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GAUSSIAN MEASURES AND COVERING THEOREMS
D. PREISS

Abstract: It is shown that Vitali type covering thee-
rem does not hold for (centered) families of balls in Hil-
bert spaces and Gaussian measures.
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Vitali type covering theorems in finite dimensional Ba-
nach spaces hold not only for the Lebesgue measure but also
(under some regularity assumptions on the considered covers)
for arbitrary (lecally finite) measures (see [B], [ M1, [F,.
p. 147-150], ( T] for more details). If we drop the assump-
tion of finite dimensionality the situation becomes differ-
ent. By a result of Roy O. Davies [ D] there exist distinct
probability measures on a metric spece which agree on all
balls, This particular behaviour is not possible in the case
of Hilbert spaces. Indeed, if w,» are positive finite me-
asures on a Hilbert space H which agree on balls then
f exp(%llx +yk 2y d(o(x) = [ exp(%l(x +y 12) aw(x) for
every y& H, consequently jexp(i(x,y)) exp(%-(x,x)) au(x) =
J' exp(i(x,y)) exp(%(x,x)) dy (x). This implies that the
Fourier transform of exp(%(x,x))‘u- and exp(%(x,x))v coin-

cide, hence w = » .
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However, in this note we prove that Vitali type theo-
rem does not hold (even in a restricted sense, i.e. for the
Vitali system 7/ ed [T]) for Gaussian measures in infini-
tely dimensional meparable Hilbert spaces.

Recall that a measure »* in' R” is called Gaussian if the-
re is a pesitive quadratic form A(x,y) om R™ such that 7 (M)=
= %.&en(-&(x,x))dznx (where ¥ is the Lebesgue measure in
Rn); the nermalizing factor N is chesen se that y(Rn) = 1.
A measure » en a separable Hilbert space is called Gaussian
if o[y] is Gaussian whenever x is a continuous linear map

of H onto R,
We shall censtruct our example in N 322; the clesed ball

in H with the center x and radius r will be denoted B(x,r) and
the cloesed ball in R” (cemsidered here with the .E’é—norm)
with the center in x and radius r will be denoted B (x,r).

Lemma 1. There is a sequence ('n) of positive real num-
" bers with = 8, <@ such that £7( LE,JTBn(xt’r))—é 8, &™C)
whenever C is an open cube in R (with its sides parallel te
the coordinate axes), r>0, B (x,,r)cC for every teT and
the family 4Bn(xt,r),ts’r} is disjoint.

Proof. Let (a,) be the sequence of packing densities
of talls in R (see (R, p. 24] for the definitions). The
convergence of X, L follows from { R, Theorem 7.1] and Da-
niels ‘s asymptotic formuwla {R, p. 90, formula (1)) . The in-
equality &£ 5 tk‘/.‘.Bn(xt,r))éln £2(C) follows from [R, Theo-
rem 1.5].

Lemma 2. Let ('n) be the sequence from the preceding
Lemma and let 3 be a Gaussian measure in [R”. Then there is
d" > 0 such that o (th)T B,(x,,r))&5 &, whenever O<r <d
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and the family {Bn(xt,r):teT} to disjoint.

Proof. Let Co be a cube in R™ such that v d (R® - C.)é
4a . There is a partition ef C_ into cubes C; (1 =1,2,...
.++,N) and positive numbers s; such that s; LOM) £ o (M) £
£2z; £ (M) whenever Mc C; (consider any partitien of C, in-
teo sufficiently small cubes). Choose d° > O such that
1-(1-2d )¢ a,. Then, %sin‘ Lemma 1, we obtgin
7 Gy Ba(xyor)) & Zy e n(B,,,(:?‘J,.n)cC; B (x,,r)) +

N
* (1-(1- 2™ LRC)HI v € By 4a) 3 LOC) +a b

£ 4a, 7(6") +a, % S5a..
Theorem, There exist & Gaussian measure 7 in 1,2, [

subset M of £, and a subset S of (0,+c0) such that

(i) M is i -measurable and 4 (M)>Q

(ii) S~ (0,h)* @ for each h>0

(iii) &limo"[ sup{y(U{B,B ¢ ¥} ; ¥ is a disjeint family ef
balls in ‘32 with centers in M and radii belonging te
Sn(o,n)3] =o0.

Proof. Let (‘n) be the sequence frem Lemma 1. We shall

construct sequences Ri.' T ei of real numbers and sequences
7; °f Gaussian mesaures in Riana » i of Gaussian measu-
res in R such that

(1) 0< e;<r;<R&l/i

(2) R¢27  min foy,lei<i ford d2,3,...

(3) (B O,R))21 - 211

4) 5= 5"El', s

(5) T B;(x,,r;)) 45 a whenever the family
{Bi(x‘,ri);tcl‘i is disjoint

(6) ;(Bs(x,ri+ e ))& 29 (B, (x;r;)) whenever
x¢B; (0, LS:‘4 R).
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For i = 1 we can put Rl = 1, choose a Gaussian measure
Py = 7, such that (3) holds, then choese r;< R, fulfilling
(5) according to the preceding Lemma; the condition (6) clear-
1y holds for sufficiently small positive E1<Ty.

The induction step is also easy. We may first choose
Ri= 1/i such that (2) holds, then find a Gaussian measure

» i fulfilling (3) and then choose r;< lg according to Lem-
ma 2; the condition (6) again holds for all sufficiently
small €i< r;.
Let ey : £5—> R be the i-th coordinate and let

Iy ,82 —_— Ri be the projection inte the first i coordi-
nates., From (1) and (3) we infer that there is a unique (ne-
cessarily Gaussian) measure 3 on 22 such that fg(ariz)dy(z)=
= [ g(x)ady (x) for i =1,... and any bounded Borel function g
en RI (cfy[GD). Put M =3, % 2(B,(0,R})); then (3) imp-
lies (M) =1/2- Let S be the set of all numbers r; + £ ;.

If ¥ is a disjoint family of balls in £, with radii in
Sn(O,r, + £,) put ¥y =4B(x,r)e ¥ ;r=r; + ¢} fori-=
= k+tl,000 o

Whenever B(x,r; + ¢;), B(y,r; + €;) belong to ; and
x4y we have 4(r; + ei)2< Ix -y " hor;x - o,y h2 +

+ "33:‘{‘}% £ lo;x - oy 12 + 4 e? according to (2), hence

the family {Bi(m’ix,rij; B(x,r; + e4) e S’i of balle in R*
is disjoint. Using (6) and (5) we obtain ¢ (U { B;Be ¥;3 )¢
¢ = {r (:r;l(Bi(arix,ri‘r €;)); B(x,r;+ eg)e ':?ii €

&= {yi(si(aix’ri" € i)); B(x,ri"' Gi) € ‘.fi; &

€23 4 74 (B (ar yx,ry)); Blx,ry+ £5) e tfi} & 10 ay.

Hence 7 (U {B,B e ¥})€¢10.E, a,.
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