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MERGING OF STATES OF MARKOV CHAINS WITH INFINITE PROBABILITY
P. KURKA

Abstract: In the paper we investigate sequences of con-
tinupus time finite state Markov chains, some tfansition rates
of which tend to infinity. We show that states which communi-
cate infinitely fast with each other can be merged, thus ob-
taining Markov chains with fewer states and finite transitiom
rates, which approximates the original one.

Key words: Markov chains, infinitely ergodic sets, tran-
sition rates. ’ ’

AMS: 60J25
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Finite filtered Markov chains were introduced by Richard-
son (1975) to construct probabilistic models of self-reproduc~
tion. They are continuous time finite state Markov chains, who-
se transition rates depend on parameters, and may tend to zero,
infinity, or to a finite number.

Apart from self-reproduction, other applications of this con-
cept a?e suggestive. Thus in the life of a population, & muta-
tion happens considerably mere rarely than normal reproduction,
and soon after it happens, & stationary distribution of its
occurence is attained. In chemistry, a reaction A+B T—= C+D
may proceed by forming a complex E, which is highly unstables,
and quickly decomposes to either A+B or C+D. This situation

may be represented by a chain
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A+ B —> E < = C+ D

where transition rates ry, r, are infinitely larger than 8y

and 8,. If our unit of time is long enough, we can neglect

the state E, because the process stays in it for an infinite-

ly short period of time, and approximate the chain by
8yry/(ry+r,)

A + B= —= (¢ + D
szrll(rl+r2)

We show in the present paper that such approximation is pos-
sible whenever all infinite transition rates are of the same
order, i.e. if their ratio is finite. A set of states of such
chain is infinitely ergodic, if between any two of its mem-
bers there is a path of infinite transition rates, and no in-
finite transition rate leads out of it. A transition out of
an infinitely ergodic set A occurs only after infinite tran-
sitions attain equilibrium on A, and soon after the process
leaves A, it arrives to another infinitely ergodic set. In the
limit, this new process over infinitely ergodic sets has Mar-
kovian character, so we obtain & finite filtered Markov chain
with fewer states, which approximates the original one. The
transition rates of this new chain are solutions of a system
of linear equations, so the computation of the transition pro-
bability matrix is a bit simplified.

To simplify the notation, the finite filtered Markov chains

are defined here as sequences of transition rate matrices.

Definition., A finite filtered Markov chain over a fini-

te set of states € is a sequence of matrices
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(ri (x,y)) such that

x,y€t, ilew
1. xpy=p r;(x,y)20, xe ‘f.—.—.v’y%e r;(x,y) = 0 for any iea,

2. For any x+ye € there exist  lim r;(x,y)ef0,7].
A~ 00

A finite filtered Markov chain (r;) over ¢ has one level, if
whenever . lim r; (x,y) = c0 , ,lim r;(z,v) =c0 then
vy 130

4_1’i£ r;(x,y)/ri(z,v)< o .

Definition. Let (ri) be a finite filtered Markov chain
over € .

1. (pi (x,y) (L)) the transition probability mat~

x,ye€,t20,iex
Lo s . _ n

rix is given by p; (t) = exp (ryt) =m=z0 (rst)7/nt . p;(x,y)(t)

is the probability that the chain ry is in state y at time t,

provided it started in x at time O,

2, & ={(x,y)e €x€ | limri(x,y) =00f , §* is the re-
15

flexive and transitive closure of 7.

3. £ ={As €| A¥0, AxA £ F*, L A] S A? is the set of

infinitely ergodic sets of (ri). (Here LAl =4{y| (x,y) e 5

for some x€A}.) We have Ae & iff between any two of its

members there is & path of infinite transition retes, and no

infinite transition rate leads out of A.

4, N =<€-UD is the set of infinitely transient states (which
may be empty). For any xe€ N there is a path of infinite transi-

tion rates leading from x to some A € & .

5. (Py(A,x))yen ,xef iew® the equilibrium matrix of (ry)
is given as follows:

x§A=pP; (A,x) = 0,

XeA=>O£P;(A,x)4 1'x¥A P,(A,x) =1 for any A € &,

xe A=y Z, P, (A,y)r(y,x) + P; (A,x) gA r;(x,y) = 0.
(P; (A,x) )xea 18 the equilibrivm distribution of (r;) on A,
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6. (Qq(x,A))za¢,Aed,ie0 the absorption matrix of (ry)
is given as follows:

x& Awsp Qi(x,A) =1, x¢Bed , BeA=d Q,(x,A) =0,

xeN, As D —P'U'§N s (x,3)Q (¥,4) +~_§A ri(x,y) =0
Q;(x,A) is the probability that the first set of & which the
chain Ty vieits is A, provided it started at x.

Observe that P;Q; = I (identity matrix), and that
(Pyry), (riQi) are bounded sequences. Furthermore, if (r;)
has one level, then finite limits a;L_?goPi, ‘,.E_L}g Q, 4}}%‘01’5}'?
Ll-é; r;Q; exist. To compute for a given t>0 4’_1'21 p;(t) =
'43%'3 exp (rjt), it may be reasoned as follows:

Suppose that the process starts in some x€A. Then before any
transition with finite rate occurs, the infinite transitioms
attain equilibrium on A, The transition rate from A to say
yéA is then x?‘A P, (A,x)r; (x,y). (This was proved in Richard-
sor (1975).) The process then jumps in negligible time from y
to some B with orobability Q;;L(y,B). In this way, the transi-
tion rate from A to B is &agftk P; (A,x)r; (x,y)Q; (¥,B),
which is equal to (A,B)-entry of the matrix P;r;Q;, and

t>0, x6 “"4,}}{,‘;, ’U.S.B p; (x,¥y)(¢) = l}’ig (exp(PiritQi))A,B
Now, starting from some x & € the process first jumps to some
A with probability Qi(x,A), then it behaves according to
P;r;Q;, and if it ends in B, it attains there equilibrium
(Pi(B'y))ye g+ This may be expressed by the equality

t> Owt}}g exp (r;t) =L~}i£ Q; exp (Pyr;tQ)P,.
Actually, for chains with one level this holds for any sequen-
ces (P;), (Q;), for which (Piv),(Qi),(Piri), (r;Q;) are conver-
gent sequences, and P;Q; = I.
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Theorem. Let (r;) be a finite filtered Markov chain
over € with one level, let &) be its set of infinitely ergo-
dic sets, let (P;),(Q;), be sequences of Y€ resp. € x D

matrices such that there exist finite limits 1lim P,  1im Q,,
i L300 i

i@
lim P.r., lim r!_Qi and Piqi = IQ « Then for any t> 0

. ==

<~ ™00 ‘(‘wlcl?

i%% exp (rjt) =4,_1_’;i,.£ Q, exp (P;r tQ;) P;.

To prove the theorem, denote ¢ = card (¥¢), d =card (D),
d=c-4d, and let & be some index set with card (D) = d,
QAR =o0.

If (ri) is a bounded sequence, then ¢ = 4, P;, Q; are inverse
to one another, and the theorem holds trivially. Suppose the-
refore that (ri) is not bounded and denote T; = max {rigx,y)i

,lim T, = a0 , and there exist finite limit
is00 1

r = 1limp r;/T;. We prove first tw lemmas.
< < o0

[x,y €« €% , so

Lemma 1. The eigenvalues of r; may be assigned to sets
Q, & in such way that ('a'i(z”zea are eigenvalues of ry for
which ,lim A.(z)/T; = 0

iy 1
(.ﬂ.i(z))zgﬁ are eigenvalues of r; for which %];Lg Re(.JLi(z)) =
= -0 .

Proof: The set of ergodic sets of r =, lim r./T. is e@,

trool Yoo 1771
8o the multiplicity of the eigenvalué O of r is just d. By
Gershgorin theorem (see Franklin (1968)), for any eigenvalueA
of rf A -r(x,x)| & -r(x,x) for some x ¢ € , 80 A4 O implies
Re(A )< 0. Since the eigenvalues depend on the matrix continu-

ously, the lemma follows,

Lemma 2, Define a sequence of matrices Ai =
=z1;"5 (ri - Ic-\%i(z)). Then there exist bounded sequences of

matrices (u;(z,x)) (vi(x'zi))xe‘e,uﬁ such that

262 ,x6¢
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ugh; = 0y Ajvy = 0y wyvy = Iy, wgPsVuy = Ty, ViU T W F TV

Proof: The proof is straightforward provided all non-ze-

ro eigenvalues of r are distinct. In this case, for sufficient-
1y hrée i (A‘i(z”zeb are distinct too, and we can define the
z-th row of u; as the left eigenvector of r; corresponding to
&.i(z), and the z-th column of v; @s the right eigenvector of
r; corresponding to ﬂai(z). We normalize these vectors so that
their scalar product is 1, and both (ui(z,x))xa% ’ ('i(x'znxef
are bounded sequences. Then u;v; = Iﬂ" and since the factors of

A; commute with each other, u;A; = A;v; = 0. Furthermore u;r; =

= Ajug vy o= viA i, where A, is the diagonal matrix, whose

i
diegonal is (a‘i(z”zei . So uyriviug = 'A'iuiviui = Ai“i =
=ugry, viusTivy = vawvedy = v Ay = ey

In the general case of multiple eigenvalues denote
By =, o 7y - T+ A3 )), A = lim W = ;lin B, /2.
It follows from the theorem on p.126 in Franklin (1968) that
X, = Ker (A)® Ker (B), where X, is the complex vector space
with dimension c, Ker (A) ={xeX | x- A = 0. By Cayley-Hamil-
ton theorem, 4B = O, so Im (A)E Ker (B), where Im (A) ={x. A\
| x€X,}. Since the dimension of both these spaces is 4, we ha-
ve Im (A) = Ker (B).

Let u be any D = € matrix whose rows form a basis for
the space Ker (A), so uA = O. Since X, = Ker (A)® Im (A), the-
re exists the unique €= & matrix v with uv = I3, v = 0.

Since X, = Ker (A;)® Im (A;) for any i, there exist matrices

u;, vi with u:A; = 0, A;v. =0, u,v. = Iy, limwu, = u,
11 i 11()(1; v Ui H__;‘_’_m:.
im v, =v, so (u;), (v;) are bounded.
4+ 0 1 ’ 1 1
Since (uiri)ki = wAr =0 = (“iriviui)Ai’
(niri)vi = (uiriviui)vi, we have uix-i = uiriviui.
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n

Since A (r;v:) = riA;v. =0 = Ay (viwr.vy),

ui(rivi) = ui(viuinivi), we have r.v. = v urivi.

Proof of the theorem: By lemma 2, we have PiAivi/Tg-l=

= 0. If we carry out the multiplication in Ai, we get a poly-

nomial in Tis whose every term but absolute has the form

d-x-1
‘Piri)(ri/Ti) vi(ﬁi(zl)/Ti)...(.Z.i(zk)/'l'i) 0£k<d
and so it is bounded. It follows that the absolute term
Pyv; Ty zw;rs (A4 (2)/T;) is bounded too, and if we multiply it
by bounded sequence zUi (T;/2;(z)), we get that P,v;T, is
bound ed, so a}’igxa Pijv; = C.
Similarly we get that “iQiTi is bounded, and K lim uiQi =

100
= 0, From this result snd lLemma 2 it follows

P, P.Q., P.v.
[ 1} '[Qi’vi] 3{ 1Q1 1'1}_?]:0
vy

uiQ4, w3V

80

Therefore, for sufficiently large i [Qi,viJ is regulsr,

det Y.Qi,vil is bounded away from zero, and Yini] "1 js bound-

ed, too. Define a & x € matrix 1->i = [Id,OJ [‘Qi,vi] "1. There

is (Pi-ii)'ri {Q;,v;] =[0,P;v;T.] which is bounded, so

(P; - P;)T, is bounded, and ,lim (Py - F;) = 0. Again we have
1>

P. .
E 1) (Q;,v;) = I,
vy

5 .1
_ Byl
and we can define Q; =[ ul] ‘[ Od] so that (Q; - Q)T is boun-

ded, and ,lim (Q; - Q.) = 0. There is
vyeo 1
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Bo1 . - 7%
{ 1].[Qi,vi] =1, so[Qi,vi][ 1] =Q,P. + v.u, = I | and
u

iti i1 c’
i u,
.= (QP, + v.u)rs (Q.P. + vou,) = QB.r.Q.P. + Q.P.r.v.u.
ry (QiP1 11\11)1:'1(Q1P:L v:.“:.) QlPlrlﬁlPl Q;P;riviu, +
+ .. QP + v.u.r.v.u,
viulrinPl ViusT vy

By Lemma 2 the middle two terms of this expression are

zero since Pirivi = P.viu.tiv:.L =0, uiriqi = “irivi“iqi =0

i¥i%y
P.r.Qq., O P.
We have r; =[ Q;,v;] [ 1;1 1 j, [ 1]

so the eigenvalues of ri are divided between PiriQi‘nd TV,

Since iiri-qi is bounded, it has bounded eigenvalues, so by

111

that for any t>0  lim exp (U;r;tvi) = 0, and
v ro

lemma 1 the eigenvalues of u.r.v. are (Ai(z))zé5 . It follows

lim [exp (ryt) - § exp (Byr tQ)P;] = 0,
iYo
Furthermore,
P;r;Q; - Pir,Q, = (P{-Py)riQ + (Piri/Ti)(Qi'Qi)TiT’ 0
since r,Q,, (Qi—Qi)Ti are bounded, and i]-'-:'?o (Pi—Pi) = 0,
k}vi: Pyr;/T; = 0. Since P;r;Q; is bounded,
4,']_.31:‘@”[ exp (PieitQi), - exp (f’iritai)] =0

and the theorem follows.

Besides some insight into the structure of finite filter-
ed Markov chains, the above theorem yields also & reduction in
computational complexity of the transition probability matrix
exp (rit). If we take for Py, Qi the equilibrium and absorp-

1'
(Pi(A’x))xaA are obtained by solution of a system of linear

tion matrices of r., then the nontrivial values of Piy i.e.

equations with card (A) unknowns, and nontrivial values of Q;,

i.e, (Q;(x,A)),  are solutions of a system of lirear equations
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with card (N) unknowns. Since the computation of the exponen-
tial of & matrix is a rather complicated task, and the dimen~
sion of P,r;Q; may be substantially smaller than that of ry,
the whole procedure may be much simplified.

The theorem may be also used for Markov chains with fini-
te (but sufficiently large) transifion rates. In this case the
error of approximation is of the order exp (-st), where s is

the value of some large transition rate,

Example. Consider a chain

with matrix

o ,2i , 0 , -3 , i
o ,0 , 2 , 0o , =2
Clearly J =9{{1,2},{53} , N =4§3,4% and following (constant)

matrices satisfy the assumptions of the theorem:

1, o0

1, 0

pi=[3/5, 2/5,0,0,0} Q =[2/5 , 3/5
0, 0,0,0,1 2/3 , 1/3

o , 1

Then PiriQi is the matrix of the chain
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39/25
11,2 = = {5}

4/5
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