Commentationes Mathematicae Universitatis Carolinae

Jaroslav Haslinger
Finite element analysis of the Signorini problem

Commentationes Mathematicae Universitatis Carolinae, Vol. 20 (1979), No. 1, 1--17

Persistent URL: http://dml.cz/dmlcz/105897

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1979

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz


http://dml.cz/dmlcz/105897
http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
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FINITE ELEMENT ANALYSIS OF THE SIGNORINI PROBLEM
J. HASLINGER

?‘gtract Finite element analysis of the Signorxm.
blem 18 given. The paper extends results, contained in

(10}, where the analysis for polygonal domains is studled, on-
ly. Finite dimensional approximations !h of the closed convex

get Efof admiesible displacements are external, in general,
ise. c K for the Signorini problem over domains with curved
Boundaly. e 'main difficulty arises in semi-coercive cases,
where the coerciveness of the functional of total potential
energy on K doesn’t ensure the same property on XKh The ra-

te of convergence is studled, movided the exact solutiom is
smooth enough. Since the regularity assumptioms are not satis-
tled, in general, we prove the convergence of u, to u, with-

out any regularity hypothesis. These results can be extended to
contact problems of elastic bodies, see [5].

Key words: Finite elements, numerical solution of varia-
tional inequalities.

AMS: 65K30

Notations. Let [flc Rz be a bounded domain with Lipschitz
boundary AN . HE() (k2 O integer) denotes the usual Sobo-
lev space of functions, derivatives of which up to the order k
are square integrable in £l . We write H°(Q1) = L2(.n.). where
the scalar product will be denoted by ( , ). We set ve" =
= B5(N )*(n). The norm in aek, ihtroduced in the usual way,
will be denoted by i 'k,.n. or simply ¥ W . In the next, the
summation convention will be usgd: a repeated index implies al-~
ways the summation over the range 1, 2. Instead of @ v/ axj,

e shall writ c se
w 1 ite '1,.1



1. Settimg of the problem. Let an elastic body occupy
the bounded domain S ¢ Ry, Lipschitz boundary of which is

decomposed as follows:

Gn-ﬁu

Fge))

uTéu

ol

9

where T, , T‘c,P& and T, are mutually disjoint parts open.in

o
90 and Tg # @. Let F = (F,F)) e % end P = (P,Py) €
(.(Lz('l",a,.))2 are prescribed body forces and surface loads, re-
spectively. The displacement field u = (ul,uz) is a classical

solution of the so called Signorini problem, if

u=0on T, ,

w, =wn, =0, T, = cijn,jti =0 on T'o,
%igny =Py, i= L,2o0n Ty

w,£0, T, = % mm;&0, wI =0on Ts

and the equilibrius equations

4 +F. =0,1=1,2

i§,d i
hold in L. . Here u, denoct es the normal component of the dis-

placement vector u. n = (ny,n,) and t = (1,t;) = (-m,,ny) are

the outward unit normal and the tangential vector te 4. Si-

milarly Tn and Tt are normal and tangential compenents, res-

pectively, of the stress vector T=(T1,T2)=(tljnj, 'h‘zjnj).

The stress tensor %t =( <. -)2 and the strain tenser ¢ =
14,5=

= (?‘ij)i,jﬂ are related by means of the generalized Hooke s
law

'!:’ij = 'Eij(u) = cijkl Ekl(u),
where €,, = ekl(u) = 1/2(uk,1+ ul,k)' The elastic ceefficients

501 € L% () satisfy the symmetry conditioms:
cijkl = cjiu = cklid ReC, in .Q-



and the condition of ellipticity:

(1.1) | o, = const.> O:Cijkleijekl,z AN

holds for any symmetric e je
In order to define the variational solution, we introdu-

ce the space of virtual displacements
=0 on Té}

and the closed convex set of admissible displacements

V={ve’3€4|v=00n Tw »vy

K={veV|v &0 on T33.
Let
Lv) = 1/24(v,v) - Lv),
where
A(u,v) = (TIJ(U)’ eiJ(v))’ L(V) = (Fl’vl) +‘[‘:‘ Plvl dS,
T
be the functional of the total potential energy. An element
uékK will be called a weak solution of the Signorini problem,
if
(®) L(u) £ L(v) Y vek.

The classical and variational formulations are equiva-
lent in some sense. If T‘“# @ (coercive case) then there ex-
ists a unique solution of (P) (see [11). If T, =@ (sepi-
coercive case), some sufficient conditions for the existence
and uniqueness of the solution of (J®) can be formulated (for

details see [1],[2]1).

2. Approximation of (). 1In this Section we describe

the construction of finite-dimensional approximations of K.
For the sake of simplicity we restrict ourselves to the case,

when only T‘e ie curved. Let ¥ be a continuous concave (it
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is not necessary) function defined on ¢ a,b) , the graph of
which is T's . We choose (m + 1) poinf.s Al""’A!n+1 on T‘s in
such a way that A,,A ., are boundary points of Tg - Let Ay,

A €l ,Qen . Bya curved element T we call a closed

i+l
set bounded by the straight-lines QA,,QA;,, and the arc

‘ K':A'ul' The minimal interior angle of the curved element T is
called the minimal angle of the curved element T. A triangula-
tion ?J'v of Il contains curved elements along 'I"s and inter-

nal triangular elements. By the symbols h and a%» we denote

the maximal diemeter and the minimal interior angle, respecti=-
vely, of all elements T g ‘.’I""v . We shall assume only the so cal-
led regular systems of triangulations:

a constant '\30 > 0 exists, independent of h and such

that
dz«% if h—» O+ .

A family of triangulations will be called o - {3 regular, if

A =« and
o} & y
Km:i.n

where hmin is the minimal diameter of all T & % . Define

V, =4ve@@Nin Vv, e® @)%, Ve T, §

and

L ={vevh| v.n(A;)40, i = 1,...,m+ 13,

where P,(T) denotes the set of linear polynomials, defined on
T. It is easy to see that Kh represents a finite-dimensional
approximation of K and Kh¢ K, in general.

An approximation of the Signorini problem is defined as

the solution of the following problem:



{ find uhalh such that

()
:5(%) £g(v) V vekK,.

3. Error estimates. In this Section we establish the
rate of convergence of u, to u, provided the both problems
(®) and (:Ph) have solutions and u is smooth enough. First
let us recall some well-known results, needed in what foll-

ows.
lemma 3.1. It holds
(3.1) 1/2 A(u - U ,u - uh) & 4 L(u - ‘vh) + L(uh -v) +
+1/2 Alvy —u,vy - u) + Alu,v - u) +'Alu,v, - }1)}-
Y vek, v ¢ K. ‘
Proof. See [3].
Theorem 3.1. Let us asaume

(3.2) VYvek 3dveK: lv-vl,—0, R0+

(3.3) v,6 K, Vp~= v (weakly) in Rq‘ implies vE&K.

Let there exist 4 > O such that B
2

A(v,v) & % ﬂvl.l

holds for any ve V. Then
fu-yl,—0, h—po+.

Proof. See [4].

Theorem 3.2, Let us auppose that S is coercive on

h\go Ky» i.e.
(-3.4) vhel(h,lvhll—-t+@ implies &(vh)-—-)-bm

and let (3.2) and (3.3) be satisfied. Let there exist 9} > O

-5«



such that
avy) Z g5l v IR,

where | v | = ( eij(v), eij(v))l/z. Then

lu = w | —> 0, h—>0+ .
Moreover if the solution u of ({®) is unique, then
lu-wl,—>0, h—>o0+.
Proof. See L[5].

Lemma 3.2. Let [l c R, be a bounded convex domain, the
boundary of which is twice continuously differentiable and
let 4 %; be a o€ - /3 regular system of triangulations with
o« < Jr /8, ﬁ=2. Then

) 3/2 2
Il u uIno’anéch llullz’n_ YueH (1),

where ur denotes the piecewise-linear Lagrange interpolate of
u, ¢c>0 is independent of h>0.

Proof. See [6].

Lemma 3.3. Let vePl(T), where T is a closed triangular
element., lLet Th be the triangle generated by reolacing the cur-

ved side by its chord. Then

2 2
vl 1,A(T,T,) £cnllvily g

h ?

where A(T,T,) = (T\ Th)u (Th\ T) and ¢>0 is independent of

h.

Proof. See LT7J.

Now we recall the well-known Green’s formula. To this end
we define



S(fl) ={ve (LZ(JZ))4 l ®ij T Ty aee in ML 3§

cel?(n), i=1,27,

Y() ={ves(Q) | w;; ;

where < is taken in the sense of distributions. Then the-

ij,d
re exists a unique Te L(Y(Q), (H'l/z(c?.ﬂ. ))2) such that

('E’ij, ela(v)) = -(‘uiil,j’vi) + <T(1‘),V>

holds for any ¥ € Y()) end v & 8&4 . <,% denotes the
duality between (H_l’/z( 80 1?2 ana (Hl/z(a.ﬂ ))2. Henceforth
we assume for simplicity that T(4 (a)) e (L2(6J2. ))2, so that

T(g) = ('c'lj(u)nj, tzj(u)nj)

and

(T('E),V') = 'gn'l'ivi ds.

Theorem 3.3. Let both problems (P ) and (®y,) have solu-
tions u and u,, respectively. Let uek /\322, 2 (u) € Y(S.) and
T,(We Lz(T‘s ). Let the system of triangulations {3;»3_ satis-
fy the assumptions of Lemma 3.2 and ¥ , describing T‘s , be
from €3 (< a,by). If the norms |l u, | ; remain bounded then

lu - uy) & cwn’/4,

Proof. Using the definition of (), Green’s formula and

(3.1), we deduce
1/2°A(u - up,u = v )£1/2 Alvy - u,vy, = u) +
+ L_' ’1.‘n(v‘,1 - “hn) ds + J;.. Tn(vhn - un) ds Yve K,v e K.
S S

Let Vp = Y1, where up is the pjecewise linear Lagrange inter-

polate of u on L . It is easy to see that u;jé K and



Alup - uup - w4 ch?full %,.ﬂ.
.57 { '

%Tn(“l - u).n dséc“uI -u l(o,]; &

3/2
4 ch ﬂu|2,n

where the assertion of Lemma 3.2 has been used. The most dif-

ficult is to estimate the term

(3.6) T (v, - uhn) ds.
-G'é n''n

In what follows we shall construct a function ve&K such that
(3.6) is small. We identify the origin of coordinate system
(xq,%;) with the point A;. Let S—L be a closed set brunded
~
with the arc A;A; =8, ¢C PS and the chord A;A; ;. Let x &
€ Zi. By the symbol P(x) and Q(x), respectively, we denote
the intersection of the perpendicular line through the point
x with 8; and AiAi+l’ respectively. Let us define functions
~ " . .
Uh, Uh on &\..)12.1 by means of the following relations:

Uh(x)
ﬁ’h(x)

where we set ﬁ'h(x) = u, (Q(x)). Clearly

u, (x).n(P(x)),

u, (Q(x))en(P(x)) = ﬁ'h(x).n(P(x)),

U, (x) = vh(x), X @AjA; 4.

Let Q‘i (x), xe A1Ai+1 be the linear lagrange interpolate of

Uy on AjA;,, and let us define § on ;C:);S. ; @8 follows:
s (x) = §;Qx)), x ¢ Zi, i=1,000,m+ 1,

~
It is readily seen that § € O on T)

-
N -ulon .

. We shall estimate

We may write:



~ L4 ~ ~
3.1 1 -w il ne 1o -Tton *10 -Ulon »
~ 2 _ < 2
NG, - on =300 -ulg, e 2y 1, -

~ 2
'“uos.

Let q be the arc ‘s parameter of the point P(x) = (Pl(x),Pz(x))

and denote Q,(x) = x,. Then for j = 1,2 we have
B
g

-a—g (th - th) dx2 =

~
Up; (q) - uhj(q) b
}(w
= (x X,) dx,.
0 ox 2 1272 2
Integrating and using Fubini’s theorem we obtain
~ 2 2 2 s o=
l“h) - uhj“o,si" ch ‘“hll,ii j =1,2.
From this and Lemma 3,3 we have

2 2 2 3 2
oo WUy - BuZe e on? B tuld g sond gl d,

Let us estimate { § - 'ffhl (2) n
. )

2~ 2 _ ~ 2
Ve -Thgn uHVE -TAG
2,60
~ ~
§@ -T@ = | a’L (§;0x,,0) = T (x,,00) ax; +
R,00
S (8,00,0,%) - T ,x,) ax, =
A dx2 1 2 1 2 2
Q‘(x)
d. ~
J; ax (@;(x,,0) - Up(x;,0)) ax; .
Since W e C3((a b »), we have Uhcﬂ (A, A1+1)‘ Hence

-9 -




2
3.9 13@ -3 (!)l écn|d; - T3 I,AA;,, *

32
£ ch?|U |
h'2,a.4,

~
As Uy (x) = ﬁh(x).n(P(x)) and U ¢ Py (A445,1), we may write

19,12 lu, | 2
h'2,A.A. . 4c
i1+ Y 1A1A1+1

Thus, (3.9) and the inverse inequality between n! (a; A1+1) and

rY2.A,

iAi47) yield:

(3.10) né I{lllosl-ch ““h“lAA+1‘
11

11+1'

i

Adding (3.10) for i = 1,...,m we obtain:

Gan & -Fad o s el i, s

where ‘3\. = .U A;A;,, is the polygonal approximation afT‘

Using the trace’s theorem (see [8]) we obtain:
2 2 2
LEAEVER ALY Loz, £ ° Vu b 3,0

where ¢» O doesn’t depend on h for h sufficiently small. Us-

ing these estimates, (3.7),(3.8) and (3.11) we deduce
% 3/2 .
(3.12) e -yl ony £ °h Lupby o

Next, let ve&V be such that

vn =9 on Ty

Then v.n.6 O on l'“ , consequently v €K. Finally we may wri-
te )

- 10 =
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£

3/2
ch luhll,n_'

Since the norms ““hlll a remain bounded, the assertion of
’ B

Theorem now follows from (3.5),(3.13) gnd (1.1).

Remark 3.1. Coercive case is very simple. Both problems,
(P) and (Jph) have only one solution u and u,, respectively.
Using the Korn’'s inequality (see [1)) we obtain the rate of

. 1 .
convergence in ® - norm, i.e.:

Ru -y b, =om¥h,
Moreover, the norms Iluh' , are bounded. More difficult are
the semi-coercive cases. One of the first questions is, if &
ig coercive on k{ K. 4s Kh¢:K, in general, the coerciveness
of & on hi Kh doesn’t follow from the same property on K.
Coerciveness, together with (3.2) imply boundedness of ﬂuhfll.
That is why we had to agsume the boundedness of || uh“ 1 expli-
citly. However, in some special cases, we can prove (3.4).
Here, we present one of the possible situations.

Let
Ro=4p = (01 @) @y = 8y - bXp, @y = 8y + by,
81,85,b€R; 3
be the space of rigid body displacement,

R*= {@eRNK| @ € R*mp ~ € R* 7,

-’Rv=3bnv.

Assume that

(3.14) R*=4{03}, aim Ry = 1,

-1l -



(3.15) L@)sO0Vpes Ry~ 403,
(3.16) KnR =403.
Then

lwi? + gwzelull?  VYuev,

where f(u) = J", (u;:)2 ds (see [21,091).
Let v, €K , |lvhﬂi—7 + 0 , Then

(3.17) :C(vh) = 1/2A(vy,v,) = Livy) + B(w,) - ﬂ‘vh)z
zclvl 22L - Blv,) - €, c,ey>0.
Let 33» be a non-positive function on T’s such that
Vo = &gy ¢ 0?2ty g
The construction of such a function is given in the proof of
Thearem 3.3. Then
flvy) = fr; (pn)? @0 & [ (o = 80007 ascen’ b gl ;-

S
From this and (3.17)

3.18) L(v)zel - Uy kT + 0 if Nyl — + 0.

Now, combining (3.18) with (3.2) we obtain the boundedness of
the sequence fuy 1 - Moreover, (3.15) ensures the unique-

ness of the solution u and .
The sufficient conditions, when (3.2) holds, are given in

lemma 3,5. Let us suppose that [ n Tg = 9, .i"; n Fo =
@ and there exists only a finite number of boundary points

\';:r\'l‘s , ﬁba"‘c , f‘tnﬁ . Then the set

@ = Kn (CP(A))2

- 12 -



is dense in K in: &" -norm.
Proof. The proof for polygonal domains is given in [101],
but its slight modification gives the same density result al-

80 in our case.

In"tfhe above error estimates we needed strong regularity
assumptions, concerning the solution u. Unfortunately, there
are no measons to expect such a great smoothness. This is why
we are going to prove the convergence of v, to u without esti-
mating the rate of convergence, using no regularity assumptiors.
According to Theorems 3.1 and 3.2, it remains to analyse the

condition (3.3).

Lém 3.6. The condition (3.3) holds.
Proof. Let L€ Kh be such that

(3.19) vy—~vinV, h—r0+.

or equivalently

It is sufficient to show that v.n£€0 on T"s

f v.n.qds &0

g e
for any @ € C' ((a,bY), ¢ 0 on <a,bd.
Since the trace mapping is copple‘cely continuous from ¥V into
(13(Ty )2, we have
(3.20) vp— v in (I2(T 1%, n—r o+
hence

. 2
Vyn—> "V in L (Tg), h—o0+ .

Let ‘!‘v be the piecewise linear function defined on <a,b?,

nodes of which are the points Al"“'Am*-l' Then

B = {(?1"2)”‘1‘ {a,b>, x; = ¥} (x;)}

-13 -



is the linear approximation of 'l; . Let us set
'l/'(xl) = vix), ¥ix;))),
'U'h(xl) = vy (x, ¥ixy)),

Vpn(xy) = v lxq, Yi(x)), x;e<la,b).
By virtue of (3.20)
(3.21) Yo— V' in (FP(a,0)N%, n—s o0+,
Let us prove also
(3.22) Vgt — ¥ in (FP((a,0)))2, h—> 0+ .
We may write

(3:23) “th - 1r”o,(a,b) £ V- Vh “O,(a,b) *

AV - Ny by (e,
From the definition of ’th it follows that these ones are
piecewise linear Lagrange interpolates of 1/51‘ on { a,b ).

Corresponding division of {a,b» will be denoted by a =
= t’il< tg‘<...<tg+1 = b, Using the approximative proverty of

'v;vlv we have

1/2
Wh = Vpplo, a0 87 "NVl 10 (ap) £
& chl/? llvh“ l,n_é chl/?

where ¢ >0 is independent of h for h sufficiently small and
(3.19) has been used. From this, (3.21) and (3.23),(3,22) fol-

lows. Now, let us prove that

&
L Vxp) enGey, ¥ix))) @ x)) dxy4 0

for any @ € Cl(<a,b> ), ¢ Z0on {a,b?. Using (3.22) we

have

- 14 -



I'g
(3.24) fwvhh‘n?dxl"" j;"lf .n@dxy, h—» 0+.

b

F ical tati f . th

or the numerical computation o j;,'b’hh nsodxl we use e
trapezoid formula:

g .

m m m m
jw Vin-n@dx @ h (U, .n) (1)) @ (1) + 2(Vy, ) (t3) @ (t3) +
ol * ('V'hh.n)(t$+l)3°(t$+‘1))s['th.n,(gl-

O ; m my m TR

Since (Vm.n)(tj)go(tj) = (vh.n)(Aj)ga(tj)éo Yi=1,...

..., + 1 we have

['th.n,g:]_éo Y nh>o.
The proof will be finished, if
&
(3.25) [th.n,?l——-».&’lf.nqul, h —» 0+ &
We may write

& b
(3.26) | VYingdx, -LV  n,@ell £1) Vnedx, -
» gaxy nhe™ ¥ A A

& n
- L Vo neaxg )+ VY ppngaxy - [1¥y,0m,930.
By virtue of the inverse inequality between Hl/2(< a,b) ) and
B (< a,b%):

&
‘ fa Van-ngaxy = LVpengdlech [ Yy gly (o 1) €

4c(n,@n 1V, | Lapf ¢ /2| Yon ! 1/2, (a,p) €

&c(n, qa)hl/‘2 v, 0 1,nh‘ c(n,tg(:)hl/2 ,

where S}xv is the polygonal domain bounded with T‘L, T,L , T"a

and T‘Slh . From this, (3.19),(3.24) and (2.26) we obtain (3.25),

Hence
(‘lf.n)(xl) = (v.n)(xl,‘i’(xl)_)éo, x; € {a,b) .

- 15 -



Theorem 3.4. lLet the assumptions of Lemma 3.5 and (3.4)
be sgtisfied. Then

fu-u, | —>0, h—>0+
Moreover if the solution u of (%) is unique, then
fu- uh" 1= 0, h—> 0+ .

Proof. The assertion of the Theorem is an immediate con-

sequence of Theorem 3.2, (1.1l) and Lemma 3.6.
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