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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
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QUASIMODULES GENERATED BY THREE ELEMENTS
Tomas KEPKA and Petr NEMEC

Abstract: Quasimodules generated by three elements and
their subquasimodules are investigated.

Key words: Commutative Moufang loop, module.
AMS: Primary 20NO5

This paper is a continuation of [1] and the reader is re-
ferred to [1) for definitions, basic properties of quasimodu-

les, terminology, notation, references, etc.

1. Introduction. Throughout the paper, let R be a left
noetherian associative ring with unit and 23 = §1,2,0% the
three-element field. Further, let & ‘:R—923 be such that -&
is a ring homomorphism of R onto Z3. The word quasimodule will
always mean a special left R-quasimodule of type (@ ).

For a set M, let | M| designate the cardinal number corres-
ponding to M. If Q is a quasimodule then o(Q) is the least car-
dinal number equal to | M| for a generator set M of IQ.

We shall define two primitive quasimodules T and S as fol-
lows:

T = Z3, + is the usual addition and rx = - & (r)x.
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S = S(o,rx) = Z;, <a,b,c,d) o {x,y,u,v > = {a+x,bty,ctu,
d+v+ (ay-bx)(c-u)d and r<{a,b,c,d> = {(-F(r)s,~ & (r)b,
- drie,- mad. '

1.1. Proposition. (i) T is a free primitive quasimodu-
le of rank 1.

(ii) 12 is a free primitive quasimodule of rank 2.

(iii) S is a free primitive quasimodule of rank 3.

Proof. (i) amd (ii). Every primitive quasimodule gene-
rated by at most two elements is a module. On the other hand,
primitive modules are just vector spaces over 23.

(iii) One may verify easily that $ is not a module and
S is generated by three elements. Let Q be a free primitive
quasimodule of rank 3. Q is generated by a set {a,b,c} amd Q
is nilpotent of class at/most 2 (see [1, Proposition 4.3]).
Hence K€ A(Q)E C(Q) is a normal subquasimodule, where K is the
subquasimodule generated by the associator (a,b,c). However,
Q/K is a module by [1, Lemma 1.1] and consequently K = A(Q),
o(A(Q))¢ 1 and | A(Q)| « 3, since A(Q) is a primitive module.
Finally, o(Q/A(Q))£ 3, Q/A(Q) is a primitive module, | Q/A(Q)<
£27 and |1Q) & 81, Since $§ is a homomorphic image of Q, Q is
isomorphic to S.

2. Soc-torsion quasimodules

2.1, lemma. Let Q be a quasimodule such that o(Q/C(Q))&
&2, Then Q is a module.

Proof. There are elements a,beQ such that Q is generat-
ed by C(Q)u {a,b}. Denote by P the subquasimodule generated by

these elements. Then P is a module and Q is a homomorphic ima-
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ge of the product C(Q)x P. Hence Q is a module.

2,2, Lemma. Let Q be a primitive module and O4 n. Then
0(Q) = n iff Q is finite and (Q] = 37,

Proof. The variety of primitive modules is equivalent
to the variety of abelian groups with 3x = O. The rest is

clear.

2.3. Lemma. Iet Q be a finitely generated primitive qua-
simodule. Then Q is finite amd | Q| = 3™ for some O4n.

Proof, Q is nilpotent anl we can proceed by the nilpo-
tent class m of Q. If m£1 then Q is a module aml the result
follows from 2.2. let 2<m. Then Q/C(Q) is nilpotent of class
at most m-1 and C(Q) is a fini_tely generated primitive module.

The rest is clear.

2.4, Proposition. Let Q be a finitely generated X -tor-
sion quasimodule., Then Q is finite and 1Q] = 3® for some O&n.

Proof. Q is noetherian and ﬁ-tqraion. Hence there is a
finite sequence 0 = P,EP) £...SP, .S P, = Q of normal subqua-
simodules such that Pi/Pi-l are finitely generated and primi-
tive, It remains to apply 2.3.

2.5. Proposition. Suppose that the ring R has primary de-
compositions. Let A be a representative set of simple modules
ard Q a Soc-torsion quasimodule. Then Q is a direct sum of its
subquasimodules ’S-E?:S(Q), se.

Proof. It suffices to show that Q is generated by
o :"»?ES(Q). However, this is clear from the fact that A(Q) &

e ¥ .

2.6, Proposition. Suppose that the ring R has primary de-

compositions. Let Q be a finitely generated Soc-torsion quasi-
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module. Then there is a finite set S,,...,S,, O4n, of simp-

le modules not isomorphic to T such that Q is isomorphic to

the product X (Q)» Socsl(Q)x ...xé?és (Q). Moreover, if Q
n

is not a module then X (Q)# 0.
Proof. Apply 2.5 and [1, Lemma 4.16],

2,7. Proposition. Suppose that R is commutative and fi-
nitely generated. Then every finitely generated Soc-torasion

quasimodule is finite.
Proof. This is an easy consequence of 2.4 and 2.6 (take

into account that every simple module is finite).

2.8, Proposition. Suppose that R is commutative and fi-
nitely generated. Then every finite. directly indecomposable
quasimodule is either a module or X -torsion.

Proof. Apply 2.6.

2.9. lemma. Let 1<n and Q be a quasimodule which is not
nilpotent of class at most n. Then 32"“'2 <|Ql.

Proof. We can assume -that Q is finite and subdirectly ir-
reducible. Then Q is nilpotent of class m, n + 1€ m. In parti-
cular, n+2£0(Q). But A(Q)s } (Q), and so n+2£ o(Q/A(Q)) (use
[1, Proposition 4.12]). On the other hand, Q and Q/A(Q) are
% -torsion. Hence ™22 (Qa@)) . Finally, OiAn(Q)gu.

e F A (QEAQEQ Tus 3¢ 1A(Q)1 ana 372 21 .

2.10, Corollary. Let Q be a non-associative quasimodule.
Then 81 £1Q1\ .

3. The radical E. Put E = Pp . That is, for a quasimo-

dule Q, E(Q) is just the least normal subquasimodule such that
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the corresponding factor is primitive.

3.1, Lemma. Let Q be a quasimodule. Then E(Q) is just
the subloop generated by the elements rx + d r(x), xeQ,reR.
Proof. Denote by P the subloop. Obviously, P is a sub-
quasimodule (we have srx + s § (r)x = (s d(r)x + & (8) F(r)x)+
+ (srx + $ (sr)x)) and PSE(Q). On the other hand, PSC(Q), P
is normal and Q/P is primitive. Thus P = E(Q).

3.2. lemma. Suppose that the ring R and a quasimodule Q
are generated by subsets M and N, resp. Denote by P the sub-
quasimodule generated by the elements rx + & (r)x, reM, x€N.
Then P = E(Q).

Proof. It is easy to see that rx + d (r)xeP for all
xe¢ Q and re M. Denote by K the set of all reR such that rx +
+ $(r)xeP for every x€ Q. We have MEK and K(+) is a subgroup
of R(+). Let r,8¢K and x€ Q. Then rax + @ (rs)x = rex -

- (@) F()x = (rex + rp(a)x) + (-rd(s)x - d(r) Pp(s)x)e P.
Thus K is a subring of R and K = R,

3.3. Proposition. E is a cohereditary radical for ¢ .
Moreover, DSESC and ) €A + E.

Proof. Easy (use 3.1).

3.4. Proposition. Suppose that R =2 [oy,.e.,c, ], O£n,

is the ring of polynomials with n commuting indeterminates over
the ring Z of integers. Then A(Q)NE(Q) = O for every free qua-
simodule Q.

Proof. We shall proceed by induction on n. First, let
n = 0. Then, by 3.2, E(Q) = D(Q) = 3Q. Let a6 A(Q)Nn E(Q) and
let f denote the natural homomorphism of Q onto Q/A(Q). We ha-
ve a = 3b for some be Q, so 3f(b) = 0. But Q/A(Q) is a free
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Z.-module, i.e., an abelian group, and therefore f(b) = O,
beA(Q). Since A(Q) is primitive, a = 3b = 0. Now, let 1<n.
Denote by P the subquasimodule generated by o«ix + & (ocy)x,
x€Q. Since PSC(Q), P is a normal submodule. Moreover, P =
=4{(e¢y + $(ecy))x I xcQ}. Let G = Q/P and let ge denote the
natural homomorphism of Q onto G. First, we show that A(Q) N
NP = 0. For, let ag A(Q)nP. We have a = (o¢; + $(o¢;))b
for some beQ, (e« + § (ocy))f(b) = 0 in Q/A(Q) and £(b) = O.
Thus be A(Q) and a = 6, A(Q) being primitive. Now, the quasi-
module G can be considered a Z [ «x,,...,«,] —quasimodule (we
have o 1x = - & (;)x for every x€Q). In this case, it is
free and A(G)n E(G) = O by the induction hypothesis. Let

a¢ A(Q)Nn E(Q). Then g(a)e& A(G)n E(G), gla) = 0, ae A(Q)n E(Q)n
NP =0,

3.5. Proposition. Suppose that R is commutative and fi-
nitely generated. Then A(Q)n E(Q) = O for every free quasimo-
dule Q.

Proof. There are a polynomial ring P = Z [ Kysecer @y ]
and a surjective ring homomorphism % :P —> R preserving the
unit. Put ¥ =g anl let Q be a free R-quasimodule. Then
there are a free P-quasimodule F of type (¥ ) and a homomorph-
ism £ of F onto Q. Let x¢ A(Q)n E(Q). There are a¢ A(F) and
b< E(F) with f(a) = x = £(b). Then a -~ béKer f. But Ker £ =
= IF, where I = Ker¢ . Since I€Ker (-§¢ ), Ker FSE(F) and
a€A(F)NE(F) = 0, Thus a = O and x = O.

3.6, Lemma. Let P be a normal subquasimodule of & quasi-
module Q such that PaA(Q) = 0. Then PE C(Q).
Proof. For xeP, a,beQ, ((x+a)+b)-(x+(a+b)) e PnA(Q).

- 254 -



Hence (x+a)+b = x+(a+b) and x C(Q).

3.7, Lemma. Let P be a normal subquasimodule of a quasi-
module Q such that Pn E(Q) = 0. Then Ps X(Q).
Proof. Obvious.

4. Quasimodules generated by three elements. Throughout

this section, let Q be a non-associative quasimodule with
o(Q) = 3.

4.1. Proposition. (i) Q is nilpotent of class 2.

(i1) A(Q)E£C(Q) and A(Q) is isomorphic to I.

(1ii) Q/C(Q) is isomorphic to I°.

(iv) Either E(Q) = C(Q) or Q/B(Q) is isomorphic to S and
C(Q)/EQ) to I.

(v) If E(Q)%C(Q) then E(Q)n A(Q) = O.

(vi) C(Q) = A(Q) + E(Q).

Proof. (i) This is clear.

(ii) By (i), A(Q)EC(Q). Further, there are a,b,c ¢ Q such
that Q is generated by these elements. Let P be the subloop of
Q(+) generated by ((a+b)+c) - (a+(b+c)). Then PEA(Q) S C(Q),
and hence P is a normal submodule of Q. By [1, Lemma 4.5], Q/P
is a module. Hence P = A(Q) and o(A(Q)) £ 1. However, A(Q)# O is
a primitive module. Consequently A(Q) is isomorphic to I.

(iii) By 2.1, o(Q/C(Q)) = 3. However, Q/C(Q) is a primi-
tive module and consequently Q/C(Q) is isomorphic to 23. '

(iv) and (v). Let E(Q)# C(Q) and P = Q/E(Q). Then P is
primitive and P is a homomorphic image of S. On the other hand,
27 = \1Q/C(Q)| &« |P|, (Pl =81 =18 |, and P is isomorphic to S.
In particular, P is not a module, A(Q)4 E(Q) and A(Q)nE(Q) = O,
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since A(Q) is simple.

(vi) Put P = A(Q) + E(Q). We have P£C(Q) and Q/P is a
primitive module generated by three elements. Thus 27 = | Q/P|
and P = C(Q).

4.2. Lemma. Let P be a proper subquasimodule of Q such
that C(Q) is contained in P. Then P is a module.

Proof. Obviously, f(P) is a proper subquasimodule of
Q/C(Q), where £:Q — Q/C(Q) is the natural homomorphism. By
4.1(iii), o(£(P)) £ 2. But C(Q)&C(P), hence o(P/C(P))£2 and
P is a module by 2.1.

4.3. Lemma. Let P be a maximal submodule of Q. Then P is
& normal maximal subquasimodule and Q/P is isomorphic to I. Mo-
reover, C(Q) is contained in P,

Proof. The set C(Q) + P is a submodule of Q. Hence C(Q) g
€ P and P is a normal maximal subquasimodule of Q by 4.2, Fi-
mlly, Q/P is simple and a homomorphic image of Q/C(Q). Thus
Q/P is isomorphic to T.

4,4, lemma. Let P be a submodule of Q. Then E(Q) + P+Q.
Proof. There is a maximal submodule G of Q such that P& G,

By 4.3, E(Q) + P&C(Q) + P&G.

4.5. lemma. Let P be a normal subquasimodule of Q such
that A(Q)4P. Then P is a module and P£C(Q). Moreover, if S
is a homomorphic image of Q/P then PEE(Q).

Proof. Since A(Q)§P, PAnA(Q) = 0. By 3.6, PEC(Q). The

rest is clear.

4.6. Proposition. A subquasimodule P of Q is normal iff
either A(Q)E P or PEC(Q).
Proof. First, let P be normal. If A(Q¢P then P=C(Q)
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by 4.5. Comversely, if A(Q)ES P then P is normal, since Q/A(Q)

is a module. The other case is clear.

4.7. Corollary. Let P be a normal subquasimodule of Q.
Then either P or Q/P is a module.

4.8, lemma. Let P be a subquasimodule of Q such that P
is not a module. Then A(Q)SP, P is normal, E(Q) + P = Q and
T is not a homomorphic image of Q/P.

Proof. We have O%A(P)c A(Q). Hence A(P) = A(Q) and P
is normal. Further, suppose that Q/K is isomorphic to T for a
normal subquasimodule K with PE€K. Then A(Q), E(Q)EK, C(Q) =
= A(Q) + E(Q)€K and K is a module by 4.2, a contradiction.
Now, it is clear that E(Q) + P = Q.

4.9, Lemma. S is a homomorphic image of Q iff E(Q)# C(Q).

Proof. If E(Q)# C(Q) then Q/E(Q) is isomorphic to S by -
4.1(iv). Let S be a homomorphic image of Q. Then Q/E(Q) is not
a module, and so E(Q)#C(Q).

4,10, Progoeitic;n. E(Q)%C(Q) iff Q is a subdirect pro-
duct of S and a module ,
Proof. Apply 4.1(iv),(v) and 4.9,

4.11, Comstruction. Suppose that E(Q)# C(Q). Then A(Q)A
A E(Q) = 0. Denote by £ and g the natural homomorphisms of Q
onto Q/A(Q) and Q onto Q/E(Q), resp. By 4.1(iv), Q/E(Q) is iso-
morphic to S. Moreover, g(C(Q))<s C(Q/E(Q)) and O#g(C(Q)). Hen-
ce g(C(Q)) = C(Q/E(Q)) is isomorphic to T and g(C(Q)) ={0,x,y3.
Let a,beC(Q) be such that g(a) = x and g(b) = y. Then C(Q) is
the disjoint union of the sets E(Q), a+E(Q), b+E(Q). Since
C(Q) = A(Q) + E(Q), £(E(Q)) = £(a+E(Q)) = £(b+E(Q)) = £(C(Q)).

Consider a subquasimodule G of £(C(Q)) and a homomorphism h of
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@ onto g(C(Q)). Then G/Ker h is isomorphic to T and h indu-
ces an isomorphism k from G/Ker h onto g(C(Q)). Finally, let
p:£(C(Q)) —» £(C(Q))/G amd q:£(C(Q)) —» £(C(Q))/Ker h be the
natural homomorphisms, Denote by P the set of all ce C(Q)
with f(c)¢ G and hf(c) = g(e). '

4.11.1. lemma, P is a submodule of C(Q), A(Q)AP =0
and PSE(Q).

Proof. Obviously, P is a submodule of C(Q). Let cg A(Q)n
N P, Then g(c) = he(c) =='0, c€ B(Q)n A(Q) = O. Further, let
z ¢ G be such that h(z) = x. As £(a+E(Q)) = £(C(Q)), z = f(a+c)
for some c ¢ E(Q). We have f(a+c) = 2€ G and hf(a+c) = h(z) =

= x = g(a+c). Hence a+tc ¢ P. But g(a+c) = x40, and so atc ¢

4.11.2, Lemma. P is a normal submodule of Q, A(Q)$ P and
S is mot a homomorphic image of Q/P.
Proof. P is normal, since it is contained in C(Q). Fur-
ther, A(Q)$ P by 4.11.1 and S is mt a homomorphic image of
Q/P due to 4.11.1 and 4.5.

4.11.3, Lemma. C(Q)/P is isomorphic to £(C(Q))/Ker h.
Proof. Define a mapping t of C(Q) into £(C(Q))/Ker h by
t(e) = k"lg(c) - qf(c) for every ces C(Q). Using the fact that

£(C(Q))/Ker h is a module, it is easy to see that t is a homo-
morphism. If c¢ P then t(c) = x"Int(e) - qf(c) = 0, and so
PSKer t. Conversely, if cg Ker t, then k'lg(c) = qf(c), f(cle
& G and g(e) = he(e), ce P, Thus Ker t = P and it remains to
show that t(C(Q)) = £(C(Q))/Ker h., For, let z& £(C(Q))/Ker h
be an element. We have g = qf(c) for some cg E(Q) and t(-¢c) =
= qf(c) - X 1g(c) = qffc) = z.

o
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4.12, Lemma. Suppose that E(Q)# C(Q). Let P be a nor-
mal subquasimodule of Q such that A(Q)%P and S is not a ho-

momorphic image of Q/P. Then P is a submodule of the type con-
structed in 4.11. )

Proof. By 4.1 and 4.5, PE€C(Q) and P$E(Q). Let £:Q —
—> Q/A(Q) and g:Q—> Q/E(Q) be the natural homomorphisms. As
we know, g(C(Q)) =40,x,y} is isomorphic to T. Since P4 E(Q),
g(P) = g(C(Q)). Furthermore, A(Q)AP = O and £/P:P—p £(P) is
an isomorphism. Consequently there is a homomorphism h:f(P)—p
—>» g(P) such that hf(c) = g(c) for every ce P. Obviously,
h£(P) = g(C(Q)). Put £(P) + G. If ce P then £(c)g G and hf(c)=
= g(c). Conversely, if ¢€C(Q), £(c)& G and hf(c) = g(c), then
f(c) = £(d) for some d€ P and we can write glc) = nf(c) =
= hf(d) = g(d). Thus ¢ ~ d6A(Q) E(Q) =0, c =d and ceP.

The rest is clear.

4.13. Theorem. Let Q be a non-associative quasimodule
with o(Q) = 3. Let P be a subquasimodule o'f Q. Then:
(1) P is normal, Q/P is a module and T is not a homomorphic
image of Q/P iff P is not a module.
(ii) P is normal, Q/P is a module .and I is a homomorphic ima-
ge of Q/P iff P is a module and A(Q)E P.
(iii) P is normal, Q/P ’ia not a module and S is not a homo~
morphic image of Q/P iff PSC(Q) and either E(Q) = C(Q) and
PAA(Q) = O or E(Q)4C(Q) and P is a submodule of the type con-
structed in 4.11.
(iv) P is normal and $ is a homomorphic image of Q/P iff
B(Q)# C(Q) and PESE(Q).

Proof. Apply the preceding results.
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4.14. lLemma. Let f be a homomorphism of a quasimodule
Q onto a quasimodule P. Suppose that P is not a module and
0(Q) &£3. Then £(C(Q)) = C(P).

Proof. By 4.5, Ker £€C(Q) and P/£(C(Q)) is isomorphic
to Q/C(Q). According to 4.1, P/C(P) is isomorphic to Q/C(Q).
Now, it is obvious that C(P) = £(C(Q)).

5. Several consequences. In this section, suppose that R

is commutative.

5.1. Propogsition. Let Q be a % -torsion quasimodule such
that 0(Q)< 3. Then every proper subquasimodule of Q is a module.

Proof. We can assume that Q is not a module. Let P be a
proper subquasimodule such that P.is not a module. Since Q is
noetherian, we can assume that Q is a maximal subquasimodule.
By 4.8, P is normal and Q/P is not isomorphic to T, a contra-

diction.

5.2. Proposition. Let Q be a subdirectly irreducible qua-
simodule nilpotent of class 2. Then Q is X -torsion and A(Q)4+
# 0 is the least non-zero normal subquasimodule of Q. Moreover,
A(Q) is isomorphic to T and every proper factorquasimodule of
Q is a module.

Proof. Since Q is nilpotent of class 2, O# A(Q)e C(Q).

By L1, Proposition 5.4], Q is X -torsion. Further, A(Q) is a
subdirectly irreducible primitive module. Hence A(Q) is isomor-
phic to T and the rest is evident.

We shall say that a quéaimodule Q satisfies the condition
(¢ ) if Q is not a module and every proper subquasimodule as

well as factorquasimodule of Q is a module.
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5.3. Theorem. The following conditions are equivalent

for a non-associative quasimodule Q:
(i) Q satisfies ().
(ii) Every subquasimodule and every factorquasimodule of Q
is either a module or isomorphic to Q.
(iii) Q is subdirectly irreducible and every subquasimodule
of Q is either a module or isomorphic to Q.
(iv) Q is subdirectly irreducible and o(Q)£ 3.
(v) o0(Q)£3 and every factorquasimodule of Q ie either a mo-
dule or isomorphic to Q.
Proof. (i) implies (ii). This is trivial.
(ii) implies (iii). Q is not a module, and hence there is
a subdirectly irreducible factor P of Q such that P is not a
module. Thus P is isomorphic to Q.
(iii) implies (iv). There are a,b,ce Q with a +(b+c) #
# (a+b)+c. Denote by P the subquasimodule generated by these
elements. Then P is not associative and P is isomorphic to Q.
(iv) implies (v) and (i). Apply 5.1 and 5.2.

(v) implies (iv). This is easy.

5.4. Proposition. Let Q be a quasimodule satisfying (ec).
Then:
(i) Q is subdirectly irreducible, nilpotent of class 2 and
o(Q) = 3.
(i1) Qis ¥ -torsion, finite and | Q) = 3" for some 4 4n.
(iii1) O0#A(Q)= 3 (Q) =C(Q) = A(Q) + £(Q) and A(Q) = C(Q)n
nX Q).
(iv) A(Q) is isomorphic to T-and Q/C(Q) to 23.
(v) Q is isomorphic to S, provided Q is primitive.

-

(vi) If Q is not primitive then }(Q) = E(Q) = C(Q).
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Proof. (i) See 5.3.

(ii) Use 5.2, 2.4 and 2.10.

(iii) Since Q is not associative, 04 A(Q), Moreover,
A(Q)E 2(Q) by (1, Lemma 4.20] and C(Q) = A(Q) + E(Q) by 4.1
(vi). On the other hand, every simple factor of Q is isomor-
phic to T, and so E(Q)E }(Q). In particular, C(Q) = A(Q) +
+ E(Q) € 2(Q). However, by [1, Proposition 4.12], 0(Q/3-(Q))=
= 3, hence |1Q/3 (@)} =1Q/C(Q))I and 2(Q) = C(Q). Finally,
C(Q)NX (Q) is a subdirectly irreducible primitive module.
The rest is clear.

(iv) Apply 5.2 and 4.1.

(v) Let Q be primitive, Then Q is a homomorphic image
of S. Thus Q is isomorphic to S.

(vi) Let Q be not primitive. Then E(Q)# 0, A(Q)< E(Q)
and E(Q) = C(Q).

5.5. Proposition. A quasimodule Q is not associative iff
there are two subquasimodules G, H of Q such that G is a nor-
mal subquasimodule of H and H/G is a quasimodule satisfying
(ec).

Proof. It suffices to show the direct implication. Sin-
ce Q is not a module, a+(b+c)# (a+b)+c for some a,b,ce Q. Let
H be the subquasimodule generated by these elements. Then H
is not associative and there is a normal subquasimodule G of
H such that H/G is subdirectly irreducible and not associa'ti-

ve., By 5.3, H/G satisfies (e ).

5.6. Theorem. Let R be a_principel ideal domain. Then,
for every 44£n, there exists a quasimodule Q such that Q sa-
tisfies (), 1Qf = 3" and Q is not primitive.

Proof. Let F be a free quasimodule of rank three and
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let f denote the natural homomorphism of F onto F/A(F), By
4.1, O = A(F)A B(F), O E(F) and C(F) = A(F) + B(?). In par-
ticular, O f(C(F)) is a free module. Hence, there are two
submodules G, B of F(C(F)) such that He'G, G/H is isomorphie
to T and £(C(F))/® is a & -torsion subdirectly irreducible
cyclic module with 37-3 elements. Further, let g:F—> F/E(F)
be the natural homomorphism."men g(C(F)) = C(F/E(F)) is iso-
morphic to I (use 4.14). Hence there is a homomorphism h of

G onto g(C(F)) such that H = Ker h. Consider the submodule P
of C(F) corresponding to G, h in the sense of 4.11 and put Q =
= F/P. By 4.11.2, Q is not associative and § is not a homomor-
phic image of Q. We have o(Q) = 3. By 4.14 and 4.11.3, C(Q) =
= C(F)/P is isomorphic to f(C(F))/H. In particular, C(Q) is
subdirectly irreducible and Q is subdirectly irreducible by
(1, Proposition 5.31. By 5.3, Q satisfies (c¢c ). Furthermore,
1¢(Q)1= 373 and | Q/C(Q)|= 27. Thus |Q[= 3". Finally, Q is not

primitive, since 8§ is not a homomorphic image of Q.

6. Free quasimodules

6.1. lepma. Let O#n and Q be a quasimodule such that
0(Q) £n and Q/A(Q) is a free module of rank n. Suppose that
{A(P)! € |A(Q)| , where P is a free quasimodule of rank n. Then
Q is isomorphic to P.

Proof. Since o(Q)€ n, there is a homomorphism f of P on-
to Q. Further, let g:P—»P/A_(P) and k:Q —» Q/A(Q) be the na-
tural homomorphisms. Since f(A(P)) = A(Q), f induces a homomor-
phism h of P/A(P) onto Q/A(Q). However, both P/A(P) and Q/A(Q)
are free modules of the same finite rank and consequently h is

an isomorphism. Now, let a¢ P and f(a) = O. Then hg(a) =
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= kf(a) = 0, g(a) = 0, ae A(P). Thus Ker £c A(P). On the ot-
her hand, A(P)| & | A(Q)] and £(A(P)) = A(Q). Since A(Q) is

finite, fIA(P) is injective and Ker f = O.

6.2. Proposition. Iet Q be a quasimodule and P be a free
quasimodule of a finite rank n. Suppose that o0(Q)4 n and P is
a homomorphic image of Q. Then Q is isomorphic to P.

Proof. Put G = Q/A(Q). Then o(G)4 n and P/A(P) is a
homomorphic image of G. But P/A(P) is a free module of rank n.
Hence P/A(P) is isomorphic to G. The rest follows from 6.1.

In the remaining part of the paper, assume that R is a

principal ideal domain.

6.3. Proposition. Let Q be a free quasimodule and P be a
submodule of Q. Then there are a free module G and a primiti-
ve quasimodule H such that P is isomorphic to G H.

Proof. Denote by £ the natural homomorphism of Q onto
Q/A(Q). Then f£(P) is a free module and consequently P is iso-~
morphic to the product f(P)x H, where H = Ker fn A(Q).

6.4. Lemma. Let Q be a finitely generated quasimodule
such that Q is not associative, 0(Q/A(Q))< 3 and Soc(Q/A(Q))=
= 0. Then Q is free of rank 3.

Proof. Since A(Q)E 2(Q), 0(Q/2(Q)) = o(Q) and Q is not
associative, o0(Q) = p(Q/A(Q)) = 3. On the other hand, Q/A(Q)
is a finitely generated module with zero socle. Therefore
Q/A(Q) is a free module. Finally, let P be a free quasimodule
of rank 3. Then A(P) is isomorphic to T, and so it is a homo-

morphic image of A(Q). By 6.1, Q is isomorphic to P.

6.5. Proposition. Let Q be a free quasimodule of rank 3.
Then A(Q) = X (Q) is isomorphic to T, E(Q) to R and C(Q) to
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Px T. Hence o(C(Q)) = 4.

Proof. A(Q) = X (Q), since X (Q/A(Q)) = O. By 4.1,
A(Q) is isomorphic to I. Further, Q/E(Q) is isomorphic to S,
E(Q)A A(Q) = 0 and C(Q) = E(Q) + A(Q). Thus C(Q) is isomorp-
hic to E(Q)x T and E(Q) to E(Q/A(Q)). However, E(Q/A(Q)) is
isomorphic to E(R3) and E(R3) is isomorphic to R3.

6.6. Theorem. Let Q be a free quasimodule of rank 3. A
quasimodule P is'isomorphic to a subquasimodule of Q iff it
is isomorphic to one of the following quasimodules: O, I, R,

R®

, R3, Rx T, B T, Bx T, Q. Hence P is isomorphic to Q,
provided it is not a module.

Proof. First, let P be a subquasimodule of Q. The fac-
tor Q/A(Q) is a free module of rank 3. If P is not associati-
ve then A(P) = A(Q) and P/A(P) is a free module. By 6.4, P is
isomorphic to Q. Now, suppose that P is a module. In this ca-

se, we can use 6.3. The converse assertion follows from 6.5.

6.7. Corollary. Let Q be a quasimodule with o0(Q)£ 3 and
let P be a subguasimodule of Q. Then o(P)<£ 4. Moreover, if P

is not associative then o(P) = 3.
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