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COMMBtTATfONES MATHEMATtCAE UNIVERSfTATIS CAROLINAE 
aa 1 (1975) 

A NOTE ON CLOSE-TO-NORMAL STRUCTURE 
HO DUC VIET, NGUYEN THIEP 

Abstract: Necessary and sufficient conditions under 
whielTa' convex subset of a Banach space pos3e39es a elose-
to-normal structure are establiahed. 

Key words: Cloee-to-normal atructure, convex eete, Ba-
naeh spaces, fixed point. 

AMS: 47H10 

Let X be a real Banach space. A convex subset K of X is 

said to have a close-to- normal structure if for any bounded 

closed convex sub9et H of K with the diameter cT(H}>0, the­

re exiet9 x in H 3uch that II x - y II < cf(H) for all y in H. 

It is well-known that the notion of close-to-normal structu­

re is useful in the fixed point theory. For instance, C.S. 

Hong C l]has proved that every Kannan map on a weak3y compact 

convex subset K of X; has a unique fixed point if K has a clo­

se-to-normal structure*, (A eelf map T on K is a Kannan map if, 

for all x, y in K, 

l T x - 1 : y l U ^ ( l l x - T x i + l l y - a : y I ) .) 

The purpose of this note is to establiah 3ome reeults 

concerning the cloee-to-normal atructure • Section 1 deale 

with neceegary and aufficient condition under which a con­

vex aub9et of a Banach apace poa9es9ee the cloee-to-normal 
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The methods of the proofs of our results are similar to those 

of M.S. Brodskii and D.P. Milman 12J and of T.C. Idm [ 3 J. 

Section 2 solves the following nroblem which naturally ari­

ses with respect to the result of C.S. Wong mentioned above: 

Every weakly compact convex subset of a Banach space has a 

close-to-normal structure. Simple examples are given to show 

the independence of these qualities. 

1. Some positive results. We shall say that a noncon-

stant bounded sequence 4x̂ 5°̂ ..-, is a strictly diametral se­

quence if there is an integer N such that 

d ( xn+l' c o ( xl , # , # , xn ) ) = °r^xnJn=l) 

for every n >N. 

Proposition 1. A convex subset of a Banach space has a 

close-to-normal structure if and only if it contains no stric­

tly diametral sequence. 

Proof. Suppose that a convex subset K of a Banach space 

X contains a strictly diametral sequence 4 "KJ^LI • ̂ ^ ^o = 

= co «x ni^ = 1)cK. If x 0eK 0, then xQ » ^ oc ±x±t oc± > 

2 o V i = l,...,p; ^5L ̂  s 1 and xQe co (xlf... ,xn-1) 

V m > p . Since •{-*n5n=l
 is a strictty diametral sequence, there 

is an integer N such that 

d(xn+1,co(x1,...,x|1)) = cTttx^J^), V n>N. 

Then 

</«xnC=1) Z I x0 - ̂  || 2r t r « X n J ^ = 1 ) V -> P, •> N-

Hence, with yQ = x
p+$re K

0
 we have 

«* 0 - y 0 l - < * V - o r t - c x ^ ) . 
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This shows that K does not have a close-to-normal structure. 

Suppose now that K does not have a close-to-normal struc­

ture. Then K contains a bounded convex subset H such that 

d = cT(R)>0 and for each x in H there is an other element 

y in H such that l| x - y 11 = d. Choose x-p x2 in H such that 

J| x-̂  - x 2 I = d. When-tx1,... ̂  J c H have been chosen, we 

take x n + 1 in H such that (| y n - xn+1l| = d, where y n = ± ^ x±e 

€ H. Proceeding in this way we get a sequence f x n . f n = 1 e K. We 

show that-f x nf n = 1 is a strictly diametral sequence. 
lYU 

Let x £ coCx-^,. . . , x n ) be a r b i t r a r y , x = ^ 2 o ^ i ^ i * 

o C i 2 t : o ^ i = l , . . . > n ; ^ 2 . oC± = 1. Let oc = max ( QC1$ • • • , ocn) -

We have: 
£- <*ix-i ^ <X>z x. /n, x. x 

HOC, ^ a T jaoc * c 1 n noo 

^ e A „ c& v 
+ Z - v m> /JVOO / * £ ; 

- L + i - ^ (n - ? L - ) = l a n d H - — -- • l T i - l , . . . , n . noc * - q noo n noo 

Then 

d =Uyn - W ^ « x - W + J ^ (£- ̂  ) ll-i " W 

Hence 

* ~ I x - x . , 1 1 + d ( l - - - - - ) . 
tltoc n + l iioC 

л« * ^ - x " ^n+l1 1 

implies t h a t 

II x - x n + 1 l | = d . 

Since x € co(x1,.,, >3C^) i s arbitrary it follows that 

<-(xn+1,co(x1,...,x }) B i n f ,ix . | = d V n% 
n * € COC*,,...,̂  ^ + 1 
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Thus •}xn}n . j . ^ i s a s t r i c t l y d iamet ra l sequence in K. This 

completes the p roo f . 

Propos i t ion 2 . A convex subset K of a Banach soace has 

a c lose- to-normal s t r u c t u r e i f and only i f i t does not con­

t a i n a sequence 4 x 3*1-, such t h a t fo r some c^-o , 0 x - x^fi -= 

= c , ( x f t + 1 - "xfl = c , fo r a l l n > l , m > l , where x = 

= i .2L x. . n £e 4 I 

Proof. Suppose tha t K does not have a c lose- to-normal 

s t r u c t u r e . Then the re i s a bounded convex subset H of K such 

t h a t oT(U)*>0 and fo r every xe H the re i s a y e H such t ha t 

II x - y II = cf(H). By induct ion we cons t ruc t a nonconstant s e ­

quence 4. x n ^ = 1 c H as fo l lows : Take x-pX^eH such t h a t 

II x-, - x« B - ol*(H). Let X p . - . ^ e H be cons t ruc ted with the 

p r o p e r t i e s t ha t 

11 x i - xkH = oT(H), \ / i , k » l , 2 , . . . , n and 

K x k + 1 - x k l l = </*(H), V lc = l , 2 , . . . , n - 1. 

We choose x + , c H such t h a t II x^.-^ - x^ 1 = oT(H). Now we show 

t h a t wi th t h i s x n + 1 we have Hx n + 1 - x i II * d"(H) V i =- l , . . . , n . 

Indeed, s ince II x n + 1 - x^ 1 « cZ'(H), 

cAH) s n. -fit' ,& ' W«i« s l K i + 1 . V = * - > . 

From this it follows that 

»-Љ I ^ I - X І І = •г<н>-
Hence 

I J T ^ - x^l * <^(H), V i * l , . . . , n . 

So th« sequence 4 x n ^ 1 c H s a t i s f i e s the condi t ion of the 

Proposit ion 2 with c =* oT(H). 
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On the contrary, assume that K contains a sequence 

^xn$n=l satisfyinf t n e condition of the Proposition 2* Let 

xc co(x1,...,xn). Then 

- - A Aixi* A i * • v -= -.—.-« iS, Ai - -•• 
Let 

A - maxtA]^ A n ) , 

J* « ^ ^ - Jl f y i s i f . . # f n . 

We have that 

0 < % -* n,-

tf. 61 • V i • l , . . . , n f - and 

An --• 
One can write 

* « A < «*i - A + A)Xi - nA.J .̂ -£ ^ (At -A)*i = 

• x \+1% nxi-

Hence, 

* *n+l " x B * A ' *i -*n+l " M = ° and 

" * " - n + i - V + A r i > - n + i - - i " - - • 
I t fol lows that I x ^ ^ - x l s c \f n, V x c c o C x l f . . . , x n ) . Hen-

d ( x n + 1 , c o ( x 1 , . . . , x n ) ) » ir * c T t t x ^ ^ ) . 

Thus -f Xj^.-^ *s a st**ictly diametral sequence in K and hence 

K does not have a close-to-normal structure by Proposition 1. 

The proposition is proved. 
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2* Examples. In the sequel we shall always denote by 

r some uncountable set of indices. If X is a space of real-

valued functions on V which is defined in terms of uncondi­

tional convergence, then we denote by K£XJ the bounded, con­

vex and closed set 

^J«P s 3 ! :\ ? o V* e r >«.frx**xi' 
For the definitions of well-known spaces JL^{V ), ĉ (F ) with 

their customary norms see T4]. 

Example 1. (1.1) The set K [ i 2 ( D ] cX 2(T) is weak­

ly compact and possesses a close-to-normal structure. 
2 2 

Since Z (V ) is uniformly convex, K Hi (T )] is weakly 

compact and has normal structure.. It is obvious that a convex 

set K has a close-to-normal structure if it has normal struc­

ture. 

(1.2) The set K tZ1(V)l c ^(V) is not weakly com­

pact and it has fio close-to-normal structure. 

K CX (T)J is not weakly compact siiance the sequence 

*en*n=lcK C^1(T,)J > en
 = <0,...,1 , 0,...) contains no 

convergent subsequence. On the other hand, let 

H -.i-.i cJ l f i relC<
1(P)] \*?V X* = -*• 

Then H is a bounded, convex and closed subset of K T Z 1(T )J 

with <f(H) = 2. If x M x ^ J ^ p «H> there is at least one 

0 i f *c € P,cc+<_<:« 

ec e V such that x = 0. Let y =«{yl e l Bhc.h:.that 

f 0 l f & € P , 

l 1 i f <* m oc0 

Then y e H and I x - y I - 2 = -/'(H). This shows that K has no 

close-to-normal structure. 
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(1.3) The set K[c|)(? )J c cod"
1) is weaklly compact 

which has no close-to-normal structure. 

If-.y(n>rn=1cKCc0(DJ ={x H x ^ c c ^ l s 

it is not difficult to see that there is a y£KC cD(P )3 and 

a subsequence -f y *J .̂-i of -f y1™ } n = 1 such that i y ^ I k = 1 

converges to y along co-ordinates ( by application of the di4 

agonal method). Since cQ*(F ) 3. Z1{V ), it follows that 

tf»Vfl) ^ 

y • y y as k —> CO . Thus K I cAV ) 1 i s weakly compact. 

On the other hand, for each x e K C c 0 ( F ) J l e t y = i^^-p 

be defined as in ( 1 . 2 ) . Then Itx - y II = 1 = oT(KCcg(F ) J ) . 

Thus K [ c £ ( P ) J has no c lose- to-normal s t r u c t u r e . 

Example 2 . M.M. Say C 5J has proved t ha t there e x i s t s an 

equivalent norm ttl • HI of c 0 ( F ) which i s s t r i c t l y convex. 

Let K be the c losed u n i t b a l l in < cQ( F ) , III • III > . Then K has 

a c lose- to-normal s t r u c t u r e . ( I t i s easy to prove t h a t every 

bounded closed convex subset of a s t r i c t l y convex Banach spa­

ce has a c lose- to-normal s t r u c t u r e . ) But K i s not weakly com­

pact because c _ ( F ) i s not r e f l e x i v e . 
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