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ON THE REGULARITY OF WEAK SOLUTIONS TO NONLINEAR ELLIPTIC
SYSTEMS VIA LIOUVILLE'S TYPE PROPERTY
M. GIAQUINTA, J. NECAS

Abstract: Let u be a weak solution with bounded gradi-
ent of a nonlinear elliptic system. In the present paper it
is proved that the first derivatives of u are H8lder-continu-
ous if the system satisfies & Liouville s type condition. This
condition, roughly speaking, means that every solution defined

on the whole R® to the system and with bounded gradient is a
polynomial of at most first degree.

Key words: Regularity, weak solution, nonlinear -ellip-
tic system, Llouville s property, Sobolev space.
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§ 1. Introduction. Let f2c R®, nZ2, be a bounded domain
and let us consider & nonlinear elliptic system
r
3 af,;
(1.1) - —a—;—.[a;'(x,u,Vu)] + a¥(x,u, Vu) = --5&-':- + 7,

1

r=1,2,...,m, where ue [ wh® (o )J®, V u is the set of the

o du da%; da’% das
derivatives —E;f , ai(x,g,qz), _8;‘:' , -a—g—i'- . 3—'2-—;"‘-

are continuous functions on () x R% RPE

, £ ewhP(Q),
1’:% «), p>n,

tTew
2) a"',"5( Ty S50 & 0
(1. -9—7-2'7;‘ x,g,'iz 217§ or 7 ,

armd the summation convention is used.

Here WS'P(0).) denotes, as usual, the Sobolev space of
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1P(Q1) functions whose derivatives up te order k are alse
1P(Q2 ) functions.

We say that (1.1).(1.2) is @& regular system (R) if a
weak solution u belengs to the space [ C1'™ (o )™, where, of
course, clm (L) is the space of continuously differentiab-
le functions in {l whese derivatives are lecally oc -HBlder
continuous,

The history ef the regularity problem is described in
the boek by O.A. LadyZenskaja, N.N. Ural’ceva [1], in the pa-
per by Ch.B. Merrey [ 2] abd elsewhere, It is well known from
the result of E. De Giorgi [3] that, for m = 1, the single
equation (1.1),(1.2) is regular. By virtue of a counter ex-
ample of J. Nelas [4], there exist systems (1.1),(1.2) which
are net regular for nZ5; this question is still epen for n =
= 3,4. Sufficient cenditions for the regularity are also ef
interest, see M. Giaquinta [5], J. Neas [6]. Since the exam-

ples ef the regularity are f'l’w (Rn”m solutiens to & system

-2 [T -

of the type
1.4) Ix-x_|¢g X-Xo
¢ (Ix-xol) !

and in virtue ef a trivial fact that a C*(R®) vecter function
of the type (1.4) is a pelynemial ef at mest first degree, we
see that the regularity implies weak Liouville ‘s preperty: we
say that the system (1.1),(1.2) has weak Liouville's property
(WL), if for every x° ¢ . , g é R®, every functien v with

a bounded gradient ef the type (1.4), selving in R? the sys-

tem
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s - %Ea‘{(x',g,vm = o,

is a polynemial (more exactly, a vecter ef pelynemials) ef at
mest first degree. We speak about Liouville’s property (L) if
the same is true without suppesing (1.4).

We prove in this paper by the "partial regularity" met-
hod, see Ch. B, Morrey [ 7], E. Giusti, M, Miranda [ 8], K. Giu-
sti [ 9], M. Giaquinta [ 5], that (L) == (R). In this connectien
31 relations can be thought ef between (R), (WL), (L) (some
are trivial), especially (WL) —i» (R), (R)==?'-> (L).

Censidering the solutions to (1.3) in the form (1.4), we
can get, see J. Nelas [6], that, for m = 1, nZ2, we have (WL).
Because there is still seme hepe that fer n = 3,4 we get (R)
for the systems (1.1),(1.2) it is net unthinkable that we ha-
ve the property (L) fer n = 3,4, which would be a way how te
preve this conjecture.

Clearly there are many other interesting questions, as,
for example, how to avoid the condition u e [wh® (q ))®; this
seems to be pessible via seme growth conditions.

We alse prove (in § 3 eof this paper) an easy result that
for the systems (1.1).(1.2) and fer n = 2, the property (L)

is satisfied. Se we get once mere the known result that fer
n = 2 we have (R).

§ 2. Lemmas. Let us first introduce seme notation:
1

S S

u(x)ax,
mes Bp(x,) Bg (%))

where Bp(x ) is the ball with the center x, gnd the radius R
and
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U(x,,R) = P Ju) - ux.,Rlz dx.

BR(x)

©

Let us mention the result ef S. Campanato [10]: if

u efwl32(8(0,1)) 4 £2(B(0,1)))™

is a weak solution to the equation with constant coefficients

5({1, "!ilgni“n"j ¥y dx = 0, Yye [ (BO,1))]%,

then fer every 0 < P < 1 we have
(x) U(,plge Soz U(0,1), where c depends on mx\bg_‘g |
and en the constant o ef ellipticity:
hk , h , k 2
bisning £ <lnl™.
First we get & medificatien of the main lemma from [8],
[9],[51.
Lenma 2.1, let ©0)1Na L2 b
lemna .1, velL¥ Q)] n [w e & weak
solution to the system
hk - hk : -
(2.1) fn rAij(x'V)Divhnj P * Ay (x,v)D; vy ¥ lax
= k k
= j:n Le;059, * & @ Jax,

where fl ¢ R® is a bounded domain, Ll;g(x,g ), A?k &, § ) are
continuous functiens in 0 x R“, ¢gs Ib(ﬂ.). tke Li‘.‘ ),
p>n, *

hk h k
(2.2) Aij(x’?)"liq;j’o fer 7 4 0.

If x, € N and Rﬁdist(xc,ani we put v = v¥ + w, where
we Ki(B(x.,R)) is a solution to
. hk hk -
(2.2 ) B‘I’R)I‘ij(‘,')ni'hnj ?k + Ai (X,V)Di'h 9k]dx =
o
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= k k
= j' 'y Dhgk + g g, lax.
BC«,,&)
Then for every © , 0 < T <= 1, there exist € =

= e (®,lvly,), Ry = R(2,lvl,) such that if
Rgnin(R',dist(xO,aﬂ)) and if

x 2
(2.3) VE (x,R) < €]
then
(2.4) V¥ (x , RIS 2c 2¥ V¥ (x,,R),

where the constant c¢ is from (% ).

Proof. Let us suppose the contrary. Then 3Jv, x,efl,
€y —> 0, Ry—> 0, v"e[Hl(.ﬂ.)JN, [v”IL élvle, such
that V*"”(xg Ry ) = 83‘, , V*(”)(x9 ,1‘Rj)> 2¢c v? sﬁ .

A g
Put x = x + R, ¥, s? (y) = €, fv"‘”(xg*- R’> y) - v;:’R})] .
We have [ |8” (y)1%ay = s¥(0,1) = 1,
B (0,0
(2.5) s¥ (0, ) >2¢c ¢°.
Put further t* (y) = w"(x9+ R, y) v’ = v+ ). en

we can suppese x,—p X, & 8, s¥—sin L,(B(0,1)),
ey 8* (y)—> O almost everywhere in B(0,1). We have

»
(2.6) v, e Byy) =8P ey + g ¢ tY @),
Since

(2.7) [ la”1?axée 7 f D@} D;w’ ax,
B(x.,R) ST
M) Xy Ry
we first get that (2.2) is uniquely solvable for R, smuall

enough. We further get from (2.7) and (2.2) that

(2.8) [ 1t (y)12ay £, R R
B ©0,1)
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80 we can alse suppese that t”(y)-—> O almest everywhere.
Hence from (2.6) it follews that we can suppese V;VR“"

-—-=~§ € o and therefore
hk » * D » hk,_ e
Alj(x,,*- R,y,8" (y)e, + 'x,,,R, + 1Y (y))— Aij(x ,g)

almest everywhere in B(0,1). Hence we get that 8¥—> 8 in
(#132(8(0,1))1" and that

hk _e =
(2.9) a'[o,n‘i-"(x » §)D39,D; % Ay = O

Yy e [D B0,V

Thue we have

P 2
(2.10) S(0,®)4c x° S(0,1) c =%,
which is a contradiction with

(2.11) s(0, ©) >2¢ 22
ebtained from (2.5).

lemma 2,2, Under the conditions of Lemma 2.1, for eve-
ry peoint X, 6 £l  such that v* (xo,R)< 53, there exists a
B(xy,R) & AL such that veC™(B(x,,K)) with &c = min(},1- D).

Proof. We get by a standard argument that if d“> O
is small enough, 1":"-\1‘1 <d ,and Rg =R-IX - x| , then
v (X,Rg) < ef. Ifv=v*+w in B(X,Rg), we first have
(2.12) £ lwi?axée, R [ Ipwlax e

B¢ R B(¥,Rg)
£ e n§ a-Rrsp I8 \frw ax 1% +

S N TR LT T

- 116 ~



Thus

(2.13) (X, TR £2V* (%, ©Ry) + 20X, wRy) £
£ 4o PPV H(x,R) + 26 BPHR) pom £

201-%)
£ 8¢ v2v(x, Rg) + Bce*zc 20!2 +2c, T Ry ®.

Cheese ¢ e (0,1) such that 8¢ = 9¢ £ 1 and small eneugh.
We get frem (2.13) that

20-Z )
(2.14)  V(X, ¥Rg)# 8c ©° V(X,Bg) + ¢4 By .

For k being a pesitive integer, we get frem (2.14) that
(2.15)  V(%, ¥ Rg) € 2¥ V(F,R) +

mn
2(4-:_:) , (“chf k?ﬁ-’—,)

PYTRLIEE 20

If0<@<R -0 and if we choose k such that 'ek+1Ri»<9 &

- 'ﬁkRi, we get »znV('i,so) % (+) V(x,ga)év(f, zklg!-) €

201-R)
2(1-%) 'REE + (R'L a usi
i-is—- V(X,R) + ¢ By W, and using

[10], we get the result, g.e.d.

§ 3. Main results

Theerem 1. ILet u ¢ [ W1'® (2))® be a weak solution te
(1.1) and let the conditions on ‘i’ aT, r“ £, N, mentien-
ed in § 1, be fulfilled. Let the system (1.1) satisfy the
Liouville’s proverty, i.e., for V x*« Q ana ‘VE ¢ R the
enly solution to (1.5) defined in the whole R" and pessessing
a bounded gradient is a polynemial ef at most first degree.
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Then u el cl.d'(n)]m’ < = min(%,l - %) .

Proef. let x°e¢ £ . Put uR(y) = %[u(x'+ Ry) - u(x°)],
x® + Ry = x. If 0 is the image of f) we have

Dyl
(3.1 fo‘ Caf(x™+Ry, Rup(y)+u(x®), ¥V up(y)) _i_—a,;.%) +

T

+ a"(x®+Ry, Rup(y) + u(x®), V up)Ry, (y)]ay =

Ay,
= fo [ £ (x®+Ry) an: (y) + 25 (C+Ry)IR Y, (y) oy,

A
Let B(0O,a)c O. We get in a standard way that

(3.2) | DPun(y))? ay£cla).
B‘-—f;,t) uRy)\ e

Hence we can choose Rk-—-} 0 in such a way, that unk——? P in

[Wl’Z(B(O,a))Jm Va>0. Thus p € [wlr® (R)ID ang it is a

weak solution te

a‘l.[/‘ =0
(3.3) ol (x%,u(x®), V p)l—i &
fk"’ i~ U oy

Vye LD (RMHI™

Therefore, by assumption, p is a polynemial of at mest first

degree. So we have

(3.3°) O0e— | Dup (y) - Dpl% ay = B | Du(x)-Dp |%ax.
scfo,n B R"su‘[",Rh)

I ° is the Ba derivative we get from (1.1) the equatien

in variations

dat. du, Ogn . 3a% , da% 39
(3-4)%(5-5;’“- df&:+?‘iwk%+-5§f-§;'—:+
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+

da’ du, a2 da* dx =
2 -——-;M, 9,,,'4"3:‘:‘9’»] X

INETN
37,
-£[€: _a_fzg,,,f ?/"Jd«.x.

t=1,2,...,n, removing the

Writing (3.4) for every ai ,

terms 3a% < dgx dak 81,,. da¥ < da®
du, " 3xy' Oxy Bx, ' A4, » Fnr Jx, Tn

te the right-hand side of (3.4), and deroting by v,, the de-

da”
Lo , we get, with ——%—(x,u(x),v) = b (x,v)
+ E) au,. iJ

(and the same with a: ), a system of éhe type (2.1). The re-

rivatives

sult fellews from Lemmas 2.1, 2.2 and from (3.3 ), because,
in decompesing v = v* +w on B(x°,R) as in Lemma 2.1, we ha-
ve N (x°,R)—> 0 for R—» 0, as abeove, so V* (x°,R)—> 0,
q.e.d. '

Theorem 2, Let us consider the system (1.1),(1.2). Let
n be the dimension of the space, n = 2. Then (L) is satis-

fied.
Proof. lLet v e [wl,oo(RZ)]m be a weak solutien to the

equatien

oy .
r, o N -
(3.5) _];zai(x ' § T9) Ty dy = O.

Let T>0 and let 7 D(B(0,2T)), Ok n &1, 2 =1 in
B(0,T), lDi'rzlf 3,—};— . We get the equation in variatiens

(3.6) f ——a—"—(x ' § Vv)j-‘—r‘-——z'ﬂd
-B_ﬂ.

Putting y, = r? , we get from (3.6), using the bounded-

ness eof the gradient, that
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(3.7 \ov'(2n 2 ayée,.

BJ;,:-n
Hence le Dv’i? dy < co . But there exists 'qrne L™
R

such that qun._.; Dv’ in ELz(Rz)]zm (and there exists APe¢ R®
such that A" + 'qrn—} v’ in fLioc(Rn)]m. Hence

% ’ ’
fka‘—;;"“}"—(x’- g’ Uv) "g'zf' —%)—? dy =0
3..& ' 4

Nl

2
and thus v is a polynomial of at mest first degree.

References

[1) 0.A. LADYZENSKAJA, N.N., URAL'CEVA: Linejnye i kvazili-
nejnye uravnenija elliptifeskogo tipa, Moscow
(1973), 2-nd edition,

[2] Ch.B. MORREY: Differentiability theorems for weak solu-
tiona of nonlinear elliptic differential equa-
tions, BAMS, Vol. 75(1969), 684-705.

{3) E. De GIORGI: Sulla differenziabilitd e analiticitd del-
le estremali degli integrali multipli regelari,
Mem, Acad. Sci. Torine Cl., Sci. Fis. Mat. Nat.
(3),3(1957), 25-43.

[4] 4. NECAS : Exemple of an irregular solution to a nonli-
near elliptic system with analytic coefficients
and conditions for regularity, Theory ef Nonli-
near Operators, Abhandlungen der Akademie der
Wissenschaften der DDR, Jahrg. 1977, Nr. 1N,
197-206.

{5] M. GIAQUINTA: Sistemi ellittici non lineari, Convegne
su: Sistemi ellittici non lineari ed applicazi-
eni, Universitd di Ferrara, Editrice Universi-
taria, 1978,

(61 J. NEEAS: On the regularity of weak solutions to varia-
tienal equations and inequalities fer nonline-

- 120 -



ar secend erder elliptic systems, Proceedings
of Equaediff IV, Prague 1977, te appear in Sprin-
ger 1979,

[7] n.B. MORREY: Partial regularity results for nonlinear
elliptic systems, Journ. Math. and Mech. 17(1968),

(8] E. GIUSTI; M. MIRANDA: Sulla regelaritd delle soluzioni
deboli di una classe di sistemi ellittici quasi
lineari, Arch. Rat. Mech. and Anal. 31(1968),

;91 E. GIUSTI: Regolaritd parziale delle soluzioni 41 siste-
mi ellittici quasi limeari di ordine arbitrario,
Ann. Scuola Norm. Sup. Pisa 23(1969),

{10] S. CAMPANATO: Equazioni ellitiche del II ordine e spa-
zi L2,1 , Ann. Mat. Pura e Appl. 69(1965),

Universitd di Ferrara, Mat.~-fyz. fakulta Karlovy Univ.

Ferrara Malostranské ném. 25,

Italia Praha - Malé Strana
Ceskoslevensko

(Oblatum 6.11. 1978)

- 121 -



		webmaster@dml.cz
	2012-04-28T04:11:01+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




