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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 
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A NOTE ON SEPARATION OF SETS BY APPROXIMATELY 
CONTINUOUS FUNCTIONS 

Jan MALY 

Abstract: An example of two 0^ -sets with disjoint 
closures in density topology, which cannot be separated by 
any approximately continuous function is given. 

Key words: Density topology, d-derivative of a set, 
separation properties of approximately continuous functions. 
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According to Z. Zahorski C4l given any Q^* d-closed 

(i.e. closed in the density topology) set A c K there ex­

ists a bounded approximately continuous function f such that 

A « 4x:f(x) = 0 J . Consequently, for every pair A, B of dis­

joint G^* d-closed sets there is an approximately continu­

ous function f, which separates A and B in the sense that 

0 * f * l , f =- 0 on A, f » i on B. 

The last assertion is not generally true, if we suppo­

se A, B to be Gjjr sets with disjoint d-closures only, as 

follows from the example, given in this paper. This answers 

negatively to the problem posed by H. Laczkovich £ 23. 

Denote by A, the Lebesgue measure and by X* the cor­

responding outer measure. If £ c It is an arbitrary set 
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and x*Rf then we define the outer density of A at x by 

,Ar*«x-hf x+h>n E) 
D(E,x) * lim 

2h 

and the inner density by d(Efx) =- 1 - D(R - B,x). The col­

lection of all sets having the inner density one in each its 

point forms topology, which will be called the density topo­

logy (d-topology). It is easy to see that the d-derivative 

of a set E c K will be the set £) E = {xefR:D(Efx)^ 0} and 

the d-cloaure of E will be E u fl> E. 

Lemma 1. For an arbitrary bounded interval I - (afb) 

and c € (0,1) there is an open set G(Ifc)c I with the follow­

ing properties: 

(1) 4 a , b * c # G ( I f c ) . 

(2) If x*JR - I and h^O, then 

X(G(I fc) n <x-h, x+h>)6 2ch. 

Proof. Put 

dn » cUn+l)" 1 - (n+2)-1), 

L = t &A (a+n*1 - 6^, a + n" 1 »o(a ,a + | c(b-a)) f 

R * t ^ (b-n*1, b - xT1 + 6^)3 n (b - | c(b-a),b) f 

G(I fc) * LuR. 

The property (D i s evidently sat isf ied, concretely 

D(G(Ifc)fa) * D(G(Ifc),b) * | c 

(choose h s n , n « 1,2,...). We shall prove (2) for x£a. 

We claim 

(3) A.(<x-h, x+h>nL)*ch. 
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Indeed, consider mclN, (m+1) t4 h ^ s f . Vhen 

a ( < x-h, x+h> n L)6 &(< a-h, a+h > n --) * 

6 Pli< a-m"1, a+nf1) n L) = c(m+l)"1^ ch. 

On the other hand, 

(4) &(<x-h, x+h>n R)£ch. 

If h<|(b-a), then (4) holds trivially, since 

< x-h, x +h> n R = 0 . 

I f h z f ( b - a ) , then 

#.(< x-h, x+h>n RJ£ X R-=*r c (b-a) .6ch . 

From (3) and (4) we immediately obtain (2). 

Denote by C the Cantor's discontinuum (or an arbitrary 

perfect nowhere dense set with A» C = 0, inf C = 0, sup C = D. 

There are open disjoint intervals (»i»Di^ (-- = 1,2,...) such 

that 

.V4 
С =<0,1> - .U.(a

i
,b

i
). 

00 

The set ^Wyj^
a
i>

b
i^

 w i l 1 D e
 denoted by S. Further put B = 

= C - S. Finally, consider 

A = .£> G((a,,b.), 2" 1). 

The sets A, B and S have the following important properties: 

Lemma 2. (i) Q> An B = /. 

(ii) Sc .0 A. 

(iii) S is not a Ĝ . . 

(iv) A and B are G^ sets with disjoint d-closures. 

Proof, (i) Let xcB. Choose £ > 0, Find a positive 
—Ic 

integer k with 2 -* e . There is cT >- 0 such that 

209 



<x-cTfx-t.<r>n AJ^ (ai,bi) « 0. 

For every i> k+1 and hf 0<h--- cf we have 

.aUx-h, x+h)nG((ai,bi), 2~
1)£2~i"KLh. 

Thus 

A(<x-h, x+h>n k)^l^^i 2" i+1h4 2 e h. 

Since fc >• 0 may be chosen arbitrary, x ^ A . 

( i i ) For every i = l , 2 f . . . we obtain from (1) 

la i ,b i t c aG((a i,b i),2"* i)c Q A. 

(iii) The set S is of the first category and dense in 

the Baire space Cf and thus it is not a G^ . 

(iv) Obviously, A i s open and<O f l>- B m±^ <a i fbi> . 

Since X B « 0f we have Sb B « 0. Clearly, An B * 0 and using 

( i ) we obtain 

C^JAAC^JB « ci^AnB » 3AnB • 0. 

We shall show that there exists a set whose d-derivative 

is not a Ĝ - : 

Theorem 1. If A is as above, then 2> A is not a G^ . 

Proof. It is an easy consequence of Lemma 2, parts (i)f 

(ii) and (iii). 

Definition. A function f:ft—* H is said to be ap­

proximately continuous if for every xeB* there is a set M 

such that xtM, d(xfH) = 1 and f|M is continuous at x. 

1:he approximately continuous functions are just the con­

tinuous mappings from the density topology to the euclidean 
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one. Thus, 

(5) < x:f(x) = 0 } is d-closed 

for any approximately continuous function f. 

Since aiy approximately continuous function f is of the Badre 

class one (see for example £33), it follows that 

(6) 4x:f(x) =0} is a G^ . 

Theorem 2. Assume that an approximately continuous func-

tion f vanishes on A. Then there exists xe B with f (x) = 0. 

(A, B are as above.) 

Proof. Denote M Mx:f(x) = Oj . By (5), # A c M and by 

(6), M is a Q̂ v • Thus «0AnC4-MnC according to Theorem 1. 

Hence there is a point xfcMnC - «&AcC - S = B. 

Corollary. The sets A and B cannot be separated by any 

approximately continuous function. 

Remark. It is not difficult to prove that the d-deriva-

tive of any set is always a Q ^ . We have seen that the d-

derivative need not be a Q^ . On the other hand, it need not 

be a % as well. Indeed, let M be a measurable set such that 

X (In M)>0 and X(I - M ) ^ 0 for every interval I. Then ei­

ther M or IR - M is not a Fg- . Let us remark only,that if M 

is a set whose d-derivative is not a % , then the upper 

symmetric derivative of the function x »—* Xi < 0,x>nM) is 

not of the first class of Baire (although the upper deriva­

tive, or even the upper symmetric derivative of arbitrary 

function is of the second class of Baire, see e.g. tl3). 
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