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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
20,2 (1979)

BEHAVIOUR OF MACHINES IN CATEGORIES
Véra TRNKOVA

Abstract: Functorial machines in the catezory Set of
sets are introduced such thgt they include Arbib Manes ma-
chines in Set and Eilenberg’s X-machines. Their behaviour
is introduced as the smallest solution of a suitable equati-
on and the coincidence of the usual notion of the behaviour
is proved.

Key words: Category, functor, relation, machine, auto-
maton ¥ ctorial algebra: behav1oﬁr.

AMS: 18B20

In [E], S. Eilenberg introduces a notion of X-machines
and the relation computed by it. He unifies the description
of the action of two ways automata, push-down automata, Tur-
ing machines and, as he says, "the list of examples could be
continued indefinitely ([E, p. 288])). In [AM ], M.A. Arbib
and E.G. Manes define functorial machines in a category to
unify the description of sequential automata, tree automata
and others. In the present paper, we define functorial machi-
nes and their behaviour and show that this makes it possible
to describe the above X-machines of [E] and Arbib Manes func-
torial machines and their action in a unified way. The smal-

lest-solution-technique is used here in a general functorial

- 267 -



form. To keep the formal apparatus simple, we deal with the
category Set of all sets only. Some generalizations are sket-

ched at the end of the paper.

I. Machines and their behaviour

1. Denote by Set the category of all sets and all their
mappings amd by Rel the category of all sets and all their
(binary) relations, no matter whether a binary relation r:
tA—> B is supposed fo be a mapping of A into the set of all
subsets of B or to be an ordered triple (A,C,B), where CcAx
% B or to be the ordered pair (Jr,,irp), where ur,:C—A,
WyiC —>»B are the projections; any of the three forms of the
description will be used. Moreover, if o« :X—> A, R:X—>B
are mappings, we denote by [« , 21 the relation
(A, §elx), B(x)) | xeX$,B).(let us indicate by A—> B a mapping
and by A—>> B a relation; e denotes the composition of map-

pings and o the composition of relations.)

2. If r;:A—>>B are relations, r; = (A,Ci,B), we defi-
ne, as usual,

r & r, iff G < C,,

r, +r, = (A,C;U C,,B) (more generally, ? r, =
= (A, \j C;,B),

r;t = (B,c7t,0).

3. Let F:Set—> Set be a functor. A relational F-algeb-
ra is any pair (Q,d’), where Q is a set amd O":FQ —>Q is a
relation. If o is a mapping. then (Q,d") is called only F-al-
gebra. A homomorphism h:(Q,d’)—> (Q°,d’) of F-algebras is
every mapping h:Q —»Q’ such that ¢ « h = F(h) - J’ . A free
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F-algebra over a set I consists of an F-algebra (1% y) and

a mapping Yl :I—>I# with the folllowing universal property:
for every F-algebra (Q,d" ) and every mapping i:I—» Q there
exists a unique homomorphism i¥ . a¥ » @) —>r (Q,0") such that

12 . i#' = i. The mapping i# is called a free extension of i
(with respect to d°) [AM].

A functor F:Set —» Set for which a free F-algebra exists
over any set I is called a_varietor. All varietors in Set we-

re characterized in [KK].

4., Let F:Set —> Set be a functor. We extend it to a map-

ping f‘.:Rel—y Rel by the rule
Floc,() =1F(ec),F(B)].

If [oty, (311 =[xy 331, then [F{x,),F(3;)] = LF(c,),F(B,)]
For, put {(®,(x), B;(x)) | xeXy3 = € = {(y(x), Bo(x))|xe X}
amd denote by arA:c——rA, JgiC—rB the projections. Then
@; m‘A =o0., @ SYB = ﬁi for a surjective mapping ®i
:X3—>C, i = 1,2, Since @, (v, are retractions, F({,) and
F((@,) are also surjective. Hence [F(oty),F((3;)] =
= [F(S"l)‘ F(ar,), F((Dl) « F(arg)] = [F(or,),F(arg)] =
=LF(E,p) ¢ Flar,),F(@,) » F(org)) = [F(ec,),F( (3;)]. The map-
ping F:Rel —> Rel has the following properties:

1) F(ryjor,) «F(r))e Firy);

2) if ry=r,, then F(r)) £F(r,);

3 Fe™h = Fenh
In[Ty], all the functors F:Set —>Set, for which the exten-
sion F:Rel —>Rel satisfies the stronger condition

1) F(rye r,) = F(ry)o F(r,)

(i.e. F is an endofunctor of Rel) are characterized. Since we
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need this in II., we recall the characterization. We say that

F:Set —» Set covers pullbacks if, for every pullbacks

o d Fl Fx"

oo 7° o<y
£, N, S &, N\ Fx,

the unique mapping @ which fulfils @ ;i = F(E’;i), i=
= 1,2, is surjective.

Proposition [Tll: F:Rel —» Rel is an endofunctor iff
F covers pullbacks.

5. Let F:Set —» Set be a functor. Let us denote by the
same letter F:Rel — Rel its extension as in 4.

An F-machine M| in Set consists of the following data.
Two-relational F-algebras, say

(J,%) ... called the type algebra of M and

(Q,d") ... called the state algebra of Ml ani three re-

lations situated as follows.

6 :A —>> J called the input code of M,
L :J —» Q called the initiation of M,

¥:Q —»> Y called the output of /M.
The situation is visualized on the picture below.

SR . FQ
¥ d

Q

) ;J————-—»-
A./ - N, Y

We write M = [ec,(J,‘lf),b,(Q,d'),y)-
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6. The run ¥ :J—>» Q of a machine M ={e,(J,y),¢L,
(Q,d°),y } is defined as the smallest solution of the equati-
on

x=L+ ¥y loRxad .

The behaviour of M is defined by

beh Ml =oc e Foy.

7. The run construction. Let W =[oo,(J,y),L ’
(Q, d'),y) be an F-machine. We define by induction over all
ordinals
ro= L,
T4 =L * v'IOF(rac)o d,

r = = r, for oo limit ordinal.
p<x ¢

We say that the run construction stops (after 79 steps) if
ra. = r7+1. Then rx,, = rr for all '3"; Y.

&
z::c‘ rgc’

lemma. If o< £ o’ s then

Proof by induction.

Corollary. The run construction always stops, at most
after card (J»=<Q) steps, no matter what the functor F is.

Proposition. If r,, = Tyl then Ty = ¥ 1s the run of
M‘ . ’

Proof. If Ty = Tpals then r,. is a solution of the equa-
tion x = L + T'loF(x) o & , evidently. Let & :J—>>Q be
a relation such that 6 = v + ‘nr"'lo F@)od . Tenr, <6
for all ordinals o (the straightforward proof by induction
is omitted) hence L™ £« 6 . Thus, L* is the smallest solu-

tion of the equation.

8., Let Ml =(o6,(J,¥),L,(Q,d),y } be a machine.
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A reversed machine ML is defined to be Ey-l,(Q,d'), 1
(J,y), 1}

Observation: run iMl"1

(run M )_1,
beh M~ = (beh Wi )7L,

9. A machine M = {x, (J,y),L ,(Q,0°),y) is called
standard if ¥ tF§ —>» J is a mapping.

Propositiom. Let M = {o0,(J,¥),¢,(Q,0),y] be a
standard machine. Then its run ¥ is the smallest relation
J —»> Q such that

yof ZF(L¥)od,

s ST

Proof. First, let us notice that if y :FJ —> J is a map-
ping, then y o v -1, lpgs yvloy & 1;.

a) The run *

is the smallest solution of the equation x =
=L+ ¥ loF(x)od . Hence L¥z | and y e ¥ =
oL +y laF(Mod)=yorL+y oy loF(Lr)od>
ZF(L¥) o J,

b) Let @ be a relation J—>>Q such that y ¢ EZF(@)e o~
and © 2L . We show T, @ for all ordinals o« , by induc-

tion. Clearly v =r t-;v.Ifr“‘_:@ , then =4 +

o~ T+
+ «p"loF(r“‘) o 4L + q;'lo F(@)e e + 1('1., Yot
sLrp s . Ifrﬁsso‘forall <o , thenls%"rp=
£ @ . We conclude that (P
Remark. In [Tll,[Tz’l the run of a machine is defined as
the smallest relation which fulfils the above inequalities.

As it is proved, this coincides with our definiticn of run

for standard machines, but not in general.

10. Let F:Set —» Set be a varietor (see 3.). We say that
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an F-machine M = rloo,(J,ly), v1+(Q,d),y ) is a_free machine
if its input code o¢ is the identity l;, its type algebra
(J,¥) is a free F-algebra over a set I and its initiatiom

L factors through [y ,1;] where 7 :I—> 1* is the uni-
versal mapping of the free F-algebra (I* @) = (J,qr) (see
3.). Free machines coincide with relational automata, inves-
tigated in [Tl']. We say that Ml is a_free deterministic my-
chine if it is a free machire such that J:FQ —»Q and y:

:Q —>Y are mappings and (= [n i1, where i:I—Q is a
mapping. Free deterministic machines coincide with the Arbib-
Manes machines in the category Set, see [AM]. The definitiom
of behaviour also coincides (in [ AM], the behaviour is defi-

ned to te i¥. y:I*——) Y, where i¥ is the free extension

of i:I —>» Q). This follows from the proposition telow.

Proposition. let Mi = {14 ,(I%,¢), [%,i],(Q,d"),y]
be a free deterministic machine. Then its run L¥ is the free

extension i# of i.

Proof. Since every free machine is a standard one, it

is sufficient to prove that the free extension i# is the
smallest relation I¥—>>Q which fulfils g e i¥= F(i¥ )o o
and i#.?_['rz ,i]. Clearly, i¥ really fulfils the inequalities.
Now, let r:I¥ —>> Q be a relation such that @o r2F(r)od”
and rzL7 ,i). Let r = (I*.,C,Q), let o :C—5> I¥ y 3:C—
—> Q be projections. let ¢,x,3,s& form a pullback ( e
opposite to @, & opposite to oo ). Denote by X the common
domain of & and § +3 . Then gor =L, (’}'.(}J and,
since X is the preimsge of C in the mapping @ x IQ, & X =

— FJ, 2; - (5 :X —»Q are projections again. Since po r2
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zF(r) o & , there exists a mapping @ :F(C) —> X such that
© & = F(oo), ‘006;0[5 = F({S)od‘ . Since r = [9 ,il,
there exists a mapping 9 :I—> C such that ¢+ =7,y 8 =
= i, Consider the F-algetra (C, 9-§5). Denote by 7‘*:(1*,9)-)
—>(C, @+ & ) the free extension of o . Since - &« & =
= @+&+.@=Flg)s @ , we conclude that o¢:(C, @+ & )~»
—->(I#,?) is a homomorphism. Since g’*- o% is a homomorph-
ism of (I¥#, @) into itself and 7% . (3"#. ) = Y%=
y*. o0 must be 1lpy . Since ﬁ:(C,go + @ )—>(Q,0) is a
homomorphism amd 7 » T#‘ {3 = 1i, the mapping q‘#o R is e-
qual to i¥ . We conclude that i¥ =T1y ,i¥1 =
= [1*. o<, 7#. Bl«l«x,pl.

Note. The above proof could be simplified for Set, but
we preferred the form which works for general categories with-

out any modification.

II. Free components of machines

1. Iet F:Set —> Set be a varietor. let
M=, J,y),e,Qd),y3

be an F-machine. Let its initiation be expressed as .t = (J,I,Q),
IcdnQ, let @:I—>J, & :I—>Q be the projections. Let
(1# y$ ) and 7 :I —>1#* form the free F-algebra over the set
I. We define free components of M (the first MI; and the
second M,) as

M= (1 , %, g), 9,01 ,0,%), =),

M, = (1 (2 ,g), [9,8] ,(Q,0),5).
Clearly, Wi; and M, are free machines. M|, is determinis-
tic iff IM is standard.Nlé is deterministic iff M1 is. standard.

The situation is visualized on the following picture.
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2, let F:Set —>Set be a varietor, let IM| be an F-ma-
chine, Iet M; and IMi; be its first and the second free

components,

Proposition. run IMl & (run Wlll)_lo run IMi,. If eith-
er M or M-l is standard of if F covers pullbacks, then

run M = (run lMIl)-lorun M, and

beh M = (beh W) lobven M.

Proof. Let us apply the run construction on M, M,
and M3 = M . Denote the corresponding r, ‘s by x“i’&.’, is=
= 1,2,3. Clearly, ry ¢ = rzz'oorz’o. If ry o 4 ri}x © T
then T3 qe1 T30t 'qr'laF(rz.,w) o d e r.l-}o"rz,o +
+ ‘lf"'loF(r'ifd') v Qv 9-15 F(rz’“‘) cd = ri}m+l°r2,¢+l (the
last equality is based on the fact that I¥ is a coproduct of
I and FI¥ with the coproduct-injectionus 9 :I—» I’é ’ ?:FI'#—-)
—>I% | hence the relations 7 ¢! ana Pe 7 “L are em-
pPty). The limit step is evident. We conclude that run Mi £
< (run Mil)'lo run WMl,. If either Mior iW~! is standard
or if F covers pullbacks (see I.4.), then always F(rz’ld) o
°F(!‘2’d’) = F(r;}c‘ ° rz,w). This makes it possible to show

that T3 o5 ri’“ ° T for all o¢ , so run M = (run Ml)-lo
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e TUN ”2‘ The second equation concerning beh M} is an imme-

diate consequence of the first one.

3. Let us say that a pullback

is the pullback formed by f and g. We say that F:Set —» Set
preserves preimages if the F-image of every pullback formed
by a pair of mappings f, g with f one-to-one, is a pullback
again. By ['I'l'! if F covers pullbacks, then it preserves prei-
mages.

Proposition. Iet F:Set —> Set be a preimage preserving
varietor. Then the equation

beh M = (beh i) ™o ben W,
holds for every F-machine M| (with ,Ml and “2 being the
free components of #l ) if and only if F covers pullbacks.

Proof. By 2., we have only to show that if F does not
cover pullbacks, then there exists an F-machine iM| with
beh WA 3 (beh W;)"le beh Wi,. It will be shown in several
steps.

a) Since F does not cover pullbacks, it is not a const-
ant functor. Denote by F@ = D. Then we may suppose '(up to na-
tural equivalen;:e) that DcFX for every set X and (Ff)(d) = d
for every mapping £ and every d ¢« D. Since F is supposed to
preserve preimages, we have

(F£)(FX) N (Fg) (FY) = D
for every pair of mappings f:X —>A, g:Y—>A with £(X)n g(X)=

= @ ani £ being one-to-one.
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b) Iemma. Let there exist a cardinal m such that
card (FX\D)4 m for all sets X. Then F is a constant functor.

Proof. By (K], if card FX<card X for some set X, then
F is constant up to X.

c) lemma. let F do not cover pullbacks. Then there ex-
ists a non-empty set L and mappings ;:FL—»FL, i =1,2,
such that (“'i(d) = 4 for all de D and F does not cover the
pullback formed by 4 and @,.

Proof. Since F does not cover pullbacks, theré exist
mappings f;:Ay—> A3, Y :Az——>A3 such that F does not cover
the pullback formed by f; and f,. Put m = % e ng: 4,2,-3“"‘ Age
Then F does not cover the pullback formed by 1n,u. 1’1 and
1,4l £, (where Ll denotes a coproduct in Set). Denote fi'_ =
= LU, i=1,2, A3 =ml Ay, § =1,2,3. By the choice of
m we obtain card A‘; =m for j = 1,2,3. Find a non-expty set
L such that card (FL\ D)z m (this is possible,. by b)) and choo-
se one-to-one m;ppinga 33:A3->FL\D such that FL\(Duyj(As))
have the same cardinality for j=1,2,3. Choose a bijection 6'1
of FLN\Z{(A{) onto FL\73(A3), identical on D, i=1,2, and defi-
ne 4 :FL —>FL as 7;10 f{o?‘j on 9;(A{) and @; on FL\gy;(A{).
Then F does not cover the pullback formed by @; and @,.

d) Now, we finish the proof of the propcsition. let L
and W :FL —>FL be as in c). Denote by €;:L—» L1l FL and
eZ:FL —>L1l FL the coproduct injections. Put

M = LMF(LiLFL)
and denote bty eq:L —» M the first coproduct injection
v:F(LiL FL) —» M the second coproduct injection and put
(Fel) + v = e;:FL —2 N, (Fez) v = 33:FFL—-)M.
We have (F €1)(FL)n (F €,)(FFL) = D. Define q; :FM —>> N by
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q; = L@y« Feyye;] + LFey e, We define a machine IMj as fol-
lows:
M] = Qli (M1QI)9 [el’el]' (M,qz),l ] .

We show that run IMi# (run lMll)-lo run IMi,. Denote by “*i

the run of My, i =1,2,3 ( M= M ). Then ey 0 L‘"3- eil =

=1, and e, © c‘"3ae51 = ey ele),e] 0 eEl + ezaeglu ¢

o Fey oF\,‘; uFeil ° (u,glv ey © e;l.

Since the first summand is @ amd since Fe;© Fl,*3 ° Feil =

= F(el © L*3 o ei’l) (because F preserves preimages), we obtain
ez‘au'3oe;1 N (uloF(el ° c'3vezl) ° (u,;l =@, ° (a,gl

* -1 _ -1 ® -1 -1 _
e39L3oe3 = ejv ey oFezoFu3oFe2 oe30e3 =

"

F(ey @ C‘3 aegl) =F(w, e ,u.gl).
One can prove analogously that eje ( l.*l)"l o L*zo egl =
= F (uloF (w;l. Since F does not cover the pullback formed

by 4y and @ ,, we conclude that \73 #( J‘l)-l o, .

Problem. Does the above proposition hold without the

assumption that F preserves preimages?

4. Examples. Let fL be a type, i.e. a set emndowed with
an arity function ar: £l —> { cardinals ¥ . The functor Fp @
:Set —> Set is defined by

- r(w) - ar (@)
Fg X= Lt X7, By £= al) 1 .

As it is well-hoﬁ, F, preserves pullbacks for every L and
every arity function, so it covers pullbacks. Denote by P:
:Set—> Set the covariant power-set functor, i.e.

PX =4Zc X}, Pf sends Z to f(Z).
For any cardinal m, denote by P :Set—> Set its subfunctor

defined by
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PX =42c X |card Z¢m3.

All the functors P, Py, me{cardinals} , preserve preimages.
P covers pullbacks (but it does not preserve them), but

Pm covers pullbacks iff either m<3 orm 2 Hoe
(For example, P3 does not cover the pullback formed by
f:§0,1,2% —> 4 0,13 and g: 40,1,2%3 —»4 0,13 , where £(0) =
= f£(1) = 0, £(2) = 1, g(0) = 0, g(1) = g(2) = 1.)
Hence, by 3., there exists a Py-machirne Ml with run Ml <
< (run Mll)-lo run Mi,. On the other hand, there exists no
such F-machine with either F = Fﬂ. or F=Por F = Pm with

m<3 orm Z 8.

III. Relations computed by X-machines

1. Iet us recall (with formal modifications) the notion
of an X-machire in the sense of Eilenberg [E, p. 267]. An X-
machine J over an alphabet =, consists of the following data.

a) A finite = -automaton A = (Q,I,T) (i.e. a finite
set Q of states, IcQ initial states, TcQ terminal states)
with & next state relation o :Q = = —>> @,

b) a relation @:X = > X;

¢) an input code o€ :A —> X and an output code @ :X—
—»> Y.
For every § € = , let us denote @(-,6):X —» X by Rg
and o(-, 6):Q —>>Q by Dy . The relation IM|:X—>>»X is
defined in [E] ae U Rdlv ces @ Rs.n, where the union is taken
over all strings 6’1... 61\ accepted by the automaton A .
The relation computed by J# is defined as ¢ v i M| 0 @ -

Define Fg :Set—»> Set by Fg A = A= = , Fy f = fixly.
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For every X-machine M define an F, -machine M (M) as fol-
lows.

MM =Too,(X,a), Lp,1gxil, (XxQ,A), [1yxt,Plew],
where i:I—>Q, t:T—»Q are inclusioms; o :Xx< = —> X, p:
:XxI—>X, P:XxT—» X are the first projections and
Al=y=,6) = Rgx Dg :XxQ—>>»X%Q. The situation is visuali-

zed on the picture below.

xS l;xQxZ

| .
/ \4MW 7o

X» T

2. Proposition. The relation computed by M is equal to
beh Wi (M).

Proof. We consider the free components of M (M) (see
1I.1). Denote by =™ the free monoid over = and by A the
empty string. The free Fz -algebra over X*I is formed by
(X=Ix Z* , ) and 7 XRI—> XxI x 2T , where @:XxIx
% Z*xZE —» Xm<Ix=* sgsends every (x,q,8,6) to
(x,q,86) and 7 sends (x,q) to (x,q,A). The free extersion
p¥ : (X=Ix 2% ,¢)—> (X,7) sends every (x,q,8) to x while
the free extension (lx'r-i)* (X =D = S* y @) —> (X=xQ, A)
sends every (x,q,8) with s = 6'1... 6, to (Raalo st.n(x)).x
"(DG‘ ©...0Dg (x)). Hence

(1x;<1)# 1y»t
X QuZ* = > XxQ = XnT —-—-—? X

maps every Xw={q¥»x{s}, where s = 6p..s 6y, into X as

Rslo vee aRb.n whenever (Db-'lo cee oD;n(q))an-Hb and as @ ot-
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herwise. Consequently, (p# )'10 (1xxi)# ° (1x}<t)-19 P is
equal to | M1 . Thus, by II.2,
beh M(,M,) =¢.|,M,|°Qo

Concluding remarks. In the present paper, we deal with
F-machines only in the category Set. If K is a finitely com-
plete category, (¥#,M) a factorization system in K, K is
M -well-powered amd fulfils the % -pullback property, then
the category Rel K of relations in K can be formed and any
% -preserving functor F:K—» K extended to a mapping F:Rel K->
—> Rel K by the formula Fl«,B3)=[F(x),F(3)] such that
I.4.1)2)3) are fulfilled. This is presented in [TIJ. Then the
notion of an F-machine, its run and behaviour can be formula-
ted in this more general setting and the propositions 1I.9,

I.10 amd II.2 are still valid whenever M -sub-objects of

any object of K form a complete lattice.
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