 2 , . . . , a n i 

and H!?(an)< oo . Choose 9^+1*-* v i a i » a 2 » • • •* a n* 3 U C f t t h a t 

h p / V ( a n + l + v ) = m i n * h p / V ( a + v ) I » € M \ - i a 1 , a 2 l . . . , a n 5 $ where 

V « < a 1 , a 2 , . . . , a n > . Using Lemma 2 we see that Hp(an+1) -* 

= hp v a
n + l + V)< oo .Obviously, th i s procedure y i e l d s an i n ­

creasing p-height ordering i a l f a 2 , . . . } on M (M i s countable 
r% 

by hypothesis) such that H (ai) < cO for each i = 1,2,... . 

Theorem 2: Every pure subgroup of a mixed group G of 

countable (finite) rank splits if and only if 

(i) G contains a basis M such that t (a) s t (a) for 

each element a c < M > and 

(ii) T is a direct sum of a divisible and a bounded 

groups for each prime p with r (G);>0. 

Proof: It suffices to use Lemma 6 and Theorem 1. 

Corollary 2: Let T be a torsion group and A be a count­

able torsionfree group. Then every pure subgroup of G « T © A 

splits if and only if T is a direct sum of a divisible and 

a bounded groups for each prime p with r_(A):>0. 
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