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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
20, 1 (1979)

NEGATIVE POWERS AND THE SPECTRUM OF MATRICES
Z. DOSTAL

Abstract: A proof is given that for each natural k and
each nxn complex valued regular matrix A, we can write

i—l
=2 i b

where 1)1 Jk may be expressed by ratlonal functions LI of
the elgenvalues of A. Explicit expressions for wy ,-k were

found. We have applled these results to obtain estlmates for
the norms of negative powers of transformatioms on an n-dimen-
sional normed space with constrained spectrum. These estima-
tes represent considerable strenghtening of results of J. Da-
niel and T. Palmer.
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1. Introduction. It is a simple matter, via the Cayley-
Hamilton theorem, to show that the k-th power for each inte-
ger k of an axn matrix A can be represented as a linear com-

2, ves ,Arhl. The coefficients

bination of the matrices I, A, A
in these combinations are known rational functions of the co-
efficients appearing in the characteristic equation of A

L1, 5, 9, 10]. The last coefficients being elementary symmet-
ric oolynomials of the eigenvalues of A, we can write

al-1

(1) A¥ = %.19 K ,

where Vi g Dy be exoressed by rational functions Wy of
] b

the eigenvalues of A. For k>0, w; x are known polynomials
=
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{4, 7, 11}, they proved to be useful in studying the rela-
tions between the norm of iterates and the spectral radius
[3, 4, 6, 7, 11).

It is the purpose of the present paper to give explicit
expressions for wi,k for negative values of k and to apoly
them to obtain estimates for the norms of negative powers of

transformations on an n-dimensional normed space with con-

strained spectrum.

2, Definitions and preliminaries. Let n be an arbatrary

but fixed integer, For i = 1,...,n, we shall define the poly-
nomials

e e e

= 1k 2...
g ¢om 12
‘W+'"*'qw' 4

<]
L

;= Ei(xi""’xn) =

= - n-i
i ai(xl,...,xn) = (-1) En_i+1(x1,...,xn),

where Xpyees,X, 8re considered as indeterminates. Hence

(x - xl)(x - xz)...(x - xn) = x" - a3 - 85X - ... - anxn'l.
Put

/,l/al for i = n,
N\ - a.

D (Xqpeee,Xx ) =
1 »*n .
. 1+l/a1 for i =1,...,n -1,

Faxr each i, 1¢ién, and kén - 1, we shall define ratio-
nal functiors w3k = wﬁ,k(xl""’xn) by the recursive rela-
tions

m
(2) ik T 5?1 DWi k+j
with initial conditions

3wy e Ogaeeexy) = d ey okken -1
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To vrove that w, , are the functions spoken about in the
’
introduction, suppose that A is a regular operator on an n-
dimensional linear space, and that the eigenvalues of A are

Cyreee Son‘ Note that the polynomial

_Jn A i-1
f(x) = x" - 4"24 8; (Pqyeee, @)X

is the characteristic polynomial of A and that, for i = 1,...,n,

Wi .1 = Dy It is now a simple consequence of the Cayley-Hamil-
’

ton theorem that

-1 _ i-1
(4) A 'L?% bi(gol,..., Sun)A s
S0

kK . X i-1
(5) A -4'?4 wi,k( Proeees ;on)A

holds for k =n -1, n- 2,...,0, -1. To prove (5) for k< -1 by
induction, suppose that £< -1 and that (5) is satisfied for

k=2+1,2+2,...n-1.Put f}; = b;(@y,eee, @) and

‘)i,k = wi,k( @rreces @)+ If we multiply (4) by 2% and use

the induction hypothesis, we successively get

. i1
ig= Y5,nh T
-

- . j-1 _ W -
- ;% (12, sy pes) 297 R

For kg n, the polynomials Wi g may be defined (1, 3, 6]

by

m,
(6) Wi yun 2:,?'4 8% k+j-1, i = 1,...,n
and (3).

3. Genersal expressions. Put
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) = . . ¢ ene .

T = T(xyyeee,X,

_al 32 83 soe B.n
and note that
by by ... by by
I R 0 0
0 0 ... 1 0
If
w1k W2 x cee ¥k
W1,k+1 w2 k+1 see Wp kel
e = 1. . vee .
- ¥1,k+n-1 %2, k+n-1 *ee ¥ k+n-1
we have by (2) for K&0
ey = T
and by (6)
Weey = T Wy

for k& 0. Since W, = (d‘i’j) =1, we get

for each integer k.
For kZn and i = 1,...,n, the polynomials Wi x may be ex-

pressed [4, 7, 11] by
(1 T

. e
= n-i - 1
wi,k(xl""'xn) = (—l)a“h“'_‘ﬁ’iﬂ(q(el,...,en) 1)xy %
.‘0':0 eee xnn,
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where q{ el,...,en) denotes the number of ey different from
Zero.

We shall use this result to compute the negative powers
of T.

Put D = ( d‘i ) and note that D™% = D, Simple compu-~

,n=i+l
tations show that

(8) Ty yeeeyxy,) = DIS(L/xp50 00 1/x)D
for k20. Comparing the entries in the first row of the mat-
rices in (8), we get
(9) wi,-k(xl"“’xn) = wn-i+l,k+n-1(1/x1""'1lxn)
for i =1,...,n and k20.
We have proved the following theorem:

Theorem 1. Let A be a regular operator on an n-dimensio~-
nal linear space, let the eigenvalues of A be $°1""’ Pn and

let k>0. Then

10)  a7E = T W )ai-1
i ¥,k Proeeer P

where
_ i-1
1) wi,-k(el""’ $°n) - (-l)e\,*...ﬂ'e,fhw{.-'l(q(el"“’en)-l)
-e -e
e;80 @1 1"'S°n""

Note that Wi is a polynomial in 1/@,,...,1/@® , and that
the sign of all the coefficients in this polynomial depends on
i only. For the polynomials w; Jk? k&n, this result was known
earlier; it was suggested by Professor V. Pték [6] and first
proved by the late Professor V. Knichal (unpublished).
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4. tl'*t, (Al apd ‘A’ll" . In this section, we
shall concern with problems of a nature similar to that rai-
sed by J, Daniel and T. Palmer in[ 2).

Let X be an n-dimensional linear space, let P(X,) be
the set of all norms on X and let i.(xn) be the algebra of
a1l linear operators on X . If Ae L(X,) and pgP(X ), then we
shall denote the operator norm of A in the Banach spaece (Xn,p)
by p(A). The spectral radius of Ae L(!n) will be denoted by
lAl' .

Theorem 2. Let O< R, O<B. If A¢ L(xn), Pe P(&), p(A)EB
am [A™l|g ¢ R, then for each k23

€12) pa7%) ¢ &%_“,4 (%32 (k;x_mi-l) pi-lgk+i-1

Proof: Let R,k,p and A satisfy the assumptions of the
theorem and let S°1""’ S'n be the eigenvalues of A. Since

{a-1 |,. = R, we have 1/| @l & R. A1l the coefficients in (11)
being of the same sign, we can write

. o1
p(A-k) =p (%.g1 'i».k( cl”‘.” (on)Al ) é
(13) % ! ) -1
.2, | v, /R,.L/RIE

To finish the proof, it is enough to evaluate wi,-k(l/R""
esep1fR), This may be done directly or via (9) and results of
4.

In [ 2], J. Daniel and T. Palmer proved,that for each B> O,
there is a number S (B) such that A& L(X ), p& P(X)), iA'lle '3
61 and p(A)&B implies p(T-l)‘ S,(B). Their result is a spe-
cial case of the theorem 2. Let us state the quantitative re-~

finement of their result as a corollary:
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Corollaery 1. Let B>O, Ae L(X ), peP(X), lA"l\,‘ 1
and p(A)& B. Then

(14) pa™ g ((B+ 1)® - 1)/B.
Proof: Put k = R=1 in (12).

Now we are going to show that for small r and B = 1, the
formula (12) gives the best possible bound.

Denote by Bn,ca the comples n-dimensional vector space,
the norm | x|, of the vector x = (Xy,...,X,) being defined
by the formula

I x!

=, max | x;)
® Lrd.gm 1t

Regarding a matrix A = (aij) as an operator on Bn,@ , We
may write
£
LAl ~xn$xé‘“1 aij‘ .
Theorem 3. Let O« r§21/n - 1and kal, Put o3 = (1)1

n n-i+l . _
(n )r y 1 =1,...,n and

-i+l
o 1 0 o
0 ) 1 0
T = . .. e .
) 0 0 1
| ®2 %3 .., “%na]

Then
(Tu=L|rHs=1h
and
(77K, = max{1a¥)y A LB, o), 1Al 61, A7 gk1/rd=

E,005) ()
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Proof: Let r and k satisfy the assumptions of the theo-
rem.

Ir r£2Y® 1, then
~n n n-i+l n
= . r = (1+1r) - 1é&1
21 | &i’ -i-itl(n-Hl) ’

8o that |T\M = 1.
Note that the polynomial

£(x) = x" - .ﬂ. . x"t = (x - )"

4z 1
is the characteristic polynomial of T. All the roots of the
equation f(e ) = O being equal to r, we have 1T°1 l‘, = 1/r.

Since the first row of the matrix R X is equal to
wi,_k(r,...,r),...,wn’_k(r,...,r),

we have

m ~ k+1-2 k+n-1 k+1-1
1T klm=%?'4‘wi,—k(r"“’r)‘ =i§ )( /r

£

The rest follows from the theorem 2.

For special norms it is possible to get far lower bounds.
For instance, N.J. Young has proved [12). that for the Hilbert

norm |+| and R>0,

sup A1 €L(X ), 1A} &1, 1A g & RY= B,

while, by the theorems 2 and 3, for Rg2l/m . 1

sup §p(A"1):p 6P(X ), AGL(X)), p(A) &1, |A | & RE =
= sup {1471, AGL(B ), 1Al & 1, 1Alg & RY=
=(1+R"-

References

nxmn
(1] R. BARAKAT; E. BAUMAN { Mth power of anymatrix and its con-

‘- 26 -



[2)

3

(41

£5)

L6l

[N

£8]

£9)

nection with the generalized Iucas polynomials,
J.Math. Phys. 10(1969), 1474-1476.

J. DANIEL, T. PALMER: On &(T),(T) and T"1, Linear Algeb-
ra and Appl. 2(1969), 381-386.

Z. DOSTAL: 1, -norm of iterates and the spectral radius

of matrices, Comment. Math., Univ. Carolinae 19
(1978), 459-469.

Z. DOSTAL: Polynomials of the eigenvalues and powers of
matrices, Comment. Math., Univ. Carolinae 19(1978),
459-469.

J.L. LAVOIE: The m-th power of an nxn matrix and the Bell
polynomials, SIAM J. Appl. Math. 29(1975), 511-514.

V. PTXK: Spectral Radius, Norms of iterates, and the Cri-
tical Exponent, Linear Algebra Appl. 1(1968), 245~
260.

V. PTK: An infinite companion matrix, Comment. Math.
Univ. Carolinae 19(1978), 447-458.

V. PTAK: The spectral radii of an operator and its modulus.
Comment. Math. Univ. Carolinae 17(1976), 273-279.
M.A. RASHID: Powers of a matrix, ZAMM 55, 271-272(1975).

[10] H.C. WILLIAMS: Some prope rties of the general Lucas poly-

nemials, Matrix Tensor Wuart. 21(1971), 91-93.

[11) N.J. YOUNG: Norms of matrix powers, Comment. Math. Univ.

Carolinae 19(1978), 415-430.

112) N.J. YOUNG: Analytic programmes in matrix algebras, Proc.

London Math. Soc. (3)36(1978),226-242.,

Hornicky ustav CSAV
Hladnovské 7, 71000 Ostrava 2

Beskoslovensko

(Oblatum 18.9. 1978)

- 27 -



		webmaster@dml.cz
	2012-04-28T04:03:09+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




