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COMMENTATIONES MATHEMATICAE UNIVERSITATtS CAROLINAE 
20.2 (1979) 

NOTES O N QUASIMODULES 
Tomas KEPKA 

Abstract: A class of generalized modules is investiga­
ted* 

Key words: Commutative Moufang loop, module* 

AMS: Primary 20N05 

It is well known that the theory of medial quasigroups 

is equivalent to the theory of modules over a commutative no-

etherian ring (see e.g. C21). This fact remains true for tri-

medial quasigroups (see C43), however the underlying abelian 

groups of the modules are replaced by commutative Moufang 

loops (possibly non-associative)* Such a module-like struc­

ture is called a quasimodule in the paper and some basic re­

sults concerning these quasimodules are proved* A special at­

tention is paid to those properties which are important for 

the corresponding trimedial quasigroups* 

1. Commutative Moufang loops* In this paragraph, we 

shall formulate some results concerning commutative Moufang 

loops. For complete proofs as well as further details* the 
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reader is referred to C H . 

Let Q(+) be a loop satisfying the identity (x + x) + 

+ (y + 55) *- (x + y) + (x + z). Then, as is easy to see, the 

loop is comoratative and it is called a commutative Moufang 

loop. For a,b,ccQ, let i& b(c) » ((c + a) + b) - (a + b) and 

(a,b,c) « ((a + b) + c) - (a + (b + c)). 

1*1* ->°-~°a* 1-̂t a,b,cc Q. Then: 

(i) ift k is an automorphism of Q(+). 

(ii) fia b n i f ( a ) f ( b )f and f((a,b,c)) = (f(a),f(b),f(c)) 

for every endomorphism f of Q(+)# 

(iii) If a + (b + c) » (a + b) + c then the subloop generat­

ed by these elements is a group. 

Proof. SeeCl, Lemma VII.3.3, Theorem VII.4.23. 

1.2. Lemma. A subloop P(+) of Q(+) is normal iff 

i b(P)£P for all a,beQ. a, u 

Proof. See Cl, Lemma IV.1.4J. 

Let C(Q(+)) denote the center of Q(+)# Further, put 

Co(Q(+)) « 0 and Cn+1(Q(+))/Cn(Q(+)) = C(Q(+)/Cn(Q(+)) for 

--•3« Lemma, (i) Any subloop of C(Q(+)) is a normal sub­

group of Q(+). 

(ii) For every 0£n, Cn(Q(+)) is a normal subloop of 

Q(*>* 

Proof. Obvious (use 1 . 2 ) . 

! •*• IfSSffiH* L e t **("*"> D e a subloop of Q(+) and G = P + 

* C(Q(+)) s - i a + b t a c P , be C(Q(+))}. Then G(+) i s a subloop 

0*f Q(+), P(+) i s a normal subloop of G(+) and G(+) i s a homo-

ffl0**phic image of the product P(+)x C(Q(+)). 

- 230 -



Proof. Easy. 

1»5* l£S££L* **t P(+) be a subloop of Q(+) such that 

Q(+) is generated by PuC(Q(+)). Then P(+) is a normal sub-

loop of Q(+) and Q(+) is a homomorphic image of the product 

P(+)xC(Q(+)). 

Proof. Apply 1.4. 

If J, K, L are non-empty subsets of Q then (J,K,L) deno­

tes the subloop generated by all (x,y,z), xtJ, y*K, z & L. 

Put AQ(Q(+)) = Q and An+1(Q(+)) = (An(Q),Q,Q) for every 

0£n. Further, denote A(Q(+)) » AX(Q(+)). 

1.6. Lemma, (i) For every 0*n, An(Q(+)) is a normal 

subloop of Q(+). 

(ii) A0(Q(+))»A1(Q(+))3A2(Q(+))S... . 

Proof. Obvious. 

The loop Q(+) is said to be nilpotent of class at most n 

if An(Q(+)) * 0. It:is said to be nilpotent of class n if 

An(Q(+)) * 0 and either n = 0 or ̂ ^(tj (+))+-0 

*•?• l£2££L* Q(+) is nilpotent of class at most n iff 

Cn(Q(+)) =- Q. In this case, An-1(Q(+))£ C(Q(+)). 

Proof. By induction. 

1#8* £§222§- Suppose that Q(+) is generated by n ele­

ments. Then: 

(i) Q(+) is a group, provided n£2. 

(ii) Q(+) is nilpotent of class at most n - 1, provided 2*n. 

Proof. See l.l(iii) and Cl, Theorem VIII.10.1J. 

1#9* Lemma. Q(+) is a group, provided it is simple. 

Proof. See tl, Theorem VIII.11.U. 

Put B(Q(+)) »4x| xcQ, 3x * Of and D(Q(+)) = 3Q « 
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*{3x\ xcQ}. 

1-10. Lemma, (i) B(Q(+)) and D(Q(+)) are normal sub-

loops of Q(+). 

(ii) A(Q(+))£-B(Q(+)) and D(Q(+)) SC(Q(+)). 

(iii) If P(+) is a subloop of Q(+) such that PnC(Q(+)) = 

= 0 then PCB(Q(+)). 

Proof. SeeCl, Lemma VII.5.7J. 

Let n be an integer and f be a transformation of the set 

Q. We shall say that f is central of type (n) if nx + f (x) 6 

« C(Q(+)) for every x£ Q. 

-»•!---• Lemma. Let n be an integer, n = 3m + kt where k& 

€i0,l,2}. 

(i) The mapping x — > nx is a central endomorphism of type 

(k). 

(ii) If f is a central transformation of type (n) then f is 

central of type (k). 

Proof. Apply 1.8(1) and 1.10(ii). 

1 •"-«-• Lemma. Let f be a transformation of Q. Suppose 

that f is central of types (k), it), where k,4.6-{ 0,1,2}. Then 

either k = X or Q(+) is a group. 

Proof. Evident. 

--•-«3. Lemma. Let f and g be central endomorphisms of ty­

pes (n) and (m), resp. Then: 

(i) f + g is a central endomorphism of type (n+m). 

(ii) - f is a central endomorphism of type (-n). 

(iii) fg is a central endomorphism of type (-nm). 

(iv) If f is an automorphism then f" is central o± type (n). 

Proof. Easy. 
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1.14. Lemma. Let f, g, h be central endomorphisms of 

Q(+). Then f + (g + h) » (f + g) + h. 

Proof. Easy. 

"-•15« Lemma. The set of all central endomorphisms of 

Q(+) i3 an aasociative ring with unit. 

Proof. Apply 1.13 and 1.14. 

1.16. Lemma. Let f be a central endomorphism of type 

(n). Then f(x) * -nx for every xeA(Q(+)). 

Proof. Put g(x) « nx + f(x) for each x Q. Then g ia an 

endomorphiam and g(Q)£ C(Q(+)). Consequently, g(Q) is a group 

and A(Q(+)) is contained in Ker g. 

1.17. Lemma. Let a,b,ccQ be such that (a + b) + c * 

=- -a + (b + c). Then a » -a. 

Proof. We have (a + b) + (3a + c) » ((a + b) + c) + 3a-

= (-a + (b + c)) + 3a » 2a + (b + c) * (a + b) + (a + c). 

From this, 2a =* 0 and a =- -a. 

1.18. Lemma. Let P(+) be a non-zero cyclic subgroup of 

Q(+). 

(i) If PHC(Q(+)) -= 0 then P contains just three elements, 

(ii) If the order of P is not divisible by three then 

P£C(Q(+)). 

(iii) If P(+) is normal then Pn C(Q(+))#. 0. 

(iv) If P(+) is a minimal normal subloop then P£C(Q(+)). 

Proof. Apply 1.10 and 1.17. 

1-19. Lemma. Let P(+) be a normal subloop of Q(+) such 

that P contains at most five elements. Then P C(Q(+)). 

Proof. With respect to 1.18(ii), we can assume that P 

contains either one or three elements. In both cases, the 
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result follows from 1.18(iv). 

2. Quasimodules. Throughout the paper, let R be an as­

sociative ring with unit. A (left R-) quasimodule Q is an al­

gebra Q(+,rx) with one binary operation + and a set of unary 

operations x — > r x , rcR, satisfying the following identities: 

(x + x) + (y + z) « (x + y) + (x + z), (-l)x + (x + y) « y, 

r(x + y) » rx + ry, (r + s)x » rx + ax, (rs)x = r(sx), lx * x, 

Ox s Oy. Then Q(+) is a commutative Moufang loop, the inverse 

operation - of Q(+) is given by x - y + x + (-l)y, the element 

0 » Ox is the neutral element of Q(+) and the unary operations 

x —> rx are endomorphisms of Q(+). We denote by 71 (resp. Til ) 

the class of quasimodules (resp. modules). Obviously, 71 is a 

variety and W is a subvariety determined in 71 by the iden­

tity x • (y + a) « (x + y) + z. 

2*1- Le«na» Let P be a subqua si module of a quasimodule Q 

such that P(+) is a normal subloop of Q(+). Then P is a normal 

subquasimodule• 

Proof. There is a congruence t of Q(+) such that P is 

one of its blocks (in fact, x t y iff x - y« P). However, P is 

a subquasimodule and it is easy to verify that t is a congruen­

ce of the quasimodule Q. 

2*2- I22S2&* Let P be a subquas imodule of a quasimodule Q 

and G(+) be the least normal subloop containing P. Then 0 is a 

normal subquas imodule. 

Proof. Denote by (J. the permutation group generated by 

±m b, all a,bcQ. By 1.2, G(+) is just the subloop generated 

by all f (x) , x c P , f * 9 » . If xiP, f * 9* and r * R then 
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rf(x) * g(rx) for some g e Q. (use l.l(ii)). The rest is now 

clear. 

Let P.|, jc J, be a family of aubquasimodules of a quasi-

module Q. We denote by £ P.r (reap. 21* P±) the (normal) sub-

quasimodule generated by U P.t. Clearly, this (normal) subqua-
w 

simodule is equal to the (normal) subloop generated by U P.. 
w 

2«3« Lemma. Let Q be a quasimodule. Then, for every 0*n, 

An(Q) « An(Q(+)) is a normal subquasimodule of Q. Moreover, 

Q/A(Q) is a module. 

Proof. The subloop Aft(Q(+)) is invariant under endomorp-

hisms of the loop Q(+). 
2*4. Lemma. Let Q be a quasimodule. Then: 

(i) Every subquasimodule contained in C(Q(+)) is normal, 

(ii) Every subquasimodule containing A(Q) is normal. 

Proof. Apply 1.3(i), 2.1 and 2.3. 

2*5* Lemma. Let Q be a quasimodule. Then B(Q) » B(Q(+)) 

and D(Q) « D(Q(+)) are normal subquasimodules of Q. Moreover, 

D(B(Q)) = 0 and B(Q/D(Q)) = Q/D(Q). 

Proof. Similar to that of 2.3. 

2-6. Lemma. Let Q be a quasimodule and aeQ. Denote by 

P the subquasimodule generated by a. Then P * Ra = i ra | re &1 

and P is a module. 

Proof. Obvious. 

3* Preradicals. Let (L be a class of quasimodule s closed 

under subquasimodules, homomorphic images, finite cartesian 

products and containing R. By a semipreradical t for & we mean 

a mapping of & into & such that the following two conditions 
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are satisfied: 

(i) For every Q c CL , t(Q) is a subquasimodule of Q. 

(ii) If f :Q—> P is a surjective homomorphism and Q « CL 

then f(t(Q))S t(P). 

Let t be a semipreradical for CL . We shall say that t 

is 

- idempotent if t(t(Q)) » t(Q) for every Q « CL , 

- hereditary if t(P) * Pnt(Q) for every Q s CL and a sub-

quasimodule P of Q, 

- normal if t(Q) is a normal subquasimodule of Q for every 

Q€ a , 

- cohereditary if f(t(Q)) * t(P) for every Q c d and every 

surjective homomorphism f :Q—> P, 

- a preradical if f(t(Q>)£t(P) for all Q,P c CL and a ho­

momorphism f :Q—y P, 

- a semiradical if it is normal and t(Q/t(Q)) =- 0 for every 

Q € d , 

- a radical if it is both a semiradical and a preradical. 

A quasimoduHe Q is said to be t-torsion (t-torsionfree) if 

t(Q) * Q (t(Q) * 0). 

3*1* Lemma. Let t be a semipreradical for CL • Then: 

(i) t is an idempotent preradical, provided it is hereditary, 

(ii) t is a semiradical, provided it is cohereditary and nor­

mal. 

(iii) t is a preradical iff t(P)S t(Q) for every Q * CL and 

a subquasimodule P of Q. 

Proof. Obvious. 

3.2. Proposition. Every hereditary semipreradical for 

d is a normal idempotent preradical. 
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Proof. Let t be a hereditary semipreradical. B|y 3.1, t 

is an idempotent preradical. It remains to show that t is nor­

mal. For, let Q c CI , a,b cQ and c c t(Q). Put d = ift b(c) 

and take re (0:c) =--t a | s « R, sc = Of. Clearly, rd » 0, 

(0:c)S (0:d) and the cyclic submodule Rd is a homomorphic ima­

ge of Re. But Re is t-torsion. Consequently, Rd is t-torsion 

and d€ t(Q). 

k non-empty set T of left ideals of R is called a fil­

ter if the following conditions are satisfied: 

(PI) If IS K are left ideals and I * T then K * ?. 

(F2) If I « r and r € R then (I :r) € ? . 

(P3) T is closed under finite intersections. 

Moreover, W is said to be a radical filter if: 

(F4) If l£ K are left ideals, K € T and (I:r) c T for every 

r c K then I e T. 

3»3. Lemma. Let t be a hereditary preradical for & . 

Put T * *I | t(RA) = R/I?. Then: 

(i) V is a filter. 

(ii) For Q 6 d , t(Q) M x j x e Q , (0:x) c 3"! . 

(iii) 7 isa radical filter, provided t is a radical. 

Proof. Easy. 

3.4. Lemma. Let T be a filter*and t(Q) s «fxf xc Q, 

(0:x) € T) for every quasimodule Q. Then t is a hereditary 

preradical for 72 • Moreover, t is a radical, provided & is 

a radical filter. 

Proof. Easy. 

Let % be a non-empty subclass of d • For every Q c CI , 

put p - (Q) = n Ker f, f :Q-*G, G 6 3 . 
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3»5» Lemma, p^ is a radical for & , 

Proof. Obvious. 

Let t be a preradical for A . Denote by 3$ the class of 

all t-torsionfree quasimodules and put t = p« • One can ea­

sily check that the radical % is just the least semiradical 

containing t. 

3.6. Lemma. Let t be a normal preradical for GL and Q 

be a t-torsion quasimodule. Then there are an ordinal number 

06 and a chain Q« , 0 £ fl £ cc , of normal subquasimodules 

of Q such that QQ = 0, Q^ « Q and Q * ^ /Q^ = t(Q/Q^ ) for eve-

ry 1^/J + I t « , 

Proof. Easy. 

3.7. Proposition. Let t be a hereditary preradical for 

(X , Then t is a hereditary radical. 

Proof. Put 3* = -CI I t(R/I) = R/If. Then y is a filter. 

Denote by % the radical filter generated by ^ . Let p be 

the hereditary radical corresponding to & • Then t£p, and 

so t£p. Further, let Q be a t-torsionfree module and acp(Q). 

Suppose that a#*0 and put I = (0:a). We have 1^1 € %R, and by 

C3, Corollary 2.71, there exists r c R \ I such that (I:r)e 3*. 

However, (I:r) = (0:ra), and hence raet(Q), ra = 0. On the 

other hand, r £ l and ra-fcO, a contradiction. We have proved 

that Q is p-torsionfree. Now, let Q be an arbitrary quasimodu­

le from CL • The factor-quasimodule P = Q/t(Q) is t-torsion-

free. Therefore p(P) = 0 and p(Q)£t(Q). Thus pgt and p = t. 

Let 3 be a non-empty subclass of G, • For every quasimo­

dule Q € 0* , let q^ (Q) = 2 Im f, f :G — > Q, G e & and 

% (Q) = %* Im f. Further, let q^ (Q) be the subquasimodule 
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generated by all Im f auch that Im f is normal in Q. 

3.8. Lemma, (i) q.« is an idempotent preradical for d, 

(ii) §g. is a normal preradical for 0/. 

(iii) q - is a normal idempotent semipreradical for CL • 
-j, .73 

(iv) %z * H s ̂  • 
Proof. Obvious. 

A quasimodule Q is said to be diassociative if every sub-

quasimodule of Q generated by at most two elements is a mo­

dule. 

3.9. Lemma. Suppose that every quasimodule from Ct is 

diassociative. Let J3 be closed under cyclic submodules and 

finite carteaian products. Then q« is a hereditary preradi­

cal for fl, • 

Proof. Easy. 

3.10. Proposition, (i) For every O^n, A^ is a rormal 

cohereditary radical for % • 

(ii) B is a hereditary preradical for % and ASB. 

(iii) D is a normal cohereditary radical for % • 

Proof. Easy. 

4. Special quasimodules. Let Z designate the ring of 

integers. Further, denote by Z-* a three-element field contai­

ning the elements 0, 1, 2 and let $ be a mapping of R into 

Z^. A quasimodule Q is said to be special of type ($ ) if the 

endomorphism x — > rx of Q(+) is central of type ($(r)) for 

every r« R. It is visible that the class \f of special quasi­

modules of type ($) is a subvariety of 71 • Moreover,101 Stf. 
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*•--* iSSSS* Either *£ * M or - $ is a ring homomor-

phism of R onto Z-* preserving the unit. 

Proof. This is an immediate consequence of 1.12 and 1.13. 

In the residual part of the paper, we shall assume that 

- $ is a ring homomorphism pre3erving the unit. Moreover, the 

word qua3imodule will mean alwaya a apecial quaaimodule of ty­

pe (J> ). 

A quaaimodule Q ia 3aid to be primitive if rx = - $ (r)x 

for all re R and x& Q. Clearly, the clasd (P of primitive qua-

simodulee i3 a subvariety of if . Furthermore, 3s is equiva­

lent to the variety of commutative Moufang loops satisfying 

3x = 0. 

We can define a quaaimodule structure on Z-» induced by 

the homomorphism - $ • The corresponding quaaimodule (which 

is isomorphic to the factorquasimodule R/Ker(- $ )) is denoted 

by Z^, too. Clearly, it is a primitive simple module. 

4-2. Lemma* Let Q be a quasimodule. Then: 

(i) Every subloop of A(Q) i3 a primitive subquasimodule of Q. 

(ii) Every subloop containing C(Q) = C(Q(+)) is a subquasimo­

dule of Q. 

(iii) Q/CCQ) is a primitive quasimodule. 

Proof. Apply 1.16. 

4.3. Proposition. Let Q be a quasimodule which can be ge­

nerated by n elements. 1:hent 

(i) Q is a module, provided n-«2. 

(ii) Q is nilpotent of class at most n - 1, provided 2-==n. 

Proof. There is a subset M of Q containing n elements 

such that M generates Q. Denote by G(+) and H(+) the subloop 
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generated by M and MuC(Q), resp. By 4.2, H is a subquasimo-

dule, and so H = Q. On the other hand, by 1.5, Q(+) is a homo-

morphic image of the product Q(+)xC(Q(+)), Q:he rest follows 

now from 1.8. 

4*4. Lemma. Let Q be a quasi module and a,bfcQ. Then: 

(i) ia b(rx) * (rx + $> (r)x)- $ (
r>*a D

(x^ for a 1 1 r * R a n d 

xcQ. 

(ii) The set {x I i0 h(x) ax} is a subquasimodule of Q. a,u 

Proof. Obvious• 

4*5. Lemma. Let Q be a quasimodule generated by a set M. 

Let N be a subset of Q such that (N,M,M) « 0. Then NS C(Q). 

Proof. Use 4.4. 

4.6. Proposition. Suppose that the ring R is left noe-

therian. Then every subquasimodule of a finitely generated 

quasimodule is finitely generated. 

Proof. Let Q be a finitely generated quasimodule. By 

4.3, Q is nilpotent of class n. We shall proceed by induction 

on n. For n£ 1, Q is a module and the situation is clear. As­

sume 2-£n and put G » ̂ ^ ( Q ) , H = A^gte), C « C(Q), K « Q/G. 

Then G is contained in both H and C and K is rilpotent of 

class at most n - 1. Hence there exists a finite subset M of 

H such that H is generated by MuG. Further, Q is generated ty 

a finite subset, say N. Denote by E the subquasimodule genera­

ted by L ={(x,y,z) | xeM, y,z*Nf. Obviously, L is finite, 

LS G and E£ G£C. By 2.4, E is a normal submoduls of Q. Let f 

be the natural homomorphism of Q onto F = Q/E. It follows from 

4.5 that f(M) is contained in C(F). However, f(G)£f(C)£C(P), 

and consequently f (H)£ C(F). But f(H) = An_2(F). Thus F is nil-
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potent of class at aoat n - 1. Now, let P be a subquasimodule 

of Q and T « Po E. Then P/T ia isomorphic to a subquasimodult 

of F and P/T ia finitely generated. On the other hand, T e l 

and E is a finitely generated module. Thus T ia finitely gene­

rated and the rest ia clear. 

*•?• I&55&* L e t 04-P be a normal subquasimodule of a nil-

potent quasiaodule Q. Then 0*PnC(Q). 

Proof. By induction on the nilpotence class of Q. We can 

asauae that P ia not contained in C(Q). Then 0*f(P) f f being 

the natural hoaoaorphism of Q onto G * Q/C(Q), and therefore 

f(P)nC(0)fO. Proa thia, we see that there exists a*Pr>C2(Q) 

with a$C(Q). Then a • (b • c) * (a • b) • (c • d) for soae 

b,c,d«Q, 0#d. It ia Tisible that dcPnC(Q). 

4*3* I*«aa« Every siaple quasiaodule ia a module* 

Proof. Let Q be a siaple quasimodule. If C(Q)+0 than 

C(Q) * Q and Q ia a module. Suppose C(Q) * 0. By 4.2, Q is pri­

mitive., and hence the loop Q(+) ia aimple and a group by 1.9. 

Consequently, Q ia a moduli and Q * 0. 

4*9* Corollary. Let P be a maximal normal subquaaiaodule 

of a quaaimodua Q. Then P ia a aaxiaal subquaaiaodule and 

A(Q)fi P. 

4.10. Lemma. Let P be a proper subquaaiaodule of a nilpo-

tent quaaimodula Q. then there is a subquasimodule G such that 

P is a normal subquasimodule of G and P + 0 . 

Proof. By induction on the nilpotence class of Q. With 

respect to 1.4, we can assume that C(Q)CP. Then P/C(Q) ia a 

proper aubquaeimodule of Q/C(Q). 

4*11. Corollary. Every maximal subquasimodule of a nilpo-
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tent quasimodule is normal. 

Let ^ be a class of all simple modules. Put $* M Pt£ •Stan 

^ is a radical for if aid A c p* . For a quasimodule Q, ^-(Q) 

is just the intersection of all maximal normal (reap, normal 

maximal) subquasimodulea. 

4.12. Proposition. Suppose that R is left noetherian. Let 

Q be a finitely generated quasimodule and f be the natural ho-

momorphism of Q onto Q/^»(Q). A subset M of Q generates Q iff 

f(N) generates f(Q). 

Proof. Let f(N) generate f(Q). Denote by P the subquaei-

module generated by N and assume P-fcQ. By 4.6, P is contained 

in a maximal subquasimodule, say 0. Taking into account 4.11, 

we see that ^ ( Q ) £ G and f (P)£ f (G)-fr f (Q)f a contradiction. 

4.13. Proposition. Let P be a minimal normal subquasimodu­

le of a nilpotent quasimodule Q. Then P is a simple module and 

PSC(Q). 

Proof. This follows from 4.7. 

Let S be a simple module. We put Soc« = Qj37• By 3*7 and 

3.9, Socs is a hereditary preradical and Socs is a hereditary 

radical for tf • Further, put % ~ Socz • 

4-. 14. Lemma. Let Q be a quasimodule. Then I 

(i) Q is X-torsion iff it is primitive, 

(ii) 3C (Q) is the largest primitive subquasimodule of Q. 

Proof. Obvious. 

4-15. Lemma. Every X-torsionfree quasimodule is a module. 

Proof. Apply 4.14 and 4.2(i). 

4.16. Lemma. Let S be a simple module not isomorphic to 
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Z-j. Then every SoCg-torsion quasimodule is a module. 

Proof. Let Q be such a quasimodule and P = A(Q). Suppose 

P + 0. Then SoCg(P)-V»0 and P contains a submodule G isomorphic 

to S. On the other hand, G is primitive and it is isomorphic 

to Z^, a contradiction. 

4.17. Proposition. Suppose that the ring R is left noe­

therian. Let S be a finite simple module. Then every finitely 

generated Socg-torsion quasimodule is finite. 

Proof. First, let Q be a finitely generated SoCg-torsion 

module. Bien Q is a noetherian module, and hence it possesses 

a finite socle-sequence of submodules (see 3.6). £he correspon­

ding completely reducible factors are noetherian, hence finite, 

and consequently Q is finite. Now, let Q be a finitely generat­

ed SoCg-torsion quasimodule. We can assume that Q is not a mo­

dule. By 4.16, S is isomorphic to Z^. Further, Q is nilpotent 

and we shall proceed by the nilpotence class of Q. As we have 

proved, C(Q) is a finite module. However, Q/C(Q) is 3C -torsion 

and the rest is clear. 

4 #18. Lemma. Let P be a normal cyclic submodule of a qua­

simodule Q. Then PS C2(Q) and either P = 0 or Pr.C(Q)4*0. 

Proof. Let f denote the natural homomorphism of Q onto 

Q/C(Q). Then f(P) is normal in Q/C(Q). However, the last quasi­

module is primitive and f(P)£ C(Q/C(Q)) by 1.19. Thus P£C 2(Q). 

4*19. Corollary. Let Q be a quasimodule such that every 

subquasimodule of Q is normal. Then Q is nilpotent of class at 

most 2. 

4.20. Lemma. A s X S B , A s p . and DSC* Moreover, C is a 

normal idempotent semipreradical for tf . 
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Proof. Obvious. 

5. Subdirectly irreducible special quasimodules 

5«1« Lemma. Let Q be a subdirectly irreducible quasimodu-

le. Then C(Q) is a subdirectly irreducible module. 

Proof. This follows immediately from 2.4(i). 

5.2. Proposition. Let Q be a. quasimodu3e with C(Q)4sO. 

The following conditions are equivalent: 

(i) Q is subdirect3y irreducible. 

(ii) There exists a minimal submodule P of Q such that P is 

contained in every non-zero normal subquasimodule of Q. 

Proof. Apply 5.1. 

5.3. Proposition. The following conditions are equivalent 

for a nilpotent quasimodu3e Q: 

(i) Q is subdirectly irreducible, 

(ii) C(Q) is subdirectly irreducible. 

Proof. Apply 5.1 and 4.7. 

5.4. Proposition. Suppose that R is commutative and noe-

therian. Let Q be a subdirect3y irreducible quasimodule such 
/•V 

that Q is not a module. Then Q is % -torsion. 

Proof. If C(Q) = 0 then Q is primitive and % -torsion. 

Let 0*C(Q). Efcr 5.2, there is a minimal submodule P of C(Q). 

Since A(Q)4-0, P£A(Q) and P is isomorphic to 2.*. However, 

Q/C(Q) is 3C -torsion and C(Q) is subdirect3y irreducible. Hen­

ce P is an essential submodule of C(Q) and both C(Q) and Q are 

3t -torsion. 
5.5. Corollary. Suppose that R is commutative and noet-
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herian. Let Q be a subdirectly irreducible quasimodule. Then 

there exists a simple module S such that Q is SoCg-toraion. 

5*6. Proposition. The following conditions are equiva­

lent for a non-zero nilpotent primitive quasimodule Q: 

(i) Q is subdirectly irreducible, 

(ii) C(Q) is isomorphic to Zy 

Proof. This is clear from 5.3. 

5-7. Corollary. Let Q be a nilpotent quasimodule of class 

1.4 n. Suppose that Q is primitive. Then Q is subdirectly irre­

ducible iff every proper factor of Q is nilpotent of class at 

most n - 1. 

5.8. Proposition. Suppose that the ring R is finitely 

generated and commutative. Then every finitely generated sub­

directly irreducible quasimodule is finite. 

Proof. By £2, Lemma 2.7J, every simple module is finite. 

The rest follows from 5.5 and 4.17. 
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