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COMMENTATIONES MATHEMATICAE ONIVERSITATIS CAROLINAE 
20. 1 (1979) 

MERGING OF STATES OF MARKOV CHAINS WITH INFINITE PROBABILITY 
P. KORKA 

Abstract: In the paper we investigate sequences of con­
tinuous time finite state Markov chains, some transition rates 
of which tend to infinity. We show that states which communi­
cate infinitely fast with each other can be merged, thus ob­
taining Markov chains with fewer states and finite transition 
rates, which approximates the original one. 

Key words: Markov chains, infinitely ergodic set3, tran­
sition rates. 
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Finite filtered Markov chains were introduced by Richard­

son (1975) to construct probabilistic models of self-reproduc­

tion. They are continuous time finite state Markov chains, who­

se transition rates depend on parameters, and may tend to zero, 

infinity, or to a finite number. 

Apart from self-reproduction, other applications of this con­

cept are suggestive. Thus in the life of a population, a muta­

tion happens considerably mare rarely than normal reproduction, 

and soon after it happens, a stationary distribution of its 

occurence is attained. In chemistry, a reaction A+E 5g=± C+D 

may proceed by forming a complex E f which is highly unstable, 

and quickly decomposee to either A-*B or C+D. Thi3 9ituation 

may be represented by a chain 
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Sl ., 82 
k + B < . • . = = ^ . E ^ , _ _ - | c + D 

rl r2 

where transition rates r.,, rg are infinitely larger than s-. 

and Sg. If our unit of time is long enough, we can neglect 

the state E, because the process stays in it for an infinite­

ly short period of time, and approximate the chain by 

s^g/Cr-j+r^) 

A + Bafc. • : " =-=--* C + D 
s2 rl / ( rl + r2 ) 

We show in the present paper that such approximation is pos­

sible whenever all infinite transition rates are of the same 

order, i.e. if their ratio is finite. A set of states of such 

chain is infinitely ergodic, if between any two of its mem­

bers there is a path of infinite transition rates, and no in­

finite transition rate leads out of it. A transition out of 

an infinitely ergodic set A occurs only after infinite tran­

sitions attain equilibrium on A, and soon after the process 

leaves A, it arrives to another infinitely ergodic set. In the 

limit, this new process over infinitely ergodic sets has Mar-

kovian character, so we obtain a finite filtered Markov chain 

with fewer states, which approximates the original one. The 

transition rates of this new chain are solutions of a system 

of linear equations, so the computation of the transition pro­

bability matrix is a bit simplified. 

To simplify the notation, the finite filtered Markov chains 

are defined here as sequences of transition rate matrices. 

Definition. A finite filtered Markov chain over a fini­

te set of states *€ is a sequence of matrices 
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( r i ( x f y ) ) x > y £ ^ i £ a , such that 

1. x £ y « ^ r. ( x , y ) > 0 , xe *€=$> 2 r . (x ,y) = 0 for any ie<V, 

2. For afty x ^ y e f there e x i s t . lim r^ ( x , y ) £ £ Of co J . 

A f i n i t e f i l t e r e d Markov chain (r^) over *£ has one l e v e l , i f 

whenever . l im r. (x ,y) = co , , l im r. ( z , v ) * co then 

, l i i r A x , y ) / r . ( z . v ) < co , 

Definition. Let (r.) be a finite filtered Markov chain 

over *£ . 

1. (p. (x,y)(t))x ,£ t Q i e^ the transition probability mat­

rix is given by p. (t) = exp (r.t) « _«£ (r^t)n/n! . p4(x,y)(t) 

is the probability that the chain r^ is in state y at time t, 

provided it started in x at time 0. 

2. P *{ (x,y) £ €M <€ I , lim r. (x,y) - ooi , ff* is the re-

flexive and transitive closure of 9*'• 

3. «D « {A S *e I A* 0, AxA & &*-, &t AJ s A? is the set of 

infinitely ergodic sets of (r.j). (Here IPC AH *£yi (x,y)e^ 

for some x £ AJ.) We have A € & iff between any two of its 

members there is a path of infinite transition rates, and no 

infinite transition rate leads out of A. 

4. N =€-U2> is the set of infinitely transient states (which 

may be empty). For any xeN there is a path of infinite transi­

tion rates leading from x to some A c o5 . 

5. (pi(A»x))^€^ xe«£ i c a i the equilibrium matrix of (r..) 

is given as follows: 

x#A-^P1(A,x) » 0, 

x c A ^ O ^ P - C A - x U l , ^ P.(A,x) - 1 for any A 6 0, 

xeA—^j^APi(A,y)ri(y,x) + P ^ A , x ) ^ A r ^ y ) » 0. 
(Pi(A,x))x^A is the equilibrium distribution of (r±) on A. 
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6. (Qi(xfA))xd^fAi5>,i6a> » t h e Sorpt ion matrix of (r.) 

ie given as follows: 

xeA—• Qi(x,A) « l f X€B6cSZ) , B+A-* Qi(x,A) = 0, 

xeH, k* & - ^ f ^ H ri(x,y)Qi(yfA) +^*A rjU-y) = 0 

Qi(xfA) is the probability that the first set of ® which the 

chain ri visits is Af provided it started at x. 

Observe that PiQi = 1^ (identity matrix), and that 

^i ri ) f ^ r i % ^ *re ̂ ounde^ sequences. Furthermore, if (ri) 

has one level, then finite limits . Jim P.t f , lim Q*, lim R r . f 
* -+GO x ttZ+OD * -it-Zoo A X 

lim r4Q4 exist. To compute for a given t>0 . lim p4(t) « 

» , lim exp (r^t), it may be reasoned as follows: 

Suppose that the process starts in some x£A. Then before any 

transition with finite rate occurs, the infinite transitions 

attain equilibrium on A. The transition rate from A to say 

y4*A is then %u Pi(A,x)ri(x,y). (©lis was proved in Richard­

son (1975)*) The process then jumps in negligible time from y 

to some B with nrobability ^(y,B). In this way, the transi­

tion rate from A to B is ̂ J& 2 ^ Pi(Afx)ri(x,y)Qi(y,B), 

which is equal to (A,B)-entry of the matrix -? .f r
iQ i- *nd 

t>0, x * A - « - » , l i m 28 p . t ( x , y ) ( t ) • lim (exp(P-r.tQ. ))A R t-fcoty** x l-+*o i l l A,is 

Now, starting from some x e ^ the process first jumps to some 

A with probability Qi(x,A), then it behaves according to 

*i ri%* and ** *** ends ^ B> ** attains there equilibrium 

(P.t (B,y)) g. T:his may be expressed by the equality 

t>0«a^<lim exp (r.t) a lim Q4 exp (P.*r. tQ. )P .. 
l-tto — ' x I ~*co x 1 1 T. i 

Actually, for chains with one level this holds for any sequen­

ces (P^, (Qi), for which (Pi), (Qi), ( P ^ ) , (r.jQj.) are conver­

gent sequences, and PiQi
 s I. 
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Theorem. Let (r^) be a finite filtered Markov chair-

over *t with one level, let Sb be its set of infinitely ergo-

die sets, let (pi)f(Qi-S De sequences of cD>*i£ reap. <£ x *® 

matrices such that there exist finite limits lim P4 f t ii» Q* f 

lim P.r. , , lim r^Q. and P..Q. = 1^ . Then for any t_> 0 

lim exp (r.t) » lim Q. exp (P.r.tQ.) P4. 
*•**? -i^cfe -1 x x x x 

To prove the theorem, denote c = card (£€)9 d == c ard (0)$ 

d = c - d, and let <® be some index set with card (5 ) * <lf 

0 n 5 =0. 

If (r.) is a bounded sequence, then e = d, P^, Q. are inverse 

to one another, and the theorem holds trivially. Suppose the­

refore that (r.) is not bounded and denote T. s max ̂ r. (x,y) I 

[ x,y € <C } , so l^m T. = co , and there exist finite limit 
I Zf oo 1 

r = lim r./T. • We prove first two lemmas. 

Lemma 1. The eigenvalues of v± may" be assigned to sets 

8>^& in such way that (-^i(z^Z6(0
 a r e eigenvalues of r^ for 

which , lim X* (z)/T. = 0 

(X i (z))..^: are eigenvalues of r. for which , lim Re(J^4(z)) * 
1 Zest/ X < . « - ^ ^ •*• 

= - A? , 

Proof; The set of ergodic sets of r * , lim r./T. is e5, 

so the multiplicity of the eigenvalue 0 of r is just d. §y 

Gershgorin theorem (see Franklin (1968)), for any eigenvalue*^, 

of r7( /A,-r(x,x) I -6 -r(x,x) for some x e € , so A4- 0 implies 

Re(X )< 0. Since the eigenvalues depend on the matrix continu­

ously, the lemma follows. 

Lemma 2, Define a sequence of matrices ki « 

**7ff^ri ~ ^ c ' ^ i ^ ^ * TJien t n e r e exist bounded sequences of 

matrices (u.(z,x))z#5 >Xi<e (v. U , z ) ) x ^ ^ 5 such that 

- 177 -



U ^ * 0, AiTi - 0, U ^ - Ij, UiX-iT.U. = V i , ^ U . r ^ - T^.. 

Proof; The proof is straightforward provided all non-ze­

ro eigenvalues of r are distinct. In this case, for sufficient­

ly large i (^i^2))^?* ar« distinct too, and we can define the 

z-th row of u^ as the left eigenvector of ri corresponding to 

^ i ( z ) , and the z-th column of vi as the right eigenvector of 

ri corresponding to Ao(z). We normalize these vectors so that 

their scalar product is 1, and both (u..(z,x))x6<£ , (vi(x,z))xe<^ 

are bounded sequences. Then uivi = I*, and since the factors of 

Â ^ commute with each other, uiAi = Aivi = 0. Furthermore u ^ = 

= A ^ r ^ = v i A i , where A ^ is the diagonal matrix, whose 

diagonal is ^X±M)Z€^ . So u ^ v ^ = -^i^i^i 9 ^iu± * 

= UjTi . v-u.r.v. = v.u.v.-A* = v..A. = r.v.. u i i' 1 1 l i I iva/ i 1 1 l i 

In the general case of multiple eigenvalues denote 
Bi UJJA <ri " ̂  ' &4<*>>t A = #lim A./Tf, B = . lim B^/rf. 
1 £60*9 1 C 1 ' "*-+OC <- -*- It-pCO "*• * 

It follows from the theorem on p.126 in Franklin (1968) that 
x
c
 = £§r (A)® Ker (B), where X is the complex vector space 

with dimension c, £g£ (A) s { x e Xc | x* A = Of. By Cay ley-Hamil­

ton theorem, AB = 0, so Im (A)S Ker (B), where Im (A) = «Cx» A\ 

{ x £ X J . Since the dimension of both these spaces is d, we ha­

ve Im (A) = Ker (B). 

Let u be any 0 x *6 matrix whose rows form a basis for 

the space Ker (A), so1 uA = 0. Since Xc = Ker (A)® Im (A), the­

re exists the unique <£ x ©D matrix v with uv = Ij, Av = 0. 

Since Xc = Ker (A.-)© Im (Ai) for any i, there exist matrices 
ui> vi with ui*i = °» V i = °- uivi * %» j^H = u> 
lim v. = v, so (u4), (v.) are bounded. 

Since (û r-̂ A.̂  = uiAiri =* 0 = (uiriviui^Ai* 

*uiri*vi = ^uiriviui)vi» we nave uiri = uiriviui' 
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Since Ai^i vi) = ri Ai vi s ° s ̂  ^viuirivi^» 
ui^rivi^ = ui^viuirivi*» w e n a v e ri vi s viuirivi* 

Proof of the theorem; By lemma 2, we have Pi^ivi/Tf ~ 

= 0. If we carry out the multiplication in A i f we get a poly­

nomial in r. , whose every term but absolute has the form 

(Piri)(ri/Ti)
5*k*"1 vi(^i(a:l)/Ti)...(Jli(2k)/Ti) O^k-c? 

and so i t i s bounded. I t follows t h a t t h e abso lute term 

p . v . T , TT~ (& .s(z)/T. ) i s bounded t o o , and i f we mult ip ly i t 
* x * ZtSi 1 1 ^ 

by bounded sequence TTg (T^/X^(z))f we get t h a t P ^ i ^ i s 

bounled, so , l im P-v. = 0«. 

S i m i l a r l y we get t h a t u.Q.T. i s hounded, and , lim u 4 Q. = 
1 1 1 t-*oo * 

* 0 . From t h i s r e s u l t and Lemma 2 i t follows 
r p.? i r-^o-. • - ^ i 

' u« -• * u«Q» . u*v. J 
u i i * i » 1 1 

lim d e t ) Ł ] . det[Q. ,vЛ = 1 
~+Q0 -• U . J " " " * 

Therefore, for s u f f i c i e n t l y la rge i [ QjifV.̂ J i s r e g u l a r , 

det ! Q i , v i l i s bounded away from z e r o , and Z Q ^ ^ i s bound­

ed, t o o . Define a S> x < matr ix P., = t l d , 0 j T Q i t ^ " " 1 . There 

i s ( P i - P i ) T i tQi» v i-l * L"0,P i v i T i 3 which i s bounded, so 

(P.t - P4 )T. i s bounded, and lim (P. - V- ) = 0. Again we have 
i i i i-+C0 x x 

[^].^ІЗ-^ІC 

n-/t 

and we can define Q± =[ U

X
J • [

 0

d
J so that {Q± - \)T± is boun­

ded, and ,lim (Q. - cL ) = 0. There is 
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[ Ii],CVTi1 = T c °oi\>^ [**•] - "QA + Vi • -c «--
u i i* 

r i • ( 5 i p i + ¥i)ri(¥i+ Vi> = ¥irM + WiVi+ 

+ TiViVi+ ViViV 
By Lemma 2 the middle two terms of this expression are 

zero since Vf^ = V i u i V i " ° . V i « i = u i V i u A = ° 

— . =^w T;,:. J [I1] 
* 1 1 1 1 

so the eigenvalues of r^ are divided between P.r.Q.and u-r-v.. 

Since P^^Q^ is bounded, it has bounded eigenvalues, so by 

Lemma 1 the eigenvalues of u^r^v^ are ( .A^Cz)) * . It follows 

that for any t > 0 lim exp (U-r.tv.) = 0, and 
+ ~-*oo x x x 

lim [exp (rit) - 5i exp ^i
ritQi>-5i3 = 0 . 

Bxrthermore, 

VA " VA = ( p i"p i ) r i«i+ ( p i V V ( V S i > T i ^ ° 
s ince r.Q. , (Q.-Q4)T. are bounded, and .lim (P . -P . ) = 0 , 

X X X X X "t -^ OO X X ' 

, l im P 4 r . / T . = 0. Since P.ir.Q. i s bounded, 4-*00 x x x x x x 

. l i m e exp (P . e . tQ. ) , - exp ( P . r . t Q . H = 0 
•4 -} eo x x x x x x 

and the theorem follows. 

Besides some insight into the structure of finite filter­

ed Markov chains, the above theorem yields also a reduction in 

computational complexity of the transition probability matrix 

exp (r^). If we take for Pif Q^ the equilibrium and absorp­

tion matrices of r^, then the nontrivial values of Pif i.e. 

(Pi(A,x)) A are obtained by solution of a system of linear 

equations with card (A) unknowns, and nontrivial values of Q^, 

i.ef CQi(x,A))xfN are solutions of a system of linear equations 
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with card (N) unknowns. Since the computation of the exponen­

tial of a matrix is a rather complicated task, and the dimenr 

sion of -V^.Q. may be substantially smaller than that of r^, 

the whole procedure may be much simplified. 

The theorem may be also used for Markov chains with fini­

te (but sufficiently large) transifion rates. In this case the 

error of approximation is of the order exp (-st), where s is 

the value of some large transition rate. 

Example Consider a chain 

- l ì Зi 

1 

> 
5 /* 

З ^ 

Зi 

2 

^2ì> ̂ 5 

\И 
2 « s — 

2І ^ 
4 

i. 

ith matrix 

Г-2І-1, 2i » 1 0 » 0 

n, -Зi-5 , 5 0 » 0 

Г
i 1 ^ > 0 , -5i Зi » 2i 

0 ' 
2i » 0 -Зi » i 

t < э > o » 2 0 » -2 

Clearly <$ = {{1,2} ,4.53\ , N = {3,45 and following (constant) 

matrices satisfy the assumptions of the theorem: 

1 , 0 • 

1 , 0 

, 3/5 ± -[3/5, 2/5, 0 , 0 , 0 "I 

•• 0 , 0 , 0 , 0 , 1 - 1 , 1/3 

. 1 

Then Pĵ -jQi is the matrix of the chain 
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39/25 
.1,2 } - " - = = - = - = = ± i 5} 

4/5 
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