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COMMBNTATIONES MATHEMATICAE UNIVERS.TAT1S CAROLINAE 
20, 1 (1979) 

NEGATIVE POWERS AND THE SPECTRUM OF MATRICES 
Z. DOSTAL 

Abs t r ac t : A proof i s given t h a t for each n a t u r a l k and 
each nxn complex valued r e g u l a r mat r ix A, we can w r i t e 

A~k = £ i) A 1 " 1 

where "p- k may be expressed by rational functions w* _. of 

the eigenvalues of A. Explicit expressions for f. . were 
found. We have applied these results to obtain estimates for 
the norms of negative powers of transformations on an n-dimen-
sional normed space with constrained spectrum. These estima­
tes represent considerable strenghtening of results of J. Da­
niel and T. Palmer. 

Key words: Negative powers, norm of iterates. 
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1. Introduction* It is a simple matter, via the Cayley-

Hamilton theorem, to show that the k-th power for each inte­

ger k of an axn matrix A can be represented as a linear com-

bination of the matrices I, A, A ,...,A . The coefficients 

in these combinations are known rational functions of the co­

efficients appearing in the characteristic equation 0* A 

Ll, 5, 9, 10.1. The last coefficients being elementary symmet­

ric oolynomials of the eigenvalues of A, we can write 

v £k A i—l 
(1) Ak =,, .£,, ^ i > k

A , 

where V4 v
 m&y ^e exoressed by rational functions w. . of 

the eigenvalues of A. For k>0, w- v are known polynomials 
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[4, 7, lljt they proved to be useful in studying the rela­

tions between the norm of iterates and the spectral radius 

[3, 4, 6, 7, 11.1. 

It is the ourpose of the present paper to give explicit 

expressions for w. v for negative values of k and to apoly 

them to obtain estimates for the norms of negative powers of 

transformations on an n-dimensional normed space with con­

strained spectrum. 

2. Definitions and preliminaries. Let n be an arbitrary 

but f i x e d integer. For i = l,...,n, we shall define the poly­

nomials 

e-, ep e 
E. = E. (x, , . . . , x ) = 2 j% x/x/.ox11 

and 

ai = a i ( x i » " « » x
n

) = ( - , 1 ) E n - i + l ( x l > # * , , ' x n ) ' 

where x-,t...,x_ are considered as indeterminates. Hence 
l' ' n 

(x - x, )(x - x«)...(x - x ) = x n - a- - a0x 
n-1 

W U — Ap / . • • VA - A / - A - a-t - eapA — ••• - a X • 

Put 

^1/a-^ for i = n, 
b« (x-. t • • • ,x ) -= 1 x n \ - a i^ 1/a 1 for i = l,...,n - 1. 

Far each i, 16i_»n, and k-»n - 1, we shall define ratio­

nal functions w^ ̂  = w^ ̂ C x^ • • • ,xn) by the recursive rela­

tions 

(2) wi,r|ib/iw 
with initial conditions 

(3) wi,k ( xk' #* #» xn ) * ̂ i.k+l, 0*k--.n - 1* 
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To prove that w. , are the functions spoken about in the 
X,K 

i n t r o d u c t i o n , suppose t h a t A i s a r e g u l a r opera tor on an n-

dimensional l i n e a r space, and t h a t the eigenvalues of A a r e 

(JD-.,..., rtj . Note t h a t the polynomial 
f ( x ) = x n - ^ a i ( $ o 1 p n ) x w 

is the characteristic polynomial of A and that, for i = l,...,n, 

w. , = b.. It is now a simple consequence of the Cayley-Hamil-

ton theorem that 

U ) A _ 1 = i l - i b i ( C ; 5 l - - - . $ D n ) A i " 1 . 

30 

"k 
(5) i I a

i?
4
»i,k

(
fl Pn)kX'X 

holds for k = n - 1, n - 2,.. .,0, -1. To prove (5) for k<-1 by 

induction, suppose that &< -1 and that (5) is satisfied for 

k = X + 1, Z + 2,...,n - 1. Put (l± = b
i
( pT^.-.i pn) and 

^i k
 = w

i k
(
 5

0
l

,#
•*

,
 J?n

)# I f w e mu
l

ti
Ply (4) by ST and use 

the induction hypothesis, we successively get 

For kgn, the polynomials w
i k
 may be defined [1, 3, 6 2 

by 

( 6 ) w
i,k+n

 =
^

 a
j

w
i,k+o-l, i = l,...,n 

and (3). 

J--Л>м*+i=Д t,Җ *
ІIW
Ł-

*xҲ I 1 -ł>»1 I l í , » 1 Jfjb+l 

Ò-l -

3. General expressions. Put 
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1 -- ivx-i,...,x„/ — 

0 1 0 . 

0 0 1 . 

*з • 

and note that 

p - i 

b
l
 b

2 
b
n-l

 b
n 

0 J 

If 

W
k = 

"l.k+1 

'2,1c 

"г.k+i 

•
w
l,k+n~l

 w
2,k+n-l 

we have by (2) for k£0 

"n,k 

wn,k+l 

w
n,k+n-Г 

and Ъy (6) 

wk-i = T " Ч 

w k + i - T \ 

f o r k&O. Since Wrt = ( d*. .) = I , we g e t 

W k = T* 

for each integer k. 

For kg n and i = l,...,n, the polynomials w
i k
 may be ex-

presзeđ C4, 7, UД by 
(7) 

w i , k ( x l > • • • • »-nJ i = (-1) s+-* v*-м» 
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where qKe., ,... ,e ) denotes the number of e- different from 
* l 1 1 n j 

zero. 

We shall use this result to compute the negative powers 

of T. 

Put D = ( oT̂  n-iH.1) and note that D""
1 = D. Simple compu­

tations show that 

(8) T-1(Xl,...,xn) = DT
k(l/xlv,.,l/xn)D 

for kaO. Comparing the entries in the first row of the mat­

rices in (8), we get 

(9) *it_^xx V = wn.i+1 j _ + n _ 1 ( l A 1 , . . . , l / x n) 

for i = l,„..fn and kil"0. 

We have proved the following theorem: 

Theorem 1. Let A be a regular.operator on an n-dimensio-

nal linear space, let the eigenvalues of A be »-,,..., p n and 

let k >0. Then 

(10) A - - - 4 | 4 w i f _ _ ( f l f .n)A i~1 

where 

( ID w i f .kc, l f... f f a > . < - « £ ^ ^ 

H*Q ?iei'"fnen • 

Note that w. . is a polynomial in l//o-,,...,1/jo and that 

the sign of all the coefficients in this polynomial depends on 

i only. For the polynomials w^ £, kSnf this result was known 

earlier; it was suggested by Professor V. Pt&k C6] and first 

proved by the late Professor V. Knichal (unpublished). 
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4. 2ft !*"*!» U l SfiA l A * X l# • to ****• ••ction, we 

shall concern with problem* of a nature similar to that rai­

sed by J. Daniel and T. Palmer inC^J* 

L«t .KL be an n-dimensional linear space, le t P(Xn) be 

the »et of a l l norms on Xn and l e t L(XR) toe the algebra of 

•11 linear operators on X .̂ If AcL(X^) and p c P ( L ) , then we 

•hall denote the operator norm of A in the Banach soaoe (X^p) 

by p(A). The spectral radius of AcLO^) will be denoted by-

Theorem 2. Let 0<c R, 0<B . If AcL(Xn), pcP(X f t), p(A)# B 

and U ' 1 ^ 6 R, then for each k j i 

«ia» pu--) 4 J< ( ^ j f ^ 1 ) *--#*--. 

Proof: Let R,k,p and A satisfy the assumptions of the 

theorem and lat rt^,..., A>n be the eigenvalues of A. Since 

lA" lv » Rf we have l / l ^ l i R. All the coefficients in (11) 

being of the same sign, we can write 

p(A*k) = p f . j l w. <f !••••'<*n)Al~ / * 

# Jl 4 lwi>-lc(i/R,..'.,i/R)lmi-1 

to finish the proof, it is enough to evaluate w4 V(l/R,... 
X,-Jt 

•••91/R)« This may be done directly or via (9) and results of 

14). 

In 12], J. Daniel and T. Palmer proved,that for each B>0, 

there i« • number Sn(B) such that AcL(Xri), pcP(Xn), lA"
1!^ £ 

£1 e>nd p(4)i8 implies p(T""1)# Sn(B). Their result is a spe-

cial c»se of the theorem 2. Let us state the quantitative re­

finement of their result as a corollary: 
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Corollary 1 . Let B > 0 , A e U y , P € P ( V » U " 1 ^ * 1 

and p(A)£ B. Then 

(14) pCA"1)* ( ( B + l ) n - D / B . 

Proof: Put k = R = 1 in (12) . 

Now we are going to show that for small r and B = 1, the 

formula (12) gives the best possible bound. 

Denote by B the comples n-dimensional vector space, 

the norm I x 1^ of the vector x = (x1,...,xn) being defined 

by the formula 

I x I = # max I x• | . 

Regarding a matrix A = (a^) as an operator on B n , we 

may write 

I A l ^ = max % I a., 1 , 
* *» 

Theorem 3 . Let 0 < r £ 2 1/n 1 and k i l . Put oC±
 я C-DГ 

/ n \ „n-i+1 . _ , _ 
ln- i+1/ r ' x " 1 n and 

Then 

anđ 

[ Л * 2 ^З 

I TI = 1, \*~\ = 1/r 
PO *• 

0 

0 

1 

*c 

| T - 1 : | „ « . » * < U - , £ \ . , :A J.(B„,„>. I . l . * 1 ' | i " 1 | í í l / r » " 

•AříiťH^;1)^"1-
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Proof: Let r and k s a t i s f y the assumptions fcf the theo­

rem. 

I f r * 2 1 / n - 1, then 

so that \T\oi> = 1 . 

Note t h a t the polynomial 

f ( X) = x » ., & ùO.x*'1 = (x - r ) n 

is the characteristic polynomial of T. All the roots of the 

equation f(0 ) = 0 being equal to r, we have |T L = 1/r. 
-k Since the first row of the matrix R is equal to 

wi^k(r,...,r),...,wn^k(r,...,r), 

we have 

-v St St / k + i - 2 W k + n - l \ / J c + i - 1 
l T k » « , = ^ l w i . k ( r , . . . , r ) » = . S ( ( i - 1 A n - i J * • 

The r e s t fol lows from the theorem 2 . 

For s p e c i a l norms i t i s possible t o get f a r lower bounds. 

For i n s t a n c e , N . J . Young has proved [12) . t h a t for the H i l b e r t 

norm I • 1 and R > 0, 

s u p ^ U ^ U A C U - y , U 1 4 1 , \k'x\€ 6 R * a H?\ 

whi le , by the theorems 2 and 3 , fo r B J ( 2 1 / n - l ) " 1 

sup-tp(A"1):peP(X r n) , A€L (X n ) , p ( A ) * l , U"* 1 ^ * R| * 

» sup 41A*1!^ : A e L ( B M ) , |A 1^ * 1, I A ~ \ * R* » 

» (1 + R)n - 1. 

R e f e r e n c e s 
wen 

ClJ R. BARAKAT; E. BAUlIANt Mth power of an /mal r ix and i t s con-
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